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The basic information on an algorithm of a family of new triangular-
prism, 3D-based, hpg/hp-adaptive, solid-to-shell transition finite ele-
ments has been presented in the paper, where h, p and ¢ denote an
averaged size as well as longitudinal and transverse orders of approxi-
mation of the elements, respectively. Novelty of the elements consists in
application of hpg- and hp-approximations in solid and shell parts of
the elements, respectively. In that context, crucial parts of the algorithm
such ag: hierarchical shape functions, modification of the stiffness and
podal forces of the shell part of the elements, and constrained hpg/hp-
approximation are elucidated. Usefulness of the elements for modelling
and analysis of complex structures is proved by a numerical example.
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1. Introduction

Recent developments in hApg- and hp-approximations and in the corre-
sponding finite element methods have become a strong impulse for reviging
the possibilities of application of adaptive, solid and shell finite elements to an
analysis of plates, shells and solid bodies. In that context we should mention
the work by Demkowicz et al. (1989) on three-dimensional hp (or hpp) finite
element approximations applied to 3D-elasticity problems. Note that hpg-
approximation being a specific case of hpp-approach can be used also for thick
and moderately thick shells. The corresponding hexahedral finite elements
were proposed earlier by Szabo and Sahrmann (1988) while the triangular-
prism elements were described by Zboinski (1997) quite recently. On the other
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hand, we have works concerning two-dimensional hp-approximations for thin
or moderately thick shell and plate problems. Some theoretical considerations
are given by Babugka and Li (1992). The corresponding, exemplary quadri-
lateral shell finite elements can be found in Della Croce and Scapolla (1992)
and in Chinosi et al. (1998). As an alternative 3D-based, triangular-prism,
Reissner-Mindlin shell element was elaborated by Zboinski (1994). Still one
more approach proposed by Oden and Cho (1996) utilizes quadrilateral shell
elements based on hpg-approximation and hierarchical models of thin, mo-
derately thick and thick shells and plates. A similar idea is also applied in
the hpq hierarchical elements by Actis et al. (1999). It is not our intention to
extend the above list of exemplary papers. It is worth noting, however, that:

e The works by predecessors concern solid, shell or plate bodies separately
because of assignment of the above mentioned approaches to the specific,
different models and geometries

e The specific character of the above mentioned approaches results in dif-
ferent formulation of the corresponding finite element approximations
with incompatible degrees of freedom (DOFs) applied

e As a result, modelling and general analysis of complex structures con-
sisting of solid and thin- or thick-walled parts as well as of transition
zones is not possible, or at least very difficult, either with each of the
above approaches or by means of all of them together.

In order to overcome this difficulty we utilize a family of original, compa-
tible 3D-solid, 3D-based shell and 3D-based solid-to-shell transition elements
elaborated by Zboinski and Demkowicz (1994), Zboiriski (1994) and Zboinski
and Ostachowicz (1995), respectively. These elements are based on hpq-, hp-
and hpq/hp-approximations, and are assigned for consistent modelling and
adaptive analysis of solid, shell and transition parts of complex structures.

The paper focuses on algorithms of solid-to-shell transition elements. This
idea is not new. It was proposed by Surana (1980) in the context of clas-
sical (non-adaptive) finite elements. The elements proposed here (Zboirski
and Ostachowicz, 1995, 1999a) take advantage of this idea and of 3D-based
non-adaptive shell elements introduced by Zboinski (1992). Apart from their
adaptive character, novelty of our elements in comparison to classical ones lies
in the followig facts:

e Adaptive character of the proposed elements needs introduction of hie-
rarchical shape functions defined independently in vertices, on edges and
faces, and in the interior of the element, in order to enable the adaptation
process
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e 3D approach is proposed for element formulation which results in appli-
cation of three-dimensional DOFs instead of shell DOF's in the shell part
of the elements

e Definition of local, normal and tangent directions in any point of the
shell part of the elements conforms to shell theory, i.e. corresponds with
the mid-surface instead of surfaces of constant normalized longitudinal
coordinates applied in the case of classical elements

e The solid part of the presented elements, which comprises most of the
element nodes, except those constituting the shell part and belonging
to edges and faces, are defined in agreement with 3D-elasticity theory
in comparison to the nodes of almost equal shell and solid parts of the
classical elements, which conform to the shell theory.

