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For a linear structure reinforced with elastic fibers, the first variation of
an arbitrary behavioral functional corresponding to variation of shape
or orientation of fibers is derived by using the direct approach to sen-
sitivity analysis. The relevant optimality conditions for optimal design
and identification problems are then derived. Both the static and dyna-
mic loading cases are counsidered. Some simple examples illustrate the
applicability of the presented approach.
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1. Introduction

The full advantage of fiber-reinforced materials are obtained when fibers
are distributed and oriented optimally with respect to the assumed objec-
tive behavioral measure in the optimization process. To fulfill the assumed
optimization goals for a certain structure, we can modify some parameters of
the structural material, such as fiber plies thickness, fiber density, shape and
orientation, stacking sequence etc. A possible way to satisfy the optimal design
requirements is to derive the optimality conditions and sensitivity formulae,
which can be used either directly or in the iterative optimization procedure.

The optimization of composite and fiber-reinforced materials has found a
growing interest in the literature. Such materials are treated on the macroscale
level as anisotropic or orthotropic materials, and their stiffness parameters
are subjected to the optimization process. Optimal design of fiber-reinforced
materials and structures were discussed, for instance, in Dems (1996, 2000),
Matheus et al. (1991), Olhoff and Thomsen (1990), Thomsen (1991). The ma-
ximum stiffness was used as objective function in optimal design of structures
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made of fiber-reinforced composite materials by Bojczuk (1992) and Thomsen
(1991). The problem of optimal design of a disk reinforced by a number of
fibers was considered by Mréz and Dems (1992).

The fiber-reinforced laminate will be treated on the macroscale level as
an orthotropic linear material, and sensitivity analysis and optimal design
will be performed with respect to the parameters defining the fibers shape or
orientation in each play.

2. Problem formulation

Consider a thin plane disk made of symmetric laminate with the middle
plane, Fig.1. The transverse boundary surfaces of the disk are cylindrical and
parallel to the z3-axis. The disk is subjected to generalized body forces f
acting within its plane, and generalized in-plane tractions T acting along the
boundary portion St of external boundary S. On the remaining portion S,
the in-plane displacement u° is specified. All the specified boundary conditions
can be in general time-dependent.

u%(x,t) S
X3 X
Fig. 1. Thin disk made of composite material

The material of a disk is a symmetric laminate made of a stack of layers,
which are symmetric in both the geometric and material properties about the
middle plane of the disk. Each layer, placed symmetrically with respect to
the middle plane, constitutes a lamina made of matrix reinforced by a ply
of unidirectional fibers of arbitrary shape. The orientation of fibers in each
layer can vary with respect to the global co-ordinate system z,z3. Let us
denote the mid-plane strain field within a disk by e’ = {e1, €2, €12}, and the



SENSITIVITY AND DESIGN OF FIBER LAYOUT IN COMPOSITES 809

generalized stress field by N T= {N1, Ny, N12}. Using the classical lamination
theory, the generalized stress and mid-plane strain are interrelated by Hooke’s

law of the form
N =De (2.1)

where D is a symmetric and positive definite extensional stiffness matrix of
the laminate. The components of this matrix are expressed by

n
Di; =2 QNhk (2.2)
k=0
where
hy — thickness of the kth layer (thickness of the middle layer is
assumed to be equal to hg/2)
ij — components of the stiffness matrix for orthotropic layer with

respect to the global reference system z;,z;.

The components of matrix D can be expressed in terms of engineering con-
stants EF, E¥ G%, and v}, for each particular layer and fiber shape or
orientation parameters within this layer. The E¥ and E¥ are the generalized
Young’s moduli in fiber direction y; and direction y, transverse to the fibers,
cf Fig.2, while ij denotes the in-plane generalized shear modulus of a lamina
and uf2 is the so-called major Poisson’s ratio. The stiffness matrix appearing
in (2.2) can be written in the form

Q* =T;'QT, T (2.3)

where Q" denotes the lamina stiffness matrix with respect to material axes
y1,y2 and Ty is the transformation matrix from the global coordinate system
z1,Z2 to the material axes y,y2 of the kth layer. Let us note that Q
depends on engineering constants of the kth layer, while Ty is a matrix
function of fiber orientation in a particular layer.

