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The concept of statistical and equivalent linearization with probability
density criteria for dynamic systems under Gaussian excitations is con-
sidered in the paper. New criteria of linearization and two approximate
approaches are proposed. In the first one (statistical linearization) in
order to establish the linearization coefficients and response characteri-
stics the output probability density functions of static nonlinear element
and the corresponding static linearized element are used in an iterative
procedure. In the second approach (equivalent linearization) the direct
minimization of a criterion based on output probability density functions
of dynamic nonlinear system and the corresponding dynamic linearized
system is proposed. The detailed analysis and numerical results are given
for the Duffing oscillator.
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1. Introduction

The statistical and equivalent linearization techniques are basic tools in the
study of stochastic dynamic systems. The earliest work in the field of statistical
linearization theory for control engineering were carried out independently by
Botton (1954) and Kazakov (1956). The objective of this method is to replace
the nonlinear elements in a model by linear forms, where the coefficients of
linearization can be found basing on the specific criterion of linearization. The
equivalent linearization was first proposed by Caughey (1959), (1960) consi-
dered the replacement of a nonlinear oscillator by a linear one for which the
coefficients of linearization can be found from a mean square criterion. In both
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approaches the linearization coefficients depend on the first and second order
moments of the response. Due to incorrect derivation of equivalent lineariza-
tion both the techniques in practical calculations for dynamic systems with
Gaussian external excitations and mean-square criterion gave the same results.
The difference between both approaches was observed first by Socha and Paw-
leta (1994) and independently by Elishakof and Colajanni (1997), (1998). Sta-
tistical linearization has been developed in the field of control, mechanical and
structural engineering and has been generalized by many authors. Numerous
studies have been performed, in the context of this method and are summari-
zed in the monograph by Roberts and Spanos (1990) and the review by Socha
and Soong (1991). In almost all studies into different versions of linearization
techniques the difference between variances of nonlinear and linearized sys-
tems has been taken as a measure of the accuracy of the considered version.
Since the full information about random variable is contained in probability
density function Socha (1995), (1998) proposed new criteria of linearization
in probability density space and two approximate approaches. He considered
criteria depending on the difference between probability densities of respon-
ses of nonlinear and linearized systems. Unfortunately, both the approaches
required complicated numerical calculations particularly in the case of non-
linear multi-degree-of-freedom systems. Basic difficulties are associated with
determination of the approximate probability density function of the response
of nonlinear system and with numerical calculations of multiple integrals. To
overcome these difficulties we propose another approach called ”Statistical li-
nearization with probability density criteria”. The objective of this method
is to replace the nonlinear elements in a model by linear forms, where the
coefficients of linearization can be found based on the criterion of linearization
which is a probabilistic metric in the probability density space. The elements
of this space are found as probability density functions of random variables
obtained by linear and nonlinear transformation of one-dimensional Gaussian
variable. The objective of this paper is to show the difference between both
these approaches; i.e. statistical linearizations and equivalent with criteria in
the probability density space. The detailed analysis and numerical results are
given for the Duffing oscillator. To compare the characteristics of responses
obtained by the proposed methods and other equivalent linearization techni-
ques the examples with exactly known stationary probability density functions
have been chosen.
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2. Statistical linearization

Consider a nonlinear stochastic model of dynamic system described by the
Ito vector differential equation

M
dz(t) = B(z,t)dt + Y Gy(t)déx(t) (2.1)
k=1
where

T~ state vector, T = [z(,...,xp]

& -~ nonlinear vector function, & = [@, ..., D,]"

G, - deterministic vectors, Gy = [Gyy, ..., Gpnl T, bk =1,..., M

&, — independent standard Wiener processes.

We assume that the unique solution of Eq (2.1) exists.

As was mentioned in the Introduction the objective of statistical lineari-
zation is to find for the nonlinear vector @(z,t) an equivalent one ”in some
sense” but in a linear form; i.e. replacing

Y = &(z,t) (2.2)
in Eq (2.1) by a linearized form
Y = &° (g,(z, t)) + K(g,(z, t))zo (2.3)

where g¢r(z,t) is the probability density function of the input process exciting
on static element, £° =z — E|z] is the centralized process, ®° = [#9,...,®]T
is a nonlinear vector function and K = [k;;] is the n x n matrix of statistical
linearization coefficients.