2. An algorithm of the elements

The presented parts of the algorithm are limited to crucial aspects, while
the full algorithm is given by Zboinski and Ostachowicz (1999a,b). An empha-
sig is put on details describing adaptive character of the elements, which are
not present in the case of classical elements. Some other differences between
the proposed and classical elements are also shown.

2.1. Normalized geometry of the elements

In order to connect solid and shell parts of any complex structure, which
are modelled by 3D-solid and 3D-based shell elements, we need to introduce
four transition elements. In the first of them (I), the shell part of the element
consists of two vertex nodes a;, a4 of one vertical edge @jay, in the second (II)
this part includes four vertex nodes: a,, @2, a4, a5 and two mid-edge nodes:
a7, ayp of one side Oajasasay, in the third case (IIT) the shell part consists of
the nodes of two sides Oajaza5a64 and Oajazag@s, while for the fourth (IV)
case we have three sides. The geometry of the master elements defined by the
normalized coordinates &), &2 and &3 (changing from 0 to 1) is shown in Fig.1.

2.2. Hierarchical shape functions of the elements

If we introduce functions 1, ¢ = 1,3; 1/1;?, J=L1L3k=1.,N; -1
¥E k=1,..,(Ng — 2)(Ny — 1)/2 denoting vertex, mid-edge and middle node

4 - Mechanika Teoretyczna
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Fig. 1. Cases (I)-(IV) of adaptive transition elements

shape functions (defined independently within & &2-plane) of a 2D triangu-
lar master element of order (of higher-order nodes) expressed by the vector
[Ny, No, N3, Ny, and functions ¢, ¢o; ¢4, { = 1,2,..., M being shape func-
tions (defined independently along £3) corresponding to vertices and interior
of 1D master element (of order of the middle node equal M), then 3D hierar-
chical shape functions can be obtained as tensor products of 2D and 1D shape
functions.

The 2D shape functions mentioned above which correspond with the fol-
lowing nodes of the master triangle take the form of:



AN ALGORITHM OF A FAMILY OF 3D-BASED... 795

— vertex nodes

I [(1= 2 )= £
ok = N.;/zo,#k[(' Nl) : 1] k=1,.,N -1 (2.2
0440 4)

with formulas for the shape functions ¥, 9§ of the next two mid-edge nodes
obtained by replacing indices 1, 2 in Eq (2.2) with 2, 3 and 3, 1, respectively
— middle node

(2.3)

where g+ h+j = Ny, 1< g,h,7 € Ny and consecutive values of
k = 1,..,(Ng — 2)(Ng — 1)/2 correspond to threesomes g, h,j in which the
values of j, h and g are consecutively increased.

Note that we use so-called affine (or area) coordinates Aj, A9, Az in (2.1)-
(2.3), which can be expressed through normalized coordinates £),&s with
simple formulas A; =1 — & — &, Ao = £ and A3 = £». It is worth noting
that the form of the shape functions for the mid-edge nodes is an original one
and different from the form proposed by the predecessors.

The form of the mentioned 1D shape functions corresponding with two
vertex nodes and one middle node are defined as follows:

— vertex nodes

$r=1-¢3 $2 =& (2.4)

— middle node

=057
¢t =2 : _ I=1,..,M -1 (2.5)

Proper multiplication of 1D and 2D shape functions leads to the following
3D shape functions, for:
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— lower and upper vertex nodes

Xi = it =123
| (2.6)
X3+i = Yig2 1=1,2,3
— lower and upper horizontal mid-edge nodes
Xo+jk = V5,61 i=1,23 k=1,.,Nf—1 o
Xotik = V51 ;¢ i=1,2,3 k=1,.,N§ ;-1 '
— optional vertical mid-edge nodes (i = 7, ...,4¥)
X124 = 5,05 =1, ,M; ~1 (2.8)

where for (I): i? = 1, % = 2, (51,52) € {(2,3),(3,1),(1,2)} and for (II):
ip:ik:]-ajl € {3a1a2}
— lower and upper mid-base nodes

