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This work deals with the analysis of post-buckling state in rectangular
plates subject to uniaxial in-plane compression within the elastic and
elasto-plastic range. The problems of initial out-of-flatness and different
geometry of rectangular plate are considered. The analysis is carried out
on the basis of non-linear theory of plates involving plasticity. It is as-
sumed that the yield values in tension and compression tests of a plate
material are different. Thus, the Tsai-Wu Criterion is applied. The solu-
tion is obtained an the analytical-numerical way using the Prandtl-Reuss
equations. As a result of numerical calculations the load-shortening cu-
rves for the considered plates are obtained.
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Notation
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plate width and length, respectively
- yield limit in the compression test
- Young modulus

amplitude of total deflection

- plate thickness

sectional bending moments
sectional forces

in-plane displacements

plate shortening

shortening corresponding to the yield limit
yield limit in the tension test

'ﬂ_gataitjzi?;-xtqq
& X
£8
@

T T T B T i



894

w, wo
Exm; Eym, Yzym
Exby Eybyr Yxyb

R.GrADZKI, K. KOWAL-MICHALSKA

total and initial deflection, respectively
membrane strains
bending strains

o - Airy’s stress function

A — scalar parameter in the Prandtl-Reuss equations

v — Poisson ratio

Oav — average compressive stress corresponding to the shor-
tening S

Ocr - critical stress

Oy - ultimate stress — load carrying capacity

Ozm;>Oym:> Tzym — Inembrane stresses

Oz, 0y, Ty — total stresses

1. Introduction

Thin plates are used in manufacturing of different structures: columns and
girders of closed and open cross-sections, panels, etc. Frequently, the load car-
rying capacity of such structures subject to the increasing loads is determined
by their stability in the elastic or inelastic range. Depending on the loading,
shape and dimensions of a structure the stability loss may occur in a different
way: e.g. global buckling of a whole structure, local buckling of components,
coupled buckling, etc.

In the case of local buckling the first step in understanding the behaviour
of a thin-walled plate structure is to find a complete solution for an individual
plate element.

The load carrying capacity of thin plates subject to the in-plane loading can
be determined by many approximate relations (e.g. Rhodes and Harvey, 1971)
or more precisely by analysing the stresses and strains in the elastic range and
then in the elasto-plastic range. As a result of such analysis the curves showing
the relationship between the load and shortening of a plate (i.e., L-S curves) are
obtained and the maximum load carrying capacity can be found out (in Fig.1 a
typical curve for a perfect plate subject to the axial compression is presented).
These ”precise” analyses of individual plate or structure behaviour have been
conducted in purely numerical (e.g. Rondal and Maquoi, 1985) or analytical-
numerical way (among others: Graves-Smith, 1971; Little, 1982; Gradzki and
Kowal-Michalska, 1988). In each case the material characteristic has to be
known in the whole range of loading. For more comprehensive survey of the
literature on this problem, see Bradfield (1982).
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Fig. 1. Typical load versus shortening curve for a perfect plate

It should be noted that geometrical parameters, material characteristics
and initial imperfections (out-of-flatness and residual stresses) exert a great
influence on the character of L-S curves and should be taken into account, e.g.
Gradzki and Kowal-Michalska (1991).

When the behaviour of a whole plate structure is considered the problem
becomes more complicated because the conditions of co-operation of plate
components should be incorporated (Gradzki, 1998).

Most of the works mentioned above dealt with isotropic materials. Mo-
dern materials, as composites are in general anisotropic but some of them
(e.g. fibrous composites) can be treated as the orthotropic ones and then the
appropriate relations for orthotropic plates have to be employed in the elastic
and elasto-plastic ranges (Kowal-Michalska, 1995).

To evaluate the load carrying capacity of a plate the yield criterion has to
be assumed. For isotropic materials usually the Huber-Mises Yield Criterion
is applied. If orthotropic plates are analysed Hill’s Criterion (Hill, 1950) is
used. In all these criteria it is assumed that the material uniaxial stress-strain
curves obtained by tensile and compressive tests overlap. Meanwhile, it is
well known that many materials do not fulfil this condition. There are such
traditional materials as concrete, cast iron, wood the compressive strength
of which is much greater than the tensile one. On the other hand, modern
materials used in reinforced composites as kevlar, glass fibres, etc. are much
stronger in tension than in compression. To determine the ultimate strength
of structural members made of such materials Tsai and Wu (1971) proposed
a modification of Hill's Yield Criterion.