2.1. One-dimensional case

First consider one-dimensional nonlinearity. @° and K in Eq (2.3) are now
scalars and their determination depends upon the choice of the equivalence
criterion. In what follows the two equivalence criteria in probability density
space are presented (Socha, 1995):

— square probability metric

+00

Ii(t) = /[gN(y,t) — gLy, t)]* dy (2.4)

— 00
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where gn(y,t) and gr(y,t) are the probability density functions of variables
defined by Eqs (2.2) and (2.3), respectively;
— pseudo-moment metric

L(t) = / ly* v (y,t) — gy, t)| dy I=1,2,.. (2.5)

If we assume that the input process is a (Gaussian process with the proba-
bility density function

i 1 [l‘(t) - Tna:(t)]2
gr(z,t) = mexp{*—Qaa{m—} (2.6)

where m, = E[z], 02 = E[(z — m.)?] then the output process from the static
linear element defined by Eq (2.3) is also Gaussian. In particular case, when
my = 0 then Eq (2.3) in one-dimensional case reduces to the form

Y =kz (2.7)

and the corresponding probability density function of variable Y is given by

[y(1))?

i) = exp|— 2.8

QL(y ) \/ﬁkax(t) p[ 2k20'%(t)] ( )

To apply the proposed criteria (2.4) and (2.5) we have to find the probability
density function gn(y,t). Unfortunately, except for some special cases it is

impossible to find it in an analytical form. It is well known that one of these
special cases is a scalar strictly monotonically increasing or decreasing function

Y = @(z) (2.9)

with the continuous derivative @'(z) for all z € R. Then the probability
density function of the output variable (2.9) is given by

gv () = g1 (A()) 1N () (2.10)

where gr(z) is the probability density function of the input variable and #h is
the inverse function to &(x) i.e

z=hY)=0"1Y) (2.11)

In a general case when the nonlinear function @(z) is not strongly monotoni-
cally increasing or decreasing or not differentiable everywhere the approxima-
tion methods have to be used.
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To obtain an approximate probability density function of nonlinear random
variable Y = &(z) one can use for instance the Gram-Charlier expansion. In
particular case for a scalar function @ of a scalar random variable =z the
nonlinear variable has the probability density function

N
9v(y) = gom) |1+ %Hy(y ;ymy)] (2.12)
p=3

where )

1 (y - my)
=——e - 2.13
gG(y) \/2—7F0'y Xp< 20_73 ) ( )
my = Elyl, 03 = E[(y—7ny)2], ¢ = E[GL(y—my)], v=3,4,..., N are quasi-
moments, Hg(z) and Gp(z) are the one-dimensional Hermite polynomials
defined by

, 2 4 2
Hy(z) = (=1) exp(;?)dl—,ye)@(“;?) o0
Guto) = (-1 oo ) g o (-2,

o?

In contrast to the standard statistical linearization with criteria in a state space
one can not find the formulae for linearization coefficients in an analytical
form. However, in some particular cases some analytical study can be done.

For instance, for criterion I, defined by Eq (2.4) and for an input Gaussian
process with mean equal to zero the necessary condition for minimum can be

derived in the following form

o _ Lo v y,1) d 2.15
% /[gw(y,t)—gL(y,t)]ﬂ —k2—q2)gz,(y,t) Y (2.15)

—0o0

To use the proposed linearization technique in determination of the lineari-
zation coefficient k& and response characteristics one apply use an iterative
procedure involving minimization of one of the proposed criteria and the so-
lution of a Lyapunov differential equation. Such a procedure will be proposed
in Section 4.

3. Equivalent linearization

As was mentioned in the Introduction the objective of equivalent lineari-
zation with criterion in probability density space is to find for the nonlinear
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dynamic system (2.1) an equivalent linear dynamic system in the form

M
dz(t) = [A(t)z(t) + C()]dt + > Gy(t)déx(t) (3.1)
k=1

where A = [a;;] is a matrix and C = [C}, ..., Cy]7 is a vector of linearization
coefficients, respectively.

The following criteria of linearization are proposed:

— square probability metric

+00
1) = [ law(n,0) — ou(0,0)" dy (32)
— pseudo-moment metric
+00
Iy(t) = / ly®lgn(y, 1) — gr.(y,1)| dy I=1,2,..  (3.3)
— 00
where
n
42 = yPyd gl Z‘Ii =21 1=1,2,..
i=1

are the probability density functions of solutions of the nonlinear equation
(2.1) and linearized system (3.1), respectively.

