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The homogenization theory has been applied to evaluation of effective
moduli of a network of interconnected elastic rods modelling human
cancellous bone. Numerical computations of the Young modulus, Poisson
ratio and shear modulus have been carried out. The obtained results
compare fevourably with available experimental data.
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1. Introduction

Biological materials; like, animal and human bones are porous materials
with complicated hierarchical structure. Bones occur in the two forms: as a
dense solid (compact bone) and as a porous network of connected rods and
plates (cancellous or trabecular bone). The most obvious difference between
these two types of bones consists in their relative densities measured by a
volume fraction of solids (see Fig.1, and Gibson and Ashby, 1988).

Both types can be found most bones in the body, the dense compact bone
forming an outer shell surrounding a core of spongy cancellous bone. Idealiza-
tions of compact bone structures can be is seen in Fig.2 + Fig.4, in Telega et
al. (1999), cf also Cowin (1989a).

Typical examples of trabecular bones with a rod-like microstructure are
shown in Fig.2 and Fig.3. These figures provide interesting visualization of
human trabecular bone architecture obtained by using the micro-computed
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Fig. 1. Photograph of a proximal part of the human femur

Fig. 2. Three-dimensional trabecular bone architecture of a lumber spine bone
biopsy of a 42-year-old male. The distinct rod-like columnar structure can be easily
seen, after Miiller and Riiegsegger (1997)
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Fig. 3. Three-dimensional bone

tomography (Miiller and Riegsegger, 1997; Ulrich et al., 1997). According to
Miiller and Riiegsegger (1997) specimens with diameters of a few millimeters,
up to 18 mm, can be measured. Such a bone is weaker than the bone with a
plate-like microstructure examined in our previous paper (Galtka et al., 1999).
Typical models of the structure of a cancellous bone are sketched in Fig.4.

In Fig.2 and Fig.3 the size of the VOI (selected volume of interest amounts
to 4x4x4mm? (286 x 286 x 286 voxels). For related studies on bone structure
the reader is referred to Lowet et al. (1997).

Microstructure analyses of trabecular bone have followed the general ap-
proach used in modelling the cellular plastics. McElhaney et al. (1970) deve-
loped a porous block model of trabecular bone based on composing of spring
stiffness loaded in parallel or in series. Using this model, they found a good
agreement between theprediction of apparent stiffness and the experimentally
results in some internal layer of the human skull. Pugh et al. (1973) model-
led the subchondral trabecular bone as a collection of structural plates and
concluded that bending and buckling were major modes of deformation of the
trabecular. Williams and Lewis (1982) modelled the exact structure of a 2D
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Fig. 4. Models of the structure of cancellous bone: (a) low density equiaxed
structure, (b) higher-density equiaxed structure, (c) stress oriented prismatic
structure, (d) stress-oriented parallel plate structure, after Gibson and Ashby (1988)

section of trabecular bone using the plane strain finite elements to predict the
apparent transversely isotropic elastic constants. Gibson (1985) developed mo-
dels of trabecular bone structure using analytical techniques for porous solids.
He predicted dependence of the apparent stiffness on the apparent density for
different structural types of trabecular bones. Beaupré and Hayes (1985) de-
veloped a 3D spherical void model of trabecular bone and used finite element
analysis to predict the apparent stiffness and strength, as well as the stress di-
stribution within the trabecular bone. Hollister et al. (1991, 1994) applied the
homogenization theory (Bensoussan et al., 1978; Lewinski and Telega, 1999;
Sanchez-Palencia, 1980) to investigation of mechanical behaviour of the cubic
rods-like structures modelling trabecular bones. By using finite element me-
thod they evaluated apparent orthogonal Young moduli and compared them
with the experimental results obtained for proximal humerus, proximal tibia
and distal femur. To take into account the influence of bone marrow, Kasra
and Grynpas (1998) performed suitable numerical calculation. Bone may be
viewed as a structurally hierarchical porous material. It is then possible to
use the reiterated homogenization to derive the formulae for the macroscopic
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elastic moduli, cf Telega et al. (1999). Optimal design of structures often in-
volves homogenization and relaxation methods (Bendsge, 1995; Bendsge and
Kikuchi, 1988; Kohn and Strang, 1986; Lewinski and Telega, 1999; Lurie et
al., 1982). Such an approach may be used to model the bone microstructure
via adaptive elasticity. Payten et al. (1998) presented an optimisation process
based on an algorithm originally developed for predicting anatomical density
distributions in natural human bone.