Using the simplest model of lamina (cf Jones, 1975), the engineering con-
stants in each layer follow from the rule of mixtures. Thus, the extensional
stiffness matrix D defined by Eqs (2.2) and (2.3) depends on mechanical
properties of the fiber and matrix as well as the fiber density, shape and orien-
tation in each layer and on layer thickness. Let us note that, besides the above
presented simplest model of fiber-reinforced composite material, there exist
more complicated and more accurate models of a laminate composed of uni-
and bidirectionally reinforced layer. But even for these more complicated mo-
dels, the generalized stiffness matrix D depends on the same parameters as
for the model presented here. The approach to sensitivity analysis and optimal
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Fig. 2. Global {z;} and material {y;} axes in the laminate layer

design, discussed in the following sections, can be easily applied also for more
complicated models of the composite material, not discussed here.

Let us now assume that the number of layers and mechanical properties
of the fibers and matrix as well as the fiber density are given in advance
and are constant in each layer. On the other hand, the fiber orientation @*,
(k =0,...,n), can vary in each layer. The orientation of fibers in each particular
layer can be either constant and then the fibers are rectilinear through the
layer, or their shape can vary through the layer. In this latter case, the fibers
are placed curvilinearly in matrix, see Fig.2. As a result, the fiber orientation
at any point of the layer domain can depend on a set of fiber shape parameters
by, i.e. ©F = @%(z,b;). Then the extensional stiffness matrix D of the disk
material appearing in (2.2) can be written in the form

D(z,b) =2 ‘Zj hiQF (2, by) = 2 f: P T3 (2, b )QF T T (2, by) (2.4)
k=0 k=0

The change of components of vector b will then influence the material proper-
ties of the resultant material of disk, and the sensitivity analysis and optimal
design will be carried out with respect to this design vector.

3. Sensitivity analysis for an arbitrary functional

In this section we extend the analysis presented by Dems and Mréz (1983),
Dems (1996) to the case of dynamically loaded disk made from fiber-reinforced
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material for which the generalized stresses and strains are interrelated by Eq
(2.1), with extensional stiffness matrix defined by Eq (2.2). This stiffness ma-
trix depends on vector b of the design parameters defining the shape or
orientation of the fiber in each layer.

The equation of motion of a disk under the applied load in A and on
St and support conditions on S, can be expressed by the following set of
equations

divN(z,t) + f(z,t) = p(z)i(z, 1) in A4 x(0,tf]

N(z, t)n(a:) =T%z,1) on St x [0, /]

u(z,t) = u'(z,1) on Sy x [0,ty] (3.1)
u(z, 0) uy(x) in A x[0]

u(z,0) = v(z) in A x|[0]

where p(z) denotes generalized density of the disk material and ¢y is the
terminal time of dynamic process. Moreover, the dot over a symbol denotes
the derivative with respect to time ¢. The strains in the disk are related to
the displacements through the strain-displacement relation

e=Bu (3.2)

where B is a linear operator. Solution of (3.1), (3.2), along with (2.1), is
performed (with prescribed values of design parameters b) and results in
determining the generalized stress and strain distribution over the domain of
the disk.

Let us now cousider the problem of evaluating the first-order sensitivities
of an arbitrary behavioral functional G defined over the fixed time period
[0,%¢], given of the form

ty

- / { / BIN(z,1), e(z, 1), u(z, 1), (z, 1)] dA + / WT(z, 1), u(z, )] dS } dt

0
(3.3)

depending on generalized stress, strain and displacement fields within the disk
domain A as well as on the surface tractions and displacements along the
disk boundary S. We should note that the functional G can express any
behavioral measure of the disk. It can be a measure of the disk mean stiffness
or compliance. But G can also express the global measure of stress, strain or
displacement intensity within the disk domain or along its boundary calculated
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over a given period of time, or even the local quantities such as stress, strain
or displacement components at a given point of disk.

When & and h in (3.3) are continuous functions of their arguments, the
variation of G equals

T
6G = Gpdb = Z Gbszbk (3.4)
k=0
where Gjp is the first-order sensitivity vector of G with respect to the design
parameters b and db denotes variation of the design vector b.
Assuming that the surface traction T° on Sr and displacement u on 5,
as well as the initial conditions in A are design-independent, the first-order
sensitivity vector of G can be written in the form

ts
Go= [Guipdd] + [{[10uN o400+
0

t=ty

(3.5)
+HPyu = (8,0) w0} dA+ [ hap dS7+ [ h1T,p S, } a

As it can be seen from (3.5) the knowledge of sensitivities of state fields is
necessary to calculate G. These sensitivities can be either obtained by using
the direct approach to sensitivity analysis, or eliminated from (3.5) by means
of adjoint approach.

