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In the present paper the technique of the dynamic stability analysis
proposed for conventional laminated structures is extended to cover the
activated electrorheological fluid-filled beam under the time-dependent
axial loading. The thin symmetrically laminated structure consists of the
uniform beam and the multi-cell chains containing the electrorheological
fluid in an extensional configuration. Changing the electric field on the
cell electrodes modifies basic mechanical properties such as Young’s mo-
dulus, and the retardation time. The present paper aims at analysis of
the classical stability problem: how does the electric activation change
dynamic stability domains of the beam. In order to derive the dynamic
stability criteria the Liapunov functional as a sum of the modified ki-
netic energy and the elastic energy of the beam is chosen. The stability
regions as functions of loading characteristics, damping coefficient are
given.
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1. Introduction

By the application of an electric field to electrorheological fluids a dramatic
change in viscosity can be achieved due to formation of fibres of semiconducting
particles in the fluid. The particles behave as dielectrics and so form chains in
the direction of the electric field. When the fluid is sheared additional energy
is necessary to break the bonds between particles, as well as to overcome the
shear forces due to the viscous effect of the fluid. The rheological changes are
fast [1073s] and reversible, thereby making the fluids suitable for real-time
control of vibration. The induced shear resistance 7, i.e. the increase above



418 A . TYLIKOWSKI

that for unactivated fluid, is found to be nearly a parabolic function of the
electric field strength 7+ 7, = k(U £U,)? (Winslow, 1949). The supplemental
shear resistance 7, and the factor & depend on the particle dimension and
surfaces, type and amount of a dispersing agent. The fluid is very versatile
since it combines properties of solids and liquids. In the activated state the
cell rheology is described by the Voigt-Kelvin model. Extensive variation in
the mechanical properties of the fluid makes torque drive coupling and clutch
systerns more appealing than the conventional ones wich suffer considerable
mechanical wear. The areas of application lie in the field of vibration isolation,
shock absorber, and drive clutches (Shullman et al., 1989). The problems with
electrode abrasion, rapid degradation of fluids, segmentation, temperature sen-
sitivity and the necessity to provide high voltage on the order of 2+-3kV across
a gap of 1 mm are the reasons why such a promissing idea is not commercially
incorporated.

Recently, preliminary studies have been performed to use dynamic me-
chanical properties of liquid crystal. Its apparent viscosity depends on the
orientation of molecules which can be controlled by the applied electric fields.
Liquid crystal is a homogeneous electro-rheological fluid and may be supe-
rior to a dispersive electro-rheological fluid in the stability. Tani et al. (1996)
presented the experimental results of application of a liquid crystal to the
vibration suppresion of rotary shaft and a pendulum.

The controllable rheological behaviour of electrorheological materials is
useful in engineering systems and structures, where a variable performance
is desired. As a result we can obtain an intelligent or an adaptive structure,
which reacts in an appropriate manner so as to meet the defined performance
criteria, eg. minimizing vibrational amplitude or damping its response (Choi
et al., 1992). The crucial point in developing an adaptive structure is to cre-
ate a mathematical model of the dynamic structural response. The problem
of static buckling of viscoelastic columns under constant axial forces was so-
lved by De Leeuw (1963). One of the first analyses of the dynamic stability
of viscoelastic continuous systems with viscoelastic boundary conditions was
made by Genin and Maybee (1972). In the next significant study Plaut used
(1973) the Liapunov method to determine the stability criteria of viscoelastic
columns subjected to a compressive axial force. The dynamic stability analy-
sis of viscoelastic continuous systems under time-dependent deterministic or
stochastic forces has been usually applied to a linear Voigt-Kelvin solid. More
sophisticated models of material damping such as a linear standard solid (Po-
tapov, 1985) or a non-linear standard model (Zyczkowski and Kowalski, 1984)
were introduced to the stability analysis of structures but only constant forces
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and nonconservative time-independent loadings were assumed. The uniform
stability of standard material columns under time-dependent random axial
loads was determined using the Liapunov method (Tylikowski, 1991). Elec-
trorheological based beamn structures in a shear configuration were modeled
in the past as a modified Bernoulli-Euler beam by Ross et al. (1959) and as a
partial differential equation of the sixth order by Mead and Markus (1969).

In the present paper the symmetrically laminated structure consists of
the uniforin beam and the multi-cell chains containing the electrorheologi-
cal fluid in an extensional configuration. The electrorheological properties are
described using the standard material and the Oldroyd equation (Oldroyd,
1953). The beam as a real mechanical system is subjected not only to non-
trivial initial conditions but also to to permanently acting excitations and a
semiactive vibration control should be applied in order to balance the supplied
energy by parametric excitation. The electric activation increases the stiffuess
and damping property described by a retardation time of the adaptive beam.
The increase in the applied voltage changes the rheological parameters of the
electrorheological fluid usually modelled as the Bingham viscoelastic material
(Shiang and Coulter, 1996). We will use the two alternative models: standard
viscoelastic body and suspension described by the Oldroyd equation (Oldroyd,
1953). We model the analysed structure as a stright Rayleigh beam of constant
cross section. Due to the cell structure the beam is treated as a moderately
thick plate and the rotary inertia term is included.