The microstructure of bone is such that at the macroscopic level its be-
haviour is anisotropic. To model bone anisotropy one can use Cowin’s fabric
tensor, see Cowin (1989b), Jemiolo and Telega (1998); Lowet et al. (1997) and
the references cited therein. Jemioto and Telega (1998) demonstrated that a
compact bone reveals properties close to transverse isotropy whilst a trabecular
bone is approximately orthotropic, cf also Zysset et al. (1998). The approach
employed in Jemioto and Telega (1998) exploits Cowin’s fabric tensor. In Zys-
set et al. (1998) the authors claim to use a homogenization method for finding
the orthotropic elastic constants, yet, unfortunately, no precise formulation
was given.

Warren and Kraynik (1997) analysed the linear elastic behaviour of an
open-cell like Kelvin foam by relating forces and distorsion at the strut level
to a macroscopic response. Such a cellular solid seems to be inappriopriate for
a trabecular bone.

The goal of the present contribution is to estimate the elastic macroscpic
properties of cancellous bone with a rod-like architecture. An idea sketched
by Tokarzewski et al. (1998) is developed in Sections 3 and 4. The method
developed by Galka et al. (1999) does not apply to the case presened in Fig.7,
which is of interest here. The basic cell problem is therefore solved approxima-
tely, by using a typical structural mechanics approach. Primarily, however, in
Section 2 basic formulae for the homogenization of porous linear elastic solids
are summarized. The reiterated homogenization was used in our paper (Telega
et al. 1999) for derivation of the macroscopic elastic properties of a compact
bone. The available results of calculation were also briefly reviewed.

2. Homogenization of porous elastic materials

Let §2 denote a bounded open subset of IR®. As usual by Y we denote the
basic cell, cf Bensoussan at al. (1978), Dal Maso (1993), Jikov et al. (1994),
Lewiriski and Telega (1999), Sanchez Palencia (1980). The part of Y occupied
by the material is denoted by Y;. The considerations which follow are formal
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from the mathematical point of view. By (27 we denote the part of {2 occupied
by the material. Here ¢ > 0 is a small parameter.
Let us consider the following boundary value problem of linear elasticity:

i [aijkl(.’l!) %] +f;i=0 n .Qf

Oz; e/ Oz

uf, =0 on 0 (2.1)
x\ Oul

aijkl(g) a—zllcnj =0 on 895\89

where n = (n;) is the unit vector normal to 92f\0f2 and u® stands for the
displacement vector.

We make the following assumptions:

(i) fe LX),

(ii) a5k € Loo(Yt), 1,5,k 1=1,2,3.

(iii) There exists a positive ¢y such that for almost every y € Y; constant

aijki(y)eijent = Coeijes;  for any e = (e;5) eij = e

(iv) The material coefficients a;jxi(y) are Y-periodic.
The displacement field u” of the homogenized solid is a solution to

Pup Y
A ST bt I in 0
Uk gy o Ty =0 M0 (2.2)
uh =0 on 092

Here |Y| = volY, |Y;| = volY;. The homogenized coefficients g;;i; are given
by

(mn)

d
dijmn — (aijmn) - <aiqu'_xa£y:_> (2-3)

1
0=y [0
Ye

The Y-periodic functions Xg"‘") are solutions to the local problem

where

0 o ‘
a_yz.[aijmn@(xggq) - 5mpyq)] =0 in Y; 20
" 2.4
0
a—yn [aijmn(Xgﬁq) - 5mpyq)]Ni = on holes boundaries
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Written in the weak form, this problem is expressed by

X2 9y, ow
/a'ijmn ayn ay: dﬂ = /aszqa dy Vﬁp] € HpeT(Yt) (25)

Y: Yi

where
Hper (Yy) = {u e H'(Y;): visY — periodic}

By putting x7*(y) = diry — U*(y) we rewrite Eq (2.3) in the following form
Qijrs = <aijkheih(U“(y))> (2.6)