In the present paper the analysis of post-buckling state of thin plates made
from the materials isotropic in the elastic range but with different tensile and
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compressive yield is carried out. The considerations are based on the nonli-
near theory of plates. In the elasto-plastic range the stress-strain relations are
described by the Prandt-Reuss equations where the infinitesimal increments
are replaced by the finite ones. Thus the problem can be solved only in an
iterative way and the solution is reached by an analytical-numerical method.

2. Structural problem

The rectangular plates subject to the in-plane compression (Fig.2) are
considered.

The following boundary conditions are imposed on the plate edges (Ta-
ble 1):

e Loaded edges are simply supported and remain straight and parallel
during loading

e Unloaded edges can be simply supported or clamped,there are no mem-
brane stresses what means that the plate can be treated as a wall of a
box structure.

Table 1. Boundary conditions

Loaded edges Unloaded edges
y==2b/2 z = ta/2
w—wy =0 w—wy=0

simply clamped
M, =0 supported
M;=0 ow/0x =0
v=-S5b/2 Ngy =0
Ngy =0
a/2
/ Ny dz = —o04yah N;=0
—a/2

The assumed uniaxial stress-strain characteristic of the plate material is
shown in Fig.3. In the elastic range the material is isotropic but with different
tensile and compressive yield limit values.
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Fig. 2. Geometry and loading of the plate
3. Governing equations in the elastic range

In the investigations the relationships of nonlinear theory of plates are ap-
plied. For a plate with a initial out-of-fatness wj the geometrical relationships
are assumed as follows

Ou 1/0w\2 1/0wp\2
em =5+ 3ln) ~2(%)
Ov 1(6111)2 1<6w0)2

am =5 T a\ay) Ta\Gy
Ou Ov Owow OwyOwy
- v, o Jwow  owogio 3.1
Yom = 50t 5e T 9z 8y~ oz oy (3-1)
Exp = ZKg Eyp = 2Ky Yzyb = 2Z2Kzy
0% (w — wo) B 0% (w — wo) B 62(w — wp)
T T T g T gy

Taking into account the physical relations between strains and stresses (Ho-
oke’s law), the compatibility equation and introducing Airy’s stress function
in a form

N, 8% _ N, &9
mIE Tam mTh ar
Ny __ o9
T Bz dy

the well known von Karman equation is obtained

10 - Mechanika Teoretyczna
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2
ozt + 2 0y? + dyt

. (a4<15 e 8445) _

(3.3)

B ( 8w )2 (82w0)2 3 82w 8w N 8%wy 0%wy
~ \Ozoy Oz dy oz? gy? = 0z? Oy?

The total deflection function w fulfilling kinematic boundary conditions
(Table 1) is assumed in a classical form:
— for simply supported plates with unloaded edges

w = fcos ™ cos my (3.4)
a b

— for clamped plates with unloaded edges

w = f cos® ™ sin my (3.5)
a b

Further it is assumed that the initial deflection of a plate has the identical
form as the total deflection (with the amplitude fy).

Substituting the functions (3.4) or (3.5) into Karman’s equation and taking
into account the boundary conditions, Airy’s stress function is found out.
Next on the basis of Hooke’s law and Eqs (3.1) the strains and displacement
functions are determined in the elastic range.

4. Constitutive relations in the elasto-plastic range

Considering the post-buckling state in the elasto-plastic range the following
assuraptions are made:

e Material of the characteristic shown in Fig.3 meets the Tsai-Wu Criterion

e All assumptions of nonlinear theory of plates still hold

e Forms of the displacement functions are the same in the elastic and
elasto-plastic ranges

e According to the plastic flow theory the stress-strain relations are de-
scribed by the Prandtl-Reuss equations.
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Fig. 3. Material tensile and compressive characteristics

The elasto-plastic analysis is conducted on the basis of Tsai-Wu Yield
Criterion that is formulated for the considered problem as follows

a1(oz +0y) + 02+ O’Z — 12050y + 3a3'r§y ~ay=F (4.1)
where
ap =CT a=C-T
2CT 2C?+ CT+T?
= —— Az = - ———85
Moy T3 CreT

T and C - yield limits in tension and compression tests, respectively.