2. Dynamics equation of electrorheological fluid-filled beam

2.1. Standard viscoelastic material

Consider a beam-like structure with the electrorheological fluid incorpo-
rated in the extensional configuration. The fluid-filled laminate consists of an
inner elastic beam of the thickness A and external cells filled with the electror-
heological fluid. By incorporating a material with known controllable rheology
into an otherwise passive beam, the response of the entire composite system
becomes tunable. Therefore, it becomes possible for the structure to adapt
to a variable enviroment e.g. variable intesivity of time-dependent axial force.
The beam geometry and the cell structure are shown in Fig.1. The voltage
applied to the side walls of the cell is denoted by U. The unactivated state
corresponds to U = 0. If the linear standard material is used to describe the
rheological properties the partial equation of transverse displacement w(z,t)
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Fig. 1. Electrorheological fluid-filled beam structure

obtained by the correspondence principle has the form

pAW 1 — pJw gzt + (Fo + F(t,7))wzz +

t

E
+EJ(w,MM o /exp[—/\(t — )W gz d'r) =0 z € (0,£)
0

where

- cross-sectional area

-~ cross-sectional moment of inertia

- beam length

mean beam density

- Young’s modulus

— effective retardation constant of the composite beam
— viscosity of the standard solid

S > o oS O
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Fo,F(t,y) — constant and time-dependent components of the axial
force

T - longitudinal coordinate

t - time.

The beam is assumed to be simply supported at both ends. The boundary
conditions corresponding to simply supported edges have the form

w(0,t) = w(l,t) =0 W z(0,t) = w z4(1,t) =0 (2.2)

Expanding the transverse displacement into series of functions sininz/f sa-
tisfying the boundary conditions we obtain the infinite system of decoupled
integro-differential equations with respect to modes. We can write the gover-
ning dynamic equations of the ith mode in the form

¢
T+ KT o+ ST~ B [exp(-AnTit =) dr =0 (23
0

where
k} — natural frequency of the ith mode
foi, fi(t,y) — constant and stochastic components of the axial force
divided by p(A+ Ja?), a; =ir/t

v - element of probability space {I',83,P}

) BJad Fyo?

k= p(A+ Jo?) foi = p(A+ Ja?)
’ ‘ (2.4)
F(t, 7)o}
(t,y) = ———

If the axial force is a stochastic wide-band Gaussian process with a constant
component F, and intensity o¢p we model it by means of a white-noise

process £
F(t,y) = Fo+ or¢ (2.5)

In order to avoid the integral term in Eq (2.3) we rewrite it in the form of the
linear system of It6 diffferential equations

dT; = S;dt
2 2 2E s
dS; = —k2|(k? = foi)Ts = k; ;Ri] dt + o;T,dW (2.6)

dR; = (T, — AR;)dt
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where W — standard Wiener process with the intensity o

oral

- p(A+ }a?) 27

%

2.2. Suspension model described by the Oldroyd equation

:
E

Fig. 2. Oldroyd fluid-filled cell

Consider the cell structure shown in Fig.2. The modified dynamic equation
is as follows

PAw,tt - PJw,zztt + (Fo + F(t7 ’Y))w,zz + EJ(w,zzzz + K'w,zzzl't) +

(2.8)
E%Jn? /‘
- At — 2z AT =0 € (0,4
(77+<)3 J exp[ ( T)]w,zlzl T z ( )
where
n,{ — voltage-dependent viscosities of the Oldroyd fluid
E. - fuid elastic modulus
A — retardation time, A = E./(n+ ()

and k = 7n{/(n + ¢). The remaining notation is the same as in Eq (2.3).
The beam is assumed to be simply supported at both ends and the boundary
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conditions are presented by Eqs (2.2). Following the approach taken in Section
2.1 we can write the governing dynamic equation of the ith mode in the form

Ti+ KT — [fo + it ITi + KERTs +
(2.9)
t
—0; [ exp[—A(t —7)]Ti(r)dr =0
/

where
- E2Jn?
Cp(A+Jed)(n+()?

i
The Itd form is as follows

dT; = S;dt
dS; = —k2[(k} — fo,)T; — k?KS; — k26 R;|dt + o;TydW  (2.10)
dR; = (T; — AR;)dt

3. Uniform stability analysis

In order to examine the parametric vibration excited by a time-dependent
longitudinal force f(t) the stability of trivial solution (equilibrium state) of
Eq (2.3) and/or Eq (2.9) has to be analysed. To estimate deviations of the
solution from the trivial solution we introduce the uniform stability definition.
If the force is a stochastic wide-band Gaussian process we will discuss the
conditions implying equality

ANV w0l <r = P Sup lw(, )l > e} < d (3.1)

e>048>07r>0

where || - || is the scalar measure or the distance between a solution with
nontrivial conditions and the trivial solution.