It can easily be shown that

g / 5 & nn + Up'ng) dS = dg0r (2.7)

3. Effective moduli for a network of elastic rods

For a periodical network of elastic rods the effective moduli g¢;;-, are
written in the form

dirs = Ty, / mypdy P = ameen (U @) (3.1

The local problem (2.4) is now rewritten as follows

—%azijkh (e%h (U” (y)) =0 inY

Yy S _ ¥ ]
€kn (Ur (y))(an = Ckh (Ur (y))L')Y_ (3:2)
III?Nj =0 on Y, aY, = 8Y, Ny, N Y-

Here Y}, 8Y;, 0Y,, OY_ denote the region occupied by the elastic rods, the

boundary of the region of elastic rods, and the opposite walls of the basic cell,
respectively.

20 ~ Mechanika Teorelyczna
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3.1. Formula for the effective modulus

To solve the basic cell problem we proceed in a manner typical of
structua.l mechanjcs Let us introduce the Cartesian coordinate system
yPZ(yF?% yb% 484, P = A,B,C,D,... Z = A,B,C,D,..., P # Z, coin-
cident with the principal inertia axes of a (PZ)th rod of a length 17%. Note
that the yi'Z axis always runs along the longest dimension of a (PZ)th rod
(Fig.5). Consider also a Cartesian coordinate system {y;}, 7 = 1,2,3, firmly
connected with the basic cell. The orientation of {y/?} with respect to {y;},
i=1,2,3, is determined by the directional cosines LSZ. For the sake of sim-
plicity the intersection points (A, B,G, H,...) of the axes of the elastic rods
we call the network nodes.

%

e ¢ y3BC
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r. 2 »
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Fig. 5. Cartesian coordinates Y FZ(yF?% 4% yF%) and Y(yi,v2,v3) connected with
the elastic rod

We assume that the domains of rod junctions of the network are much
smaller than the volumes of individual rods. Hence, from Eq (3.4) it follows

PZ
that the averaged stresses [H{Js] defined by

5] = /H[j” dsP? (3.3)

do not depend on {4, where SPZ denote the cross-section of a (PZ)th rod.
Hence the definition (3.1) reduces to

PZ
Qijrs = |Y| ZL LJPﬂ{ [le:n] ’Y[PZ (3.4)
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Here |Y|PZ denotes the volume of (PZ)th rod. For a particular (PZ)th
elastic rod it is convenient to introduce the following notation

PZ
(T52)P% = SP2[my] " ng = / (M) P%ny dS h=1,2,3

SP
(M” / Y2 Hgg) n3 dS (MQTS / y11I33n3 dS
5P

Mrs _ ., PZ TS ds 3.5

3 ii/ Y1 ( 23) n3 (3.5)

SPzZ
(UJTS)SZ — 8(w5;)ZSZ (wg.B)SZ — 8(w71.;)ZSZ
Oy3 oy3

(W5*)?7 = (wi) P2 (y3 ?) = (UR*)72(0,0,45 %)

where ¢ — rotation angel and the vector functions

(TTS)PZ(T{S,T”, rs) (M”)PZ(M{S,M{s,Mgs) (3 6)
(W) P2 (wf*, wf®, wi?)  (W™)PP (W], wh, w5?) '

represent shear and normal forces, moments, nodal displacements only and
rotations angles associated with the cross-section normal to the longest axis
of the (PZ)th rod (Fig.5).
3.2. The basic cell problem for network of rods

For a network of elastic rods the basic cell problem (3.2) reduces to the
following algebraic relations given bellow.

