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The global Trefftz approach is applied to optimization of certain types
of structures. Numerical examples show advantages of the method pro-
posed. The algorithm can be extended to cover optimization using the
Trefftz finite element solutions.
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1. Introduction

In any algorithm of structural optimization an approximate solution of
a particular boundary value problem is calculated many times inside the opti-
mizing loops. Therefore, one of the basic directions of its improvement is mi-
nimizing the computer time in each single step of the procedure without loss
of the solution accuracy. The proposed Trefftz method, applied to structural
elements like plates (Jirousek, 1987; Jin and Cheung, 1999), helical springs
(Karad and Zielinski, 1998a), 2D and 3D elastic objects (Jirousek and
Venkatesh, 1992; Peters, 1994) etc. has proved to be very efficient in accurate
numerical approximations of numerous boundary problem solutions. The basic
idea of the method consists in application of analytical trial functions (called
T-complete systems) identically fulfilling the governing differential equations
of the problem. The unknown coefficients of the functions are calculated from
the given boundary and sometimes also connectivity conditions.

The global Trefftz approach, the basic formulation of the method, yields
very accurate results. However, it rather cannot be applied to structures of a
complex form due to possible problems with conditioning of the solution ma-
trices (Zieliriski and Herrera, 1987). In such cases it is necessary to divide the
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investigated object into subregions applying one of the formulations of Trefftz
finite elements (T-elements) (Jirousek and Zielinski, 1997; Jirousek and Wré-
blewski, 1996). Hence, the present investigations of the global version of the
method take into consideration structures of relatively simple original shapes.
On the other hand, this is a necessary stage of invesigation of the optimization
algorithm before the application of the T-element solution mentioned above.

2. T-complete systems
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Fig. 1. Scheme of helical spring

The main limitation of the Trefftz approach is existance of the Trefftz-
type functions fulfilling particular differential equations. There are different
possibilities of derivation of such functions (Zieliriski, 1995). A good example
of such a procedure is given by Kara$ and Zieliniski (1998a) for the equation
of the stress function in a helical spring (Fig.1)
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where
G - Kirchhoff modulus
Trg9, Tz — tangent stresses in the cross-section of the spring.

After some transformations we obtain

1
$y=1 452:z2+§r2
3,3 9
P, =2z Py =2z +§r z (2.3)
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where [z] is the integer part of the real number « and

o -G -2%-1)
ajo =1 1) T TR 9k 1+ 1))2(k + 1)

(2.4)

The inductive process of derivation ensures the completness of the system.
To present it we consider the action of the operator
0° 02 30

L=6nt 52 7o

(2.5)

resulting from Eq (2.1), on the monomials ar®z?, brot2z8-2 crotizf-1

L(ar®z?) = ao(o — 4)r* 228 + aB(B — 1)r%2P 2
Lbrot2282) = b(a + 2)(a - 2)r%2# 2 + b(B — 2)(8 — 3)r®T228-1 (2.6)
L{er®™ 2871 = cafa 4+ 4)r*+2 2P~ 4 ¢(B — 4)(B — B)ratiP 8

Now we choose the coefficients a, b, ¢ so that

af(B—1) +bla+2)(a-2)=0

(2.7)
b(B—2)(B —3) + cala+4) =0
Then, summing Eqs (2.6) we obtain
L(ar®2P) + L(brot22P72) 4 L(erot2P~Y) =
(2.8)

= aofo — 4)r® 228 4 (B — 4)(B — 5)rot1P-6
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Now, if
ale~4)=0 and (B~-4)(B~5)=0 (2.9)

the sum (2.8) vanishes. Following this procedure we finally obtain the complete
system of polynomials (2.3) and (2.4). More details of the derivation can be
found in Kara$ and Zielinski (1998a).