Let us consider first the generalized stress-strain relation (2.1) and derive
the sensitivities of extensional stiffness matrix D with respect to components
of the design vector b. Selecting an arbitrary component b of the design vector
b and differentiating (2.1) with respect to this component, we obtain

N, = De,, +D,be:De,b +N:) b=by,...,0p (36)

where P denotes the total number of all design parameters in &, and the
second term on the right-hand side of (3.6) can be regarded as a generalized
initial stress applied within the additional disk due to the change of stiffness
matrix D with respect to the design parameter b. Note furthermore that the
relation between the sensitivity fields N and ey is still linear with the same
extensional stiffness matrix as that for primary disk.

For b coinciding with fiber shape parameter by; of the fiber shape set by
in the kth layer, the sensitivity of D follows from (2.4) and equals

oQF do* E=0,..,n

D 2h————— = 2hQ% i (6%),, :
5% oy~ L0 ) =1, 67

sby; =
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where now Ji denotes the number of fiber shape parameters in the kth layer.
All sensitivities of matrix D can be easily calculated when the design function
©F = ©%(x,b;) is assumed in advance for each layer in the particular design.

Using now the direct approach to sensitivity analysis, the sensitivity fields
Uy, €1, N,y and T, can be obtained as the solutions of an additional
boundary-value problems associated with all components of the design vec-
tor b. Differentiating the state equations (3.1) with respect to b and assuming
moreover that the body forces are independent of fiber orientation, we obtain

div N, = pit, in A x[0,ty]

Nyn=0 on St x [0,t5]

up=0 on Sy x [0,tf] (3.8)
uyp (z,0)=0 in A x|0]

1, (2,0) =0 in A x|[0]

The equations (3.8) constitute the set of state equations for a linear-elastic disk
with an imposed field of initial stress NZ = D,. e and its material satisfying
the constitutive equation (3.6). The state fields obtained as a result of solution
of the additional problem (3.8) are the sought sensitivities u, (z,t), e, (z,t),
N,b (Z, t) and T,b (IE, t).

Knowing the sensitivities of primary state fields with respect to the parti-
cular design parameter b, the sensitivity of functional G can be next evaluated
from equation (3.5). The above process has to be repeated for evaluating the
sensitivities with respect to all design parameters contained in design vector b.
Let us note, however, that calculating the state fields sensitivities by means
of the direct approach, we are able to evaluate the sensitivity vectors for any
number of functionals G without any additional effort.

The alternative method to evaluate the sensitivity vector of G is to use
the solution for the adjoint structure in order to eliminate the state fields
sensitivities from (3.5). However, this approach will not be discussed here, but
the details can be found in Ders (2000).

The transition to the case of statically loaded structures can be easily
performed by assuming that the boundary conditions specified in (3.1) and
(3.8) are time-independent and functional G specified by (3.3) is reduced to
the form

G = / B(N, e, u) dA + / W(T,u) dS (3.9)

The sensitivities of (3.9) follow from (3.5) and now they are simplified as
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follows
Gb = /dj, NNab+@7 ee,b+d§7 u"’b) dA+/ hauu,b dST""/ h, TT)b dSu (3'10)

A detailed analysis of this static case is presented in Dems (1996).

4. Optimality conditions

One of typical formulations of the optimal design problem would require
the minimization (or maximization) of functional G with the upper bound
set on the structure cost, thus

Minimize G subject to C-Cy<0 (4.1)

where G can be assumed in a general form (3.3) and Cj denotes the upper
bound of the structural cost.

Introducing the Lagrange functional G’ = G — A\(C —~ Cy + p?), where X
denotes the Lagrange multiplier and p? is a slack variable, its stationarity
yields the optimality conditions for the problem (4.1), namely

Gy — ACp =0 b=by,...bp

(4.2)
SMC —Co+p?2) =0 22 =0

where Gy follows from (3.5) and Cj, denotes the sensitivities of the cost
function with respect to design parameter b.