3.2.1. FEquations for an individual elastic Tod

From Egs (3.2); and (3.5) one easily obtains the formulae for:
(1) The difference between the displacements of the points P and Z (see
Fig.6)

rs rs ]' ]' rs ]‘ TS r
wi*(2) = wi*(P) = o (G MF'(P) + STV (P)P + wf'(P)l)

BJ\2
1 /1 1

wp(2) - wi(P) = 55 (Mi (P + T3 (P + WP (3.)
Tys (Pl

ES
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Fig. 6. External vectors represent: the displacements
wP? (wPZ(P),wl?(P),wf? (P)), wP?(wP?(Z), wf?(Z),wf%(Z)); the rotation
angles wP?(wP2(P),wf?(P),wf?(P)), wP?(wf?(Z),wf?(Z),wd?(Z)); the shear
forces TPZ(Tlpz(P),szz(P)yTspz(P)), TPZ(T1PZ(Z)7T2PZ(Z)aTspz(Z)) and
moments M "% (MPZ(P), Mf?(P), M{*(P)), M"?(MP?(Z), Mf?(Z), M{?(Z))
acting at the ends of the elastic PZth rod

(i) The difference between the rotation angles of the axis ends of the (PZ)th
rod

WF(2) = W (P) = o (MU(PY + ST5(P)2)
WB(2) - (P) = o (MP(PN+ TP(P) (38)
Mie(P)l

GE(2) - g (P) =~

(iii) The equilibrium equations for the forces and moments acting on the
(PZ)th rod

TI*(Z) + T}*(P) = 0 MTe(P) + T (P)l + MT*(Z) = 0 9
T(Z)+T°(P) =0 M3¢(P)+ T (P)l+ M3°(Z) =0

3.2.2. Static and kinematic conditions for nodes

For an arbitrary node point P = A, B,C, of the network the following
relations are valid:
(i) The equilibrium equations for forces and moments acting on the (P)th
node

STEFPA(P)LEE =0 Z=AB,.+P km=123

? (3.10)

S(MIHFAPILEE =0 Z=AB,.#P km=123
VA
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(i1) The displacement compatibility equations for the (P)th node
P
(wi)"?(P)LET = (wi)P(P) Ly Q=AB,C,... (3.11)
(i1i) The rotation compatibility equations for the (P)th node

(Wi)P2(PYLEZ = ()PP L2 Q=AB,C,.. (3.12)

3.2.8. Boundary conditions prescribed on the basic cell faces

On the basic cell faces the following boundary conditions have to be pre-
scribed

ekh (w”(y)) lan = ekh (w”(y)) ‘ay_

(3.13)

(wzsnh + w,’l’nk)()Yn = 0g0pp, ON JY = Y1 UIY5U ... UIYN

B =

1 N
>

Egs (3.4) + (3.13) allow us to evaluate the homogenized moduli for an arbitrary
network of thin elastic rods with a periodic structure.

4. TIllustrative example

As an example we evaluate the effective elastic moduli for a regular network
of elastic rods shown in Fig.7. This network represents the microstructure of
cancellous bone (see Fig.2 and Fig.3).

It is convenient to split the considered basic cell into two parts shown in
Fig.8.

Next we proceed as in Fig.9, Without loss of generality we can consider
only the fragment of the network depicted in Fig. 9b.

4.1. The effective coefficients gj;y

Now we can evaluate the effective coefficients g¢;;x; for the network of
elastic rods characterized by the unit cell shown in Fig.7. To this end we apply
the homogenization procedure proposed in Section 3. First we decompose the
fragment b of the basic cell (Fig.9b) into four individual rods, see Fig.10. Only
the displacements due to bending are taken into account.
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Fig. 7. Basic cell for a network of elasic rods modelling the microstructure of a
cancellous bone depicted in Fig.2 and Fig.3

Fig. 8. Two rod like microstructures generated by the basic cell shown in Fig.7

(a) fﬂ

Fig. 9. Further decomposition of the basic cell
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Fig. 10. Individul elastic rods forming the structure shown in Fig.9

4.1.1.  The coefficients q1212, G2323, 41313
On account of the symmetry of the structure (Fig.7) we obtain
g1212 = ¢2323 = 1313 (4.1)

Hence, only the coeflicient ¢2;2 will be evaluated. For an individual (PZ)th
rod Eqgs (3.7) + (3.9) take the form, see Fig.10

wiP(4) ~wfB(B) = 5 (sMAPBN® + STAB(BY® + i (B))
wEZP(E) — wPP(D) = ElJ( MEP(D)? + -éTlED(D)P + wa(D)l) )
MPB(B)+TAB(B) + MB(4) =0 TAB(A) + TAB(B) =0
MEP(D)+ TEP(D) + MFP(E) =0 TEP(E) + TEP(D) =0
The boundary conditions are implied by Eq (2.7) and are given by
wiB(A) = -2l M$B(A) =0 witB(B) =0 43)
wPP(E) =21 MFEP(E) =0 wEP(D) =0
By solving Eqs (4.2) and (4.3) we arrive at
THE = GIE—Q‘] TPV = 61E—2J (4.4)