3. Preliminary numerical investigations

The problem of the helical spring cross-section representing a simply-
connected region was chosen for the first numerical example. Prior to the
application of optimization algorithm it was necessery to carry out certain
preliminary numerical investigations of convergence of the solution proposed.
Because of the symmetry of the problem with respect to the r-axis (see Fig.1;
compare also Eq (4.2)) only the even functions &;, (j =0,2,4,...) were taken
into account. The first calculations were done for a circular cross-section. The
T-complete set was supplemented by the solution

TP(r,2) = 45(7~2 —227) (3.1)
The boundary equation of the problem
Sr=0 (3.2)

was approximately fulfilled in a system of equidistant collocation points. To
reduce the boundary oscillations, the number of collocations points exceeded
the number of unknown Trefftz coefficients and the least square procedure was
applied.

In the Trefftz approach the extreme errors occur on the boundary I” of the
investigated area f2. This suggested introduction of the following boundary
error, related to @g(R,0) which was very near to $max

- max |l oo (3.3)

@8(R, 0)
where @ stand for the approximated, numerically calculated value of & and
Pg is the result obtained for eight Trefftz functions. The relative error (3.3)
illustrates the quality of the whole approximate solution. Its accuracy is visible
in Fig.2 in which the distribution of the boundary error is presented. We can
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Fig. 2. Distributions of boundary solution error for different numbers of Trefftz
functions (N = 2n)
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Fig. 3. Error measure ¢ versus the number of trial functions

observe the quick decrease in the error with the increase in the number n of
trial functions.

As it has been already mentioned, the number N of the collocation points
should be larger than n, but not too much. In Fig.3 we can observe that
an excessive number of the collocation points is not profitable, in view of an
obvious increase in the computing time.

The double-connected region was here investigated on an example of a
rectangular plate with a circular hole of different diameters. The plate was
subjected to uniaxial tension (Fig.4). Different variants of collocation on the
external boundary were compared (equidistant, at the Gaussian points, at the
Lobbato points). For a square plate the results were very similar, while for a
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Fig. 4. Investigated plate; different \Eriants_gf boundary collocation (b/a = 2,
r/a =0.25, Nogy = Nine = 72)

rectangular plate and a larger number of functions the orthogonal collocation
appeared to be optimal (Fig.4; see also Zielifiski and Herrera, 1987). Here we
considered the error measure:

max It - ﬂ[‘e:t

Cegt — —————————* 100% (34)
D
where _
t,t ~ calculated and given tractions, respectively
p  — defined in Fig.8.

Analogically, €;,; was defined on the internal (hole) boundary.

The most characteristic phenomenon observed while investigating the
double-connected plate was instability of the solution for a too small number
of the collocation points either on the internal or external boundary. Accor-
ding to our investigations, the final relation ensuring the stability could be
written as

Negt > nf and Nint > ng (3.5)
where
ny — number of T-functions
Negt, Nipt - numbers of equations resulting from the collocat-

ion points on the external and internal boundary,
respectively.
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The form of Eq (3.5) can be explained by a specific structure of the 7-
complete system (Jirousek and Venkatesh, 1992). Because of existence of both
positive and negative powers, the influence of the collocation on the internal
and external boundaries differs substantially for particular terms. For k£ > 0
the external boundary results in great values and for k < 0 small values of the
approximating functions. On the internal boundary the situation is opposite.
This results in ”numerical separation” of the terms with positive and negative
powers and the characteristic behaviour illustrated in Fig.5.

Fig. 5. Square plate (a = b) with a hole; investigation of the solution stability

Generally, the external error gq;; ocurred to be bigger then internal er-
ror €ins and the extreme error values were situated near the corners of the
investigated plate (which was predictable for the Trefftz-type solution). Ho-
wever, the stress concentration near the internal hole determined the maximal
effort of the structure and this region was more important in the optimization
procedure.
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4. Optimization of structural elements using the global Trefftz
approach — assumptions

Optimization of the cross-section of a helical spring was interesting not only
as a sample test of the procedure for a simply-connected region but also as a
solution of a specific engineering problem. Higly loaded springs in small spaces
(e.g. in car making industry) require optimal shapes. This was investigated in
a series of Japanese papers (Nagaya, 1985), also with the help of the Boundary
Element Method (Kamiya and Kita, 1990a,b). The Trefftz approach ocurred
to be very convenient in this case.