It 1s assumed that after yielding differential increments of strain de are a
total of elastic and plastic components de® and deP.

The plastic components deP are described by the Prandtl-Reuss equations

def. = )\ oF

= , § = 4.2
i 30;’;’ (27.7 z,y) ( )

where A is a positive definite scalar.

In practical calculations the infinitesimal increments of strains and stresses
have to be replaced by the finite ones, so the resulting expressions for elasto-
plastic stress increments are

Aoy = — 2 |Aeq + vAey — X(S, + 1S,)]

1—02
Aoy = T [Agy + vAez — A(Sy + vSg)] (4.3)
E
ATy = o (Avgy — 2A75y)

2(1+v)
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where

(Sg + vSy)Aez + (Sy + vSz)Aey + a3(1 — v)Tgy Ayzy

824 82+ 208;5y + 205(1 — v)72,

)\ =
1
Sy = §(a1 + 205 — a120y) (4.4)

1
Sy = g(al + 20y — a120%)

5. Method of solution

The iterative approach to the problem is employed using a combination
of analytical and numerical solutions based on the Rayleigh-Ritz variational
method involving the relations of flow theory of plasticity (Prandtl-Reuss equ-
ations). It was proved by Graves-Smith (1971) that the variational method
could be applied to the elasto-plastic plates undergoing finite deflections. This
method has been used in many works.

The Rayleigh-Ritz variational method requires evaluation of the increment
of total plate energy (5.1). The symmetry of the problem allows us to restrict
the considerations to the quadrant of plate, shown in Fig.2. The elastic and
plastic energy increments are evaluated in a numerical way. In order to accom-
plish this, discretisation of the plate is performed. The volume V of the plate
is divided into appropriate cubicoids. The values of the energy increments,
calculated in each cubicoid, are summed for the whole plate.

It should be emphasized that during the analytical-numerical solution the
response of the plate to the increment of shortening S (Fig.2) is searched for.

The increment of potential energy in the elastic and elasto-plastic range
has the form

AW = / [(az + %Aaz) Aeg+ (O'y + %Aay) Agy+ (sz + %Asz) A%y] dzdydz
1%

(5.1)
where
0z,0y,Tzy — stresses before the shortening increment AS is applied
Ao, Ae — stress and strain increments produced by AS.

Next, numerical minimisation of the functional (5.1) is performed versus
the independent deflection parameters.
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In each step of calculations the following aspects are taken into account:

e Occurrence of active, passive and neutral processes, respectively

e Reduction of stresses to the actual yield surface, strayed from it because
finite increments are used.

The average stress corresponding to the load applied to the plate is obta-
ined numerically, using the Virtual Work Principle

1 8(AW)

Tav = bk B8 (5.2)

6. Results of numerical calculations

As a result of numerical calculations the L-S curves have been obtained
(as 0* = 04y/(200 MPa) versus S* = SE/(200 MPa)) for different geome-
trical imperfections and of plate geometries. For all the plates considered, the
material properties are assumed as follows: E = 2.05-10° MPa, v = 0.3.

For chosen examples the distribution of plasticity regions in the plate du-
ring loading have also been found out.

The influence of compressive yield limit C on the collapse behaviour of
almost flat plates (fo = 0.001h) of geometrical parameter a/h = 80 and
a/h = 55 is analysed, for values of C varying from 100MPa to 400 MPa
(Fig.4 and Fig.5). It is assumed that the plates are simply supported along
all edges. In all cases the increase of the compressive yield value causes the
increase of load carrying capacity.

The influence of various tensile yield values on L-S curves is presented in
Fig.6. It can be clearly seen that the variation of tensile yield value exerts
no influence on the ultimate load in all the considered cases so the ultimate
load of plates subject to compression depends mainly on the compressive yield
value.