(NY = 2)(Nf - 1)

be-f—l,k = w'];¢l k = ]-3 -eey 9
(2.9)
NS —2)(N) -1
Xro42,6 = Vi k=1,.., (Vs )2( 2~ 1)
where for (I): I® = 14, (I): I = 13, (HI) and (IV): I = 12
— optional mid-side nodes: (i =%, ...,4%)
k=1,.., (N 1)
XIe+i,m = 1/13+_71¢3 l=1,.., (M]S_L - 1) (210)
m:(k—l)(Mjsi —-1)+1
where for (I): =16, 1* = 1, ¥ = 3 (jl,jp_,jg) € {(1,2,3)}, for (II):
I8 =15, i% = 1, i =2, (j1,72) € {(2, 1),(1,2)}, and for (I11): I° = 14,
i*=1"=17 € {3,1,2}
— middle node
¢ _ c _
k=1,.. (V€= 2)(N° - 1)
k 4l 2
X]c,m:’l/17(}53 I=1,.. (M°=1) (2.11)

m = (k- 1)(M¢—1) +1

where for (I): 7¢ = 20, for (II): I¢ = 18, for (III): I¢ = 16, while for (IV):
I¢ =15.

Note that Nf, j = 1,2,.,6, Mf, Ny, No, (N3, M2), (N¢,M€) denote
orders of approximation of horizontal and vertical edge nodes, base and side
nodes, and middle node of the elements.
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2.3. Displacement fields of the transition elements

The total interpolant of a displacement field of the transition elements,
u = u(£), describing displacements % = colu;, u2,u3] of any point of the
elements is a sum of four component interpolants (interpolating functions)

u(§) = u' () +u*(€) + () +u'(¢) (2.12)

The linear (vertex nodes) interpolant u'(£) can be defined as a sum of
products of the local degrees of freedom g¢;, ¢ =1,..,6 at vertex nodes and
the corresponding shape functions

u'(€) =) xi6)e; (2.13)

where these DOF's are defined as ¢; = col(q) 4,92, ¢3,i]-

The mid-edge node interpolant u?(£) is defined as a sum of products o
the local degrees of freedom gy, 5, ¢ = 1,..,6 and @yy,;y, © = @,..., "
at the horizontal and optional vertical mid-edge nodes, respectively, and the

appropriate shape functions

6 Ne-1 ik Myl
W) = D XeripEsrin+ 2. . 124606y (2.14)
=1 k=1 =¥ [=1

where vectors of the mentioned degrees of freedom are

@61ik = 0)[q1,6+i ks Q2,6+i k> 93,6+i k]
Qotil = 001[(]1,12+z’,z, q2,12+4,0 (13,12+i,l]
and counters P, i*, j; are the same as in the previous sections.

The next, mid-side nodes interpolant of displacements u3(£) is defined
analogously by multiplication of the proper local displacement-type DOF's
Apipy ¢ = 1,2 and  Qreyypm, © = 1%...,2° at the base nodes and optional
mid-side nodes and the corresponding shape functions

2 (NP-2)(NE-1)/2 (V-5 =1)
3
NGEDY > Xprip©arepin+ Y > xr4im€)arssim
i=1 k=1 i=i® m=1
(2.15)

where the local degrees of freedom are defined by

Qroyi e = COMqy roi ks Q2,104 ks 93,1544 k)
rsyim = COl[q1 Is 1iim, 92,15 44,m» 43,15 44,m)]
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and where the quantities I°, I°, 4%, i?, j; are determined as previously.

The middle node interpolant of displacemnts u*(£) can be calculated again
through multiplication of the proper local degrees of freedom gy ,, and the
corresponding shape functions

(NE€=2)(N¢-1)(Mc—1)/2

u'(€) = > xre,m(€)are m (2.16)

m=1

where the local degrees of freedom are
drem = collq1 re m; q2,1¢,m» 43,1°;m]

and quantity I€ is defined in the previous section.

2.4. Stiffness modification within a shell part of the elements

The starting point is an element equilibrium equation kg = f, where k
is an element stiffness matrix conforming to the 3D-elasticity theory, while f
and ¢ denote element nodal force and displacement DOF vectors. In order to
make the shell part of the elements compatible with the shell theory and thus
to enable the connection between elements of different models, we introduce
within this part the plane strain assumption. Its introduction consists of five
steps:

e Replacement of the global DOFs ¢ with generalized DOFs ¢’ defined
as sums or differences of global DOFs of the top and buttom surfaces,
that leads to the relation

k'q" = f' (2.17)