It can the noticed that the criteria for linearization (3.2) and (3.3) have
the same form as those for statistical linearization but the quantities gy (y,1t)
and g¢r(y,t) have different meaning and the dimension of the variable y is dif-
ferent (1 for the statistical linearization and n for the equivalent linearization,
respectively).

In the case of linearized system the probability density of the solution of
Eq (3.1) is known and can be expressed as follows

= z—m)TKzl(z—m)] (3.4)

1
gr(z) = WGXP[—E(

where m = m(¢) = E[z(t)] and K = K. (t) = Elz(t)z"(t)] — m(t)m” (¢)
are the mean value and the covariance matrices, respectively, of the solution
z = z(t) of Eq (3.1), respectively, |Kj| denotes the determinant of the
matrix Kj.



STATISTICAL AND EQUIVALENT LINEARIZATION TECHNIQUES... 375

The vector m and matrix Kj satisfy the following equations

dm
M At)m + C(t)
dt (3.5)
dKy, . M .
5 = KA (1) +A@K, + > GG (1)

k=1

To apply the proposed criterion (3.2) or (3.3) we have to find the probabi-
lity density gn(z). Unfortunately, except for some special cases it is impossible
to find the function gn(z) in the analytical form. However, it can be done by
approximation methods or by simulations.

To obtain approximate probability density function of the stationary so-
Iution of a nonlinear dynamic system one can use, for instance, the Gram-
Charlier expansion. For n-dimensional system the one-dimensional probability
density function has the following truncated form (see Pugacev and Sinicin,
1987)

(@)~ g60(@) = ge@[1 43 T albe=m] g
k=3 o(V)=k Yn-

where gi(z) is the probability density of a vector Gaussian random variable
z e R"

06(2) = = exp [~ 5@~ m) K (@~ m)] (3.7)
where
m,Ks - mean value and covariance matrix of vector variable =z,
respectively
v -~ multiindex, ¥ = [v|,...,1,]" and o(¥) =%, v
N - number of elements in truncated
Cy - quasi-moments, ¢, = E[Gy(x — m)]
H,,G, - Hermite polynomials defined by

6a(m)

L 11
oz ..oz exp(—ia: K a:)

Holz) = (~1)7(m) exp(%xTK_la:)
(3.8)

Gm(z) = (—1)°(m) exp(%zTK“Z) [a—%%exP(~§yTK_ly)]y:K"z

where K is a real positive definite matrix.

To obtain the quasi-moments ¢, we derive first, the moment equations for
the system (2.1) which can be closed, for instance, by the cumulant closure
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technique and next we use algebraic relationships between quasi-moments and
moments. As in the case of statistical linearization one can not find expres-
sions for linearization coefficients in an analytical formm and only in the case of
criterion, for instance, I3 established by Eq (3.2) the necessary condition of
minimum can be derived in the following form

+00
oI ov 0
1 _, / w(z) (gn,91) Ogr(z)
Oa;j o dgr, Oa;;
(3.9)
+00
oI, 0% (gn,g1) 99L(%)
29 -
aC; / W) gq  o0; =0
— 00
4. Duffing oscillator
Consider the nonlinear Duffing oscillator
dz| = zodt dzy = [=2nwoze — f(z1)]dt + qd€ (4.1)
where
flz) =Y =wiz| + ez} (4.2)
wp,M,€,q — positive constant parameters
£ - standard Wiener process.

For simplicity we limit restrict our consideration to the stationary case.
When we apply the statistical linearization technique to the nonlinear function
(4.2) then one can show that the probability density function of the output
variable Y is given by

(vp+v2)%7 1 sa+2y a-2y
= — 4.3
v (y) %Lexp[ 207 Ja( 7t ) )
where
2 6 6
:3— y_ & — 2 0
nE\e TV et e VY T ot "
4.4
2 6
_ Y L Yo
W—\Qe 52+27e3
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The probability density of the linearized variable
Yy = k(L'l (45)

takes the form )

1 y
L{y) = ——exp(— 4.6
gr(y) Jarkor p( kag%) (4.6)
where o? = E[z] is the variance of the input Gaussian variable.
To find characteristics of stationary solution of the linearized system we
propose the following iterative procedure.

Step 1. Substitute € = 0 i.e. k = w?, calculate the probability density of
linearized element (one-dimensional) (4.6) for ¢% = ¢%/(4hw}).