In Fig.7 the results obtained for simply supported plates for different values
of geometrical parameter a/h and initial imperfection amplitudes, are shown.
It can be observed that the occurrence of initial imperfections changes the
character of L-S curves. The curves for almost flat plates reach maximum and
the curves for plates with large initial imperfections lie below. For a rather
thick plate (a/h = 55, fo = 0.001h) the curve has distinctive maximum and
for a thinner one (a/h =80, fo = 0.001h) the "plateau” appears.
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Fig. 4. Load-shortening curves for simply supported plates for different compressive
yield values, a/h = 80, fo = 0.01h, T = 200 MPa
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Fig. 5. Load-shortening curves for simply supported plates for different compressive
yield values, a/h =55, fo = 0.01h, T = 200MPa
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Fig. 6. Load-shortening curves for simply supported plates for different tensile yield
values, a/h =80, fy = 0.01h, C' =200 MPa
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Fig. 7. Influence of initial imperfections on the load-shortening curves for simply
supported plates, T'= 400 MPa, C = 200MPa
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Fig. 8. Load-shortening curves for the plates with the unloaded edges clamped for
different compressive yield values, a/h = 80, fo = 0.5h, T = 200 MPa

Fig.8 shows the influence of tensile and compressive yield values, respec-
tively, on the L-S curves for plates with the unloaded edges clamped. The
increase in compressive yield value causes the increase in maximum load va-
lues. For this kind of boundary conditions the variation of compressive yield
value exert a slight influence on the character of load-shortening curves.

Fig.9 shows the influence of compressive yield limit C on the L-S curves
for plates with the unloaded edges clamped for the two values of a/h = 55
and a/h = 80. The behaviour of considered plates is similar to the simply
supported plates (see Fig.4 and Fig.5) and the remarks about the influence of
C can be repeated here.

Comparison of the L.-S curves for simply supported plates and plates with
clamped unloaded edges, for various values of compressive yield limit is pre-
sented in Fig.10. For the plates of C' = 100 MPa differences in load carrying
capacity are small and maximum load is the same. For larger values of C
(C = 300 MPa and C' = 400 MPa) the differences appear for simply supported
plates. The clamping of unloaded edges causes the increase in load carrying
capacity of the considered plates.

Distribution of elastic and plastic regions is determined for each of the
considered plates. For example, in Fig.11 spread of plastic and elastic zones
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Fig. 9. Load-shortening curves for the plates with the unloaded edges clamped for
different tensile yield values, T' = 200MPa, fo = 0.01h
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Fig. 10. Observed differences in the character of L-S curves caused by clamping of
the unloaded edges, a/h =80, fy = 0.01h, T = 200 MPa
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fully elastic region

plastic on the oultside face

%plaslic on the inside face

plastic on both the face

fully plastic region

Fig. 11. Spread of elastic and plastic regions in a simply supported plate, a/h = 80,
fo=0.01h, T = 400MPa, C = 200 MPa,
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for simply supported plate of a/h = 80 is presented, for three values of
shortening S*. For this plate, the plastic zones appear in the middle of a
plate but for higher values of shortening the regions along the unloaded edges
become fully plastic.

7. Final remarks

The method presented above makes it possible to obtain the load-
shortening curves for uniaxially compressed plates from a material with diffe-
rent tensile and compressive yield limit values.

As it could be expected variation of the compressive yield limit values
exerts a great influence on the value of ultimate load and on the character of
L-S curves while the variation of tensile yield limit value exerts no influence
on the maximum load magnitude and only slightly changes the character of
L-S curves in the elasto-plastic range. Thus, when only the ultimate load of the
compressed plate is to be found it can be assumed that the value of tensile yield
limit is the same as the compressive one and the problem may be considered
on the basis of Huber-Mises Yield Criterion.

It should be emphasized that these considerations should be treated as a
first step into the analysis of orthotropic plates with different material charac-
teristics obtained in tension and compression test.
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Analiza stanu zakrytycznego sprezysto-plastycznych plyt na podstawie

kryterium Tsai-Wu

Streszczenie

W pracy przeprowadzono analize stanu zakrytycznego w obszarze sprezystym
i sprezysto-plastycznym prostokatnych plyt poddanych Sciskaniu. Rozwazano plyty
wstepnie wygiete, o réznej geometrii, wykonane z materialu o réznych wartoéciach
granic plastycznodci na §ciskanie i rozcigganie. Badania prowadzono w oparciu o nie-
liniowg teorie cienkich plyt z uwzglednieniem kryterium plastycznosci Tsai-Wu. Roz-
wigzanie uzyskano na drodze analityczno-numerycznej stosujac réwnania Prandtla-
Reussa w postaci przyrostowej. Wyniki obliczei numerycznych przedstawiono na wy-
kresach.
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