where ¢’ consists of the blocks

q]['i = %(qji + q3+j.;) q:l}r_H'i = %(qj'i - (I3+ji) = iu, ...,iw
q,7[i =4; qg_;.ji =43 i=1P, ... 5"
qé‘i'ji - %(96+ji + q9+ji) qé+ji = %(46+j¢ - 99+ji) i =10 ..,
qé+ji = o+j; qg+ji = g4, 1=1% ..,

g =g i =13,14,...,I°

and where 1y,%,74,%, are defined as previously, while <y, %y,%, %4 de-
pend on the element type (I)-(IV), i.e.
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— for (I)
'Lu:’lw:]. ]16{1a2,3}
P =1 * =2 (J1,92) € {(2,3),(3,1),(1,2)}
~ for (IT)
=1 W =2 (]la]?) € {(152)a(2’3)’(351)}
ib:id:]- jl€{172a3}
~ for (IIT)
=1 =3 (]1)]%]3) € {(112a3)}
ib:]_ ’Ld:2 (jlaj?) € {(1,2)a(2’3)a(371)}
- for (IV)
=1 W= (j11j27j3) € {(1’273)}
=1 =3 (jl,j?,j:;)e {(172’3)}

Transformation of the global direction of the generalized DOFs to local
directions (two directions tangent and one normal to the mid-surface of
the shell part of the elements) with transformation matrix A such that
I _ gl
q q
ATKIAgT = AT f] (2.18)

that formally leads to k'’g" = £/

Imposing constraints of constant normal displacements in mid-surface
edge and vertex points of coordinates &; ,, = (£1,1,m:&2,1,m, %), the points
of which are numbered with counters [ and m such that for the edges
l=9+j,i=1.,i%m=%k=1,.,Nf —1 and for the vertices

I=3+j;,i=1%..,% m=1

zw
Ir IT k IT
uggm = D V5 €m)e g + V345 €1n)a3,94jk =0
i=i (2.19)
IT II
Uz lm = (27 (§l,m)Q3,3+]'z' =0

that gives kTTg/T = f117
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e Backward transformation of the local directions to global ones with
¢ =ATq

that formally is equivalent to formation of the equation k'Vg! = f7V

e Return from generalized DOFs ¢’ to global DOFs g of the element and
generation of the final relation

kg=f" (2.21)

2.5. Constrained hpg/hp-approximation within the elements

Constrained approximation is necessary to enable the connection.between
elements of different sizes. For that purpose let us divide the element DOFs
vector of the smaller element B into two parts corresponding to active and

) B B B .
constrained nodes: g= col[q,, 4.], and express constrained DOFs through
: . : . B BaAa
active DOFs of a neighbouring element A of the greater size ¢.=Rgq,,
BA
where R is the constraint coefficients matrix defined, for triangular-prism

elements, by Zboirski and Ostachowicz (1999b). With the above assumptions
we can write

g L 0T q

ac 0 R]lg,

B p B
Let us take now the equilibrium equation k V' g=f "V of element B into
consideration and write it according to division of the element nodes into
active and constrained ones

B B B B

kye ki || aa| | SV
BV BV a BV
kCu kCC fC

Introduction of the constraint equation (2.22) into the above relation and
subsequent left multiplication of (2.23) by transposition of the transformation

matrix lead to
B B B
Ho d k b o1, b0 £
BA BA = BA
0 RT kv j Lo R [Lg, 0o RT]| fv
(2.24)

where |is the unity matrix.

5 (2.23)
q

o X
g<
8=
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The equilibrium equation can now be written in the following blocked form

BV BV BA B BV

kaa kac R qa . fCI- (2 25)
BA_ B BA_ B_ BA A | BA_B )
RTkg1 RTké’cR q, RTfX

which accounts for constraints of element B due to its connection to larger
element A.

3. Adaptive analysis of half-cylindrical moderately thick-shell

In order to prove usefulness of the presented family of the transition ele-
ments for modelling and analysis of complex structures, an adaptive analysis
of a half-cylindrical, moderately thick shell is performed. The shell has two
horizontal clamped edges and two half-cylindrical free edges and is loaded by
vertical uniform surface traction p (Fig.2). The thickness of the shell is t,
the mid-radius of the shell is R, while the length a of the horizontal and
curved edges is the same (7R = a). The thinness ratio t/a equals 3.3%. The
admissible value of the total error within elements of the shell was assumed
to be less than or equal to 5%.