Using the function derived for stability analysis of viscoelastic columns
made of the standard material (Tylikowski, 1991) we choose the positive-
definite Liapunov function in the matrix form

V =2Bz (3.2)
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where
' =T, S, Ril
(3.3)
kE2EX T
[ Bk2 = fo A0 0 -5
n
B= 0 A +b A%?E
2FA E
_kEA, A2 )\zkaJ
L n n n
and

= [k(1- 3) - ]

Using Sylvester’s conditions we notice that the matrix B is positive-definite
if the following inequality is fulfilled for i = 1,2, ...

for < kF(1 - —f—) (3.4)

Substituting the denotations (2.4) the positive-definiteness of matrix B is
implied by the static criterion of stability

F, < EJo}(1- %) (3.5)

Therefore, the distance is chosen as a square root of the Liapunov function
12(t)]| = V/V. Calculating the infinitesimal generator LV (Khasminski, 1969)
along the solution of Egs (2.6) we have

v = { 2k2—/\[k2<1 - —) fol]

& (3.6)

+ A[A2+k2(1——) f(,z] 2hr?

where the first and second terms correspond to the deterministic and stocha-
stic parts of the dynamic equations (2.6), respectively. Therefore, the trivial
solution 2z = 0 is uniformly stochastically stable if the intensity of stochastic
force is sufficiently small, i.e.

w20 £) b
X421 E) - fo,

2
Ui<

(3.7)
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Having the stability problem of the :th mode solved we proceed to the stability
analysis of the beam with the viscoelastic electrorheological fluid. Substituting
Eqgs (2.4) into the condition (3.7) we obtain the infinite system of inequalities
for i=1,2,...

B EJ(1 - E)a? - Fo?
o < 2p(A+ Joi)= ( A") : -

7N )2 2 EN, 4 2 (3.8)
X2p(A + Jo?) + EJ(1 - A—")ai — oo

Minimizing the result with respect to i we arrive the sufficient condition for
the uniform stochastic stability of the electrorheological fluid filled beam as
all beam modes are uniformly stable.

Numerical calculations based on the formula presented are performed for
a wide range of electric fields the applied 0+ 4kV/mm and when changing
the constant component of axial force. The static critical force is equal to
F, = 3200N. The dimensions of the steel beam are: length £ = 500 mm,
width b = 40 mm and thickness h = 5mm. The hight of fluid - filled cells
is H = 20 mm. The wall thickness is 0.5 mm, and the distance between the
walls is 1 mm. The cells are filled with the LORD VersaFlo ER-200 fluid with
the properties taken from the paper by Shiang et al. (1996). The influence of
the applied electric field U on the critical force intensity is shown in Fig.3 for
given values of the constant component of axial force.
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Fig. 3. Critical axial force intensity versus the electric field applied
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If the cells contain the Oldroyd fluid the Liapunov function is generated
in the same way. Crucial for the stability analysis Sylvester’s conditions lead
to the following stability condition

or < 2k {AK] = for) 6 + 50N + KD)] — KGiAR" +
(3.9)

— K267 - K2R 4 0k(N + KD [N20ck? + ) + AKE = fop) - K20:]

4. Conclusions

The paper is concerns the stabilization of an elastic beam subjected to a
time-dependent axial forcing. The direct Liapunov method is proposed to es-
tablish criteria for the uniform stochastic stability of the unperturbed (trivial)
solution for the structure with the semi-active control. The fluctuating axial
force is modelled by the gaussian wide-band process. The effective stabilization
conditions implying the almost sure stability are the main results. Inequalities
(3.8) and (3.9) give a possibility to obtain the maximal force intensity op
guaranteeing the uniform stochastic stability of the stright column. Having in
mind that the viscosity 7 in Eq (3.8) and the viscosities 7 and ¢ in Eq (3.9)
are the electric field dependent we can enlarge the uniform stability domains.
Increasing the voltage applied to the cells we increase the intensity of axial
force.
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Dynamiczna statecznos¢ laminatu z ciecza elektroreologiczna

Streszczenie

Praca dotyczy analizy klasycznego zagadnienia staecznoéci belki wypelnionej cie-
czg elektroreologiczng w celu odpowiedzi na pytanie: jak elektryczna aktywacja cieczy
zamienia obszary statecznosci. Ciecz elektroreologiczng opisano modelem standardo-
wym i modelem cleczy Oldroyda o wspélczynnikach zaleznych od przylozonego pola
elektrycznego. W celu wyprowadzenia kryteriow statecznosci postuzono sie bezpo-
§rednig metodg Lapunowa.
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