The identification problems differ from the optimal design problem only by
the absence of cost function, which is usually not associated with the identi-
fication procedure. Assume, for instance, that the displacement field ups was
measured over some control boundary part Sps within time interval [0, ¢].
Thus, the identification problem is reduced to determining a set of parameters
influencing the stiffness matrix, D = D(b), so that the distance between the
measured and calculated displacement % is minimized. Such measure can be
selected as

Ly
a=/ E [t~ une? dSue] e > i (4.3)
0

where o is some weighting factor. The necessary optimality conditions follo-
wing from the stationary requirements of (4.3), in view of (3.5), will now be
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expressed as

ty
/{/a[u(z, t) = (@, Oy S} dt =0 b=by, . bp  (4.4)
0

where all sensitivities u,, should be derived as the solutions of P additional
problems (3.8).

5. Illustrative example

=
w2
P
I
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(1)

Fig. 3. Disgk uniformly loaded along the z; axis

A simple example will be discussed in this section in order to show the
applicability of the derived sensitivity expressions to sensitivity analysis and
optimal design of fiber-reinforced disk. Let us consider then a rectangular
disk with | = 1.0m, h = 1.0m, supported along the edge z; = 0 and
loaded along the edge z9 = 0, cf Fig.3, by harmonically varying traction
Tz, t) = T°[sin(n5/t) + 1), where T° denotes the traction amplitude and
7/5s~! is the given frequency. The matrix material of the disk is reinforced
by one fiber field of constant density p; = 0.4. The material data for epoxy
matrix and glass fibers are as follows: E, = 0.34 - 10 MPa, v, = 0.35,
Ef =173-10"MPa, vy = 0.22. Let us assume that all fibers will constitute a
one- or two-parameter family of the same shape that will be described by the
shape of the so-called ”directional fiber”. The parameters defining the shape
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of directional fiber will be treated as design parameters, and their optimal
values for the case of mean compliance design of the disk within the assumed
period of time ¢ € [0,10] will be derived. For initial time ¢ = 0, both the
displacement u(z,0) and velocities #(z,0) are assumed to vanish. Thus, the
optimization problem can be stated as follows

10
minG = /(/ Tu dST) dt with respect to B (5.1)
0

The sensitivities of objective functional are expressed by (3.5), and then the
optimality conditions for the problem at hand can be written in the very simple

form
10

/(/T‘u.,bj dSr) dt = 0 i=1,2,..J (5.2)
0

where J denotes the number of fiber shape parameters b&;. The additional
displacement fields u,, appearing in (5.2) were calculated using the finite
element method, and the disk was divided into 15 x 15, 8-node rectangular
plane stress elements.
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Fig. 4. Optimal disk with one family (a) and two families (b) of straight fibers

In the first case, the fiber field was composed of straight fibers for which
the angle of orientation @ was the only design parameter. The optimal value
of @ equals 121.1° cf Fig.4a. This design was associated with reduction of the
global disk compliance by 16.9% relative to the design with all fibers parallel
to z; axis (@ = 0°), and by 26.1% relative to the design with all fibers
parallel to the zz axis. In the second case, two families of straight fibers were
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introduced as shown in Fig.4b and their angles of orientation were treated as
two independent design parameters. The calculated optimal values of 8, and
0y are 26.1° and 146.8°, respectively. This optimal design corresponds to
reduction of the disk compliance by 38.7% in comparison to the design with
both fiber families parallel to the z; axis, and by 45.5% for the case of fibers
parallel to z, axis.

6. Concluding remarks

The present paper extends the results of previous works and provides a sys-
tematic approach to the sensitivity analysis and optimal design for dynamically
and statically loaded disks of fixed shape made of fiber-reinforced composite
materials. The concept of direct approach provides an effective tool in gene-
rating the sensitivities of an arbitrary functional with respect to parameters
defining the extensional stiffness matrix of symmetric laminate material.
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Wrazliwoéé i projektowanie ulozenia widkien w kompozycie

Streszczenie

W pracy rozpatrzono pierwszg wariacje dowolnego funkcjonalu zwigzang z war-

iacjg ksztaltu lub orientacji wzmacniajacych widkien w plaskiej liniowo-sprezystej tar-
czy. Wrazliwosci rozpatrywanego funkcjonatu wyznaczono wykorzystujac metode bez-
poérednig analizy wrazliwo$ci. Nastepnie sformulowano typowy problem optymalnego
projektowania oraz problem identyfikacyjny 1 wyznaczono odpowiednie warunki opty-
malnoéci. Rozpatrzono zaréwno przypadek obciazen statycznych, jak i dynamicznych.
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