Hence, by virtue of Eq (3.4) one obtains immediately

4ATAB 3BT
= = = —— = 4-
Q1212 = @323 = Q1313 =~ G (4.5)
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4.1.2.  The coefficients qi111, g2222, 93333, Q1122, 92233, Q1133

Now we pass to evaluation of the elastic moduli ¢;;11, g2992, ¢3333, q1122,
g2233, q1133- Let us first estimate the coefficient ¢;;;;. For the points D and

B, in Fig.9 and Fig.10, the boundary conditions are as follows (see Eq (2.7))
w¢B(B) = -21 wsB(B) =0 (46)
wfP(D) =0 w§P(D) =0 '

The relative displacements of the points A and B and C and D are given

ELJ (1M Boy? + é:rlCB(C)z3 + wEB(C)z)
(4.7)
ELJ( MEP(O)? + 6T Dy +w2CD(C)z)

MEB(O) + TCB(C)z2
EJ( 2 ) (4.8)

(M (C)l+2T o))

determine the relative rotations of the axis ends of the rods AB and CD.
The forces acting at points A, B, C, D satisfy

MEB(C)+ TEB(O) + MEB(B) =0 TEB(C) + TFB(B) = o( 0
4.
MEP(C) + TEP(C) + MEP(B) =0 TP (C) + TFP(D) = 0
For a node C we have
MEB(C) + MFP(C) =0 w§B(C) = w§P(C)
(4.10)
wiP(C) =0 wiP(C) =0

We obtain 16 equations with 16 unknown functions. By using Eqs (4.10) the
relations (4.7) and (4.8) yield

2l = ElJ(;M2 (C)12+6TCB(C)Z3+w§B(C)l)
(4.11)

1,1
0= (3MPO0F +

CD 3 CD
= LrCD(O)3 4 )

6
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Then the rotation angles are given by

~wfB(0) = (MFF(O) + %Tch(C)lz)
(4.12)
~w§B(C) = (~MEP(O) + %TICD(C)IQ)

By adding and substracting the right and left hand sides of the last two equ-
ations we obtain

1 1
wy ?(C) = = TEP(ON? - STEP(O)P?
(4.13)
1 1
Mg P (C)l = = S TP(C)2 + (TP (O
From Eqgs (4.11) and (4.13) we conclude that
1 1
9 = E—J(%TFB(C)Z3 + gTICD(C)l:’)
(4.14)
0= LGTCB(C)I“ + —5—TCD(C)Z3)
Bj\g"! 24" !
Consequently
re2(0) = - 227 707(0) = 127 (4.15)
Thus the normal forces acting on the rods AB, BC, CD and DFE are
15EJ 15EJ
Tf(C) = = TEP(C) = =5
(4.16)
9EJ 9EJ
TFP(C) = T TEP(C) =
Finally, we find
. 8T{B(C) + 8TFP(C)  15EJ
1 = 3 =3
321 21 (4.17)
2TEP(C) + 2TFB(C)  9EJ
qi122 = 303 = 2

and
qii11 = G2222 = ¢3333 qi122 = 1133 = ¢3322 (4.18)
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4.1.3.  The coefficients Ci; and (Ci;)~!