Fig. 2. Half-cylindrical shell geometry and loading

The adaptive FE analysis of the shell consisted of four steps. In each step
we carried out global solution for displacements of the structure and then local
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solutions within elements leading either to detection of phenomena affecting
quality of the solution or error estimation. The first step was performed on an
initial mesh which corresponded to uniform, pretty rough mesh for which we
applied h =a/6, p=2, ¢ =1 and assumed solid elements throughout all the
structure. In the second step, modifications of the initial mesh due to improper
solution limit and locking phenomena (see Zboinski (1997) for details) are
performed. Global adaptive modifications of the hpg-mesh performed in this
step consisted in assumption of p = 4 and change into a Reissner-Mindlin shell
model in order to remove locking and improper solution limit, respectively.
Note that no changes due to boundary layer phenomena (edge effect) were
performed. The reason was the assumed addmissible value of the error. Note
that for smaller value of this error such changes could have appeared. The
values of the estimated total error within elements of a symmetrical quarter
of the shell and the average value of the error are shown in Fig.3. The next
two steps (intermediate and final ones) corresponded to local h- and p-
adaptivity, respectively. The final Apg-mesh is shown in Fig.4, while the final
models applied to the elements are presented in Fig.5. Note that the solid, shell
and transition elements were applied within three-dimensional (3D), Reissner-
Mindlin (RM), and transition (3D/RM) zones, respectively. The final values
of the total errors are displayed in Fig.6.

It can be seen from comparison of Fig.3 and Fig.6 that the change from the
modified mesh to the final mesh associated with some model changes within
the shell, resulted in decrease of the local maximum error estimate from about
27% to about 7%. At the same time its average value decreased from about
16% to about 2%.

4. Conclusions

Indroduction of the presented family of 3D-based transition elements ena-
bles easy connection between 3D-solid and 3D-based Reissner-Mindlin shell
finite elements. Thus all parts of the complex structure (solid, shell and trans-
ition ones) can be modelled in a consistent way.

Introduction of 3D-based approach and new definition of local, normal and
tangent directions as well as application of 3D model and new range of solid
and shell parts, facilitate accurate modelling of transition zones of complex
structures.

Application of the hierarchical shape functions, assumption of plane strains
within shell part of the transition elements, and possibility of imposing con-
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Fig. 3. Local error estimators for the modified mesh of the shell

Fig. 4. Final hpg-mesh of the analyzed shell
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Fig. 6. Local error estimators for the final mesh of the shell
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straints corresponding to the transition hpg/hp-approximations enable con-
nection between elements of different orders of approximation, models, and
sizes, respectively. All this leads to very general adaptive strategy for complex
structures, which includes model adaptivity as well as k-, p-, and g¢-adaptivity.

A great potential of the presented family of adaptive solid-to-shell transi-
tion elements for modelling and analysis of complex structures has been illu-
strated by the presented numerical results. Note that joint application of the
adaptive solid, shell, and transition elements enables us to diminish the global
error of the structure below the assumed value and gives more uniform error
distribution within all parts the structure.

10.
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Algorytm rodziny opartych na podejsciu tréjwymiarowym,

adaptacyjnych, przej$ciowych elementdéw skonczonych typu hpg/hp

Streszczenie

Praca przedstawia algorytm rodziny nowych, opartych na podejéciu tréjwymiaro-
wym, pryzmatycznych, adaptacyjnych elementéw przejsciowych od elementéw bryto-
wych do powlokowych. Elementy oparto na aproksymacjach typu hpg/hp, gdzie h, p
1 g oznaczajg $redni wymiar elementu oraz wzdluzny i poprzeczny rzad aproksymacji.
Istotne novum zaproponowanych elementéw polega na zastosowaniu w czedci powlo-
kowej elementu adaptacyjnej aproksymacji typu hp, a w czesci brytowej adaptacyjnej
aproksymacji typu hpg. W tym kontekécie oméwiono dokladniej hierarchiczne funkcje
ksztaltu, modyfikacje macierzy sztywnosci i wektora sil elementéw oraz aproksymacje
z wiezami. Przydatnoé¢ elementéw w modelowaniu i analizie struktur zlozonych po-
twierdzono zamieszczonym przykladem numerycznym.
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