The circular cross-section boundary described as

7 = Rg + po cos ¢ Z = ppsing (4.1)
varied to
r =R+ pr(p)cosyp z = prsing (4.2)
where
K
pr(e) =po »_ Crcos(kp) (4.3)
k=0

with Cy, Cy, ..., Ck, R as optimization (shape) variables. Introducing the con-
dition of the constant volume (constant cross-section area and average radius
of the spring) we obtained the two constraint equations for the constants Cp
and R (Kara$ and Zieliriski, 1998b)

1 K
Ci+5 Ci=1
k=0 (4.4)

K
R=Ry - :/;_0 Z CrC1CmAkim

k,l,m=0
where
27
Akim = /cos(/cgo) cos(lp) cos(mp) cos @ dyp
0

A different parametrization was proposed in the investigation of the plate
with a hole (Fig.4). We assumed the possibility of the additional ellipse-type
modification

T = ap(p) cos ¢ y = bp(yp) sing (4.5)
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with

K
p(e) = po Z Cy cos(key) (4.6)
k=0

The constant volume was here ensured by
1 X
_ 2 2 _
ab=1 and Cy + ) kE—OCk =1 (4.7)

which eliminated b and Cjy from the set of the independent optimization
variables.

In both above examples the main objective function was defined as the
maximal equivalent stress oy of the structure (ogmax), which was minimized
for varying shapes (contures). In the case of spring the uniform contour effort
(Ao = 0gmax — Oomin — Min) was also taken into account. The simple gra-
dient procedure appeared to be sufficient in evaluation of the minimum of the
objective functions.

5. Numerical examples of the optimization algorithms

circle 1 2 3 4 5 6 7 8 g

Fig. 6. Calculated minimum value of the objective function related to Aeg§imet (for
circular cross-section); example of spring. The influence of number of optimization
parameteres K

In the numerical example of optimization of the spring cross-section 10 even
Trefftz functions and 20 collocation points were applied. The modification of
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the original circular form included up to 8 trigonometric terms. Starting from
C3 we already obtained considerable improvement of the spring effort (see
Fig.6). This stands in contrast with the number of 52 shape optimization pa-
rameters used in the BEM algorithm (Kamiya and Kita, 1990b). The optimized
shape and the distribution of stresses along the boundary (for 0 nax — min)
are presented in Fig.7. The minimization of (Acg led to different shape and
stress distribution in this case (Kara$ and Zielinski, 1998b).
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Fig. 7. Optimal cross-section of helical spring and distribution of boundary stresses
(for minimization of ¢ max)

Fig.8 presents the results for a square plate with a hole. Also in this case the
three optimization variables a,C;Cy were sufficient to describe the modifica-
tions of the opening. The results proved the possibilities of efficient application
of the special Trefftz-type finite element with an hole (Zieliriski, 1997) to the
structural optimization.
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Fig. 8. Optimal shape of a hole and improved stresses along its boundary
(a/r = 0.35)




PARAMETRIC STRUCTURAL SHAPE OPTIMIZATION... 295
6. Final remarks

The Trefftz method appeared to be a very convenient tool for the struc-
tural optimization. It can be used both in the shape modification and in the
optimization of different structural parameters (e.g. positions of holes in Zie-
linski and Sanecki (1998)). However, certain rules of its application should be
observed, which was investigated in the present paper. The global formulation
can be applied to relatively simple structures, however, its investigation is very
useful before using the finite T-element approach.
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Parametryczna optymalizacja ksztaltu konstrukecji z uzyciem globalnej

metody Trefftza

Streszczenie

Globalng metode Trefftza zastosowano do optymalizacji pewnych typéw elemen-
tow konstrukcji. Przyklady numeryczne potwierdzajg zalety zastosowanej metody.
Proponowany algorytm moze by¢ rozszerzony do optymalizacji z uzyciem elementéw
skoficzonych typu Trefftza.
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