Now we are in position to present the effective moduli in a matrix form.
Accordingly, we replace the tensors ggimn and (grimn) ' by Cij and (Ci;) ™}
(cf Nowacki, 1970). We alsoset F = E;, where E, denotes the Young modulus
of the cancellous bone rod. Taking into account Eqs (4.5) and (4.8) and setting

A =C! we write

r 16E,J

9E,J

9E,J

214 414 414 0 0 0
9E,J 15E,J 9E,J
474 274 474 0 0 0
9E,J 9E,J 15E.J 0 0
C— 414 414 204
- 3E,J
0 0 0 0 0
3E,J
0 0 0 0 i 0
3E,J
|0 0 0 0 0 i
(4.19)
r134 14 [ 1
3 - [ 0 0 0
84E,J 28E,J 28E,J
/4 13 74
- — 0 0 0
28E,J  84E,J 28F,J
4 4 4
1 1 131 0 0 0
A 28E,J 28E,J  84E,J
414
0 0 0 0 0
3E,J
414
0 0 0 0 0
3E,J
414
0 0
L 0 0 3E,J |

For the investigated microstructure the technical effective coefficients are

1 84E,J A 1 3E,J
=T = *:——:23 *:—:——

B =, T e v A, G =,
(4.20)

Here E*, v*, G* denote the overall Young modulus, Poisson ratio and shear

modulus, respectively.
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4.1.4. Rods with asquare cross-section

As a numerical example we evaluate the theoretical moduli C)y, Cia, Cuq
and technical coefficients FE*, v*, G* in the case of square cross-sections of

elastic rods.

0.10
0.09H—
0.08H
0.07
0.06
0.05
0.04
0.03
0.02
0.011—

0

Effective coefficients

0.25
yzyye

Fig. 11. Theoretical C);, Cy2, Cy4 and technical effective moduli E*, v*, G* versus
relative density p*/ps of a cancellous bone modelled by the regular network of rods
shown in Fig.7

For the square cross-section we have, cf Fig.7

1 4 P gl 3b?
—— LA L 4.21
J 12b Ps TR 412 (421)

o

Here p*, p; and m* denote: apparent density of the cancellous bone, density
of the solid bone forming the cancellous bone and mass of the basic cell.

By virtue of Eqs (4.5), (4.17) and (4.21) we get

N *
C44 = C55 = CGG = Oll(p—) Cu = CQQ == C33 == 111E3 (&)
Ps Ps
*\2
Cis = C1z = C1g = 0.34E, () (4.22)

Ps
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Fig. 12. Young moduli of cancellous bone of unspecified trabecular orientation
plotted against density. Normalizing parameters are: E, = 17 GN/m? and
ps = 1800kg/m®. The experimental data from Gibson and Ashby (1988). The line
with the slope 2 (pointed out by the arrow) was obtained in this paper. The lines
with slope 1 and 2 are drawn for comparison

Finally, we arive at

1.11 0.34 034 0 0 0 7
034 1.11 034 O 0 0
o 0.34 034 111 O 0 0
ANe. |0 0o 0 011 0 0 (4.23)
(&)
pe 0 0 0 0 011 O
o 0 0 0 0 o011 |
From Eqs (4.20) and (4.10) we get
E* p* 9 G* p* 2
—_ = _9 _— _— = 11 - * = uU. 2
5 =0 6(/}3) 5 =0 (ps) vt =023  (4.24)
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The moduli Ci1/E;, Cia/Es, Caa/Ey, G*/Es; and E*/E, versus p*/p, are
depicted in Fig.11. The comparison of E*/E; with experimental data is pre-
sented in Fig.12.

5. Concluding remarks

The macroscopic cancellous bone is characterized by three independent
material constants, being therefore, a material with cubic symmetry (cf Cher-
nykh, 1988). A cancellous bone is rather an orthotropic material (Jemiolo and
Telega, 1998). The orthotropic macroscopic model can easily be incorporated
into our modelling by taking basic cells with different sizes along the axes y;,
i = 1,2, 3. Though the normal forces and torsion were neglected, our approach
leads to the results which compare favourably with the available experimentatl
ones.
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Wyznaczanie efektywnych moduléw sprezystych dla kosci gabczaste]j
o regularnej strukturze beleczkowej

Streszczenie

Teorie homogenizacji zastosowano do wyznaczania efektywnych wlasnosci me-
chanicznych dla regularnej sieci elastycznych pretéw modelujacych kosé gabczasta.
Wyznaczono numerycznie efektywne stale techniczne: modul Younga, wspélczynnik
Poissona i modul $cinania. Wyniki poréwnano z wynikami eksperymentalnymi uzy-
skujac dobra zgodnosé.
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