Step 2. Consider a criterion, e.g., I

+oo
1= [ loviw) - 9o dy (&7

where gy (y) and g (y) are the probability density functions (4.3) and
(4.6), respectively, and find the coeflicient kni, which minimizes crite-
rion (4.7). Next, substitute k = kpin.

Step 3. Calculate the stationary characteristics of the linearized oscillator
response

o} =02 = Elz}] = g (4.8)

T

Step 4. Redefine the probability density functions for linearized and nonli-
near elements, by substituting oy, into Eqs (4.3) and (4.6), respectively.

Step 5. Repeat steps 2 +4 until k£ and oy converge.

When we apply the equivalent linearization technique with probability
density criteria to Eqgs (4.1) and (4.2) then the equivalent linearized oscillator
has the form

dz| = zodt
(4.9)
dzy = (—2nwozy — kz))dt + qd¢

where £k is a linearization coefficient.
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To apply one of the considered criteria (Eq (3.2) or (3.3)) we use the
probability density functions of stationary solutions of nonlinear and linearized
oscillator which are known in the exact form

gn(z) = C—Nexp[—qT(Wol'L teg t 12)]
(4.10)

1 4nw0f 2nwo
gi(z) = exp[-

kz? + 22
cr q qg ( 1 2)}

where ¢y and c¢p are normalized constants.
The necessary condition for minimum of criterion I3 defined by (3.2) has
the form

+00 +00

_ 2nwo 9 9 IL‘? 2
=2 / / CN —q2 (wowl + £y + xg)} +
—00 —C0
1 477(‘-10\//; 27](4.10 9 9
e ol ket e} (4.11)
1 2nwoaty 1 dnwovk 2nwo o
-(2k e )CL " P[ (k:z1+:z2)] dzidzo =90

In the case of pseudo-moment equivalent linearization the linearization coeffi-
cient we find by minimization of the following criterion

+00 +00
= / / 2 gn (21, 22) — g1.(21,22)| dz1dzs 1=1,3 (4.12)

— 00 —C0O

The linearization coefficient & can be calculated numerically in the two con-
sidered cases from Eq (4.11) and directly from Eq (4.12).

To illustrate all the discussed methods we compare the stationary mean-
square displacements of linearized systems obtained by applying the statisti-
cal and equivalent linearization techniques with criteria in probability density
functions space for the Duffing oscillator. The numerical results for parameters
> =02, h =05, w2 =185 ¢=185x4,4=1,..,10, are presented in Fig.1.

Fig.1 shows that for the second order moments of the displacement the
relative errors obtained by (SPD-SL) and (SPD-EL) are almost the same while
the errors obtained for E[z%] are quite different. The relative errors for both
moments i.e. E[z?] and E[z8] for pseudo-moment metrics for the statistical
linearization are significantly greater than the corresponding errors obtained
by the equivalent linearization.
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Fig. 1. The comparison between the relative errors of (a) — displacement variance
E[z?], (b) - six order moments of the displacement E[z}], versus the ratio of
parameters 7 = ¢/w? for w2 =185, =185x%x1,i=1,..,10 and ¢* =0.2, h=0.5
(square metric probability density statistical linearization (SPD-SL); second order
pseudo-moment statistical linearization (PM-SL2); six order pseudo-moment
statistical linearization (PM-SL6); square metric probability density equivalent
linearization (SPD-EL); second order pseudo-moment equivalent linearization
(PM-EL2); six order pseudo-moment equivalent linearization (PM-EL6))
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5. Conclusions and generalizations

The application of statistical and equivalent linearization techniques with
criteria defined in the space of probability density functions to dynamic sys-
tems subjected to external Gaussian excitations has been cousidered. The
differences between statistical and equivalent linearizations for two types of
criteria have been discussed. The detailed analysis and numerical results have
been obtained for the Duffing oscillator. The comparison has been shown for
second and six order moments of the displacement. From the numerical re-
sults it follows that in the case of square metric the application of statistical
linearization gives smaller relative errors than equivalent linearization for the
six order moments and almost the same for the second order moments. In the
case of pseudo-moment metrics for | = 2 and ! = 6 and both moments i.e.
E[z?] and FE[z%] the relative errors obtained by the equivalent linearization
are smaller than the corresponding errors obtained by the statistical lineari-
zation. The numerical results confirm the significant difference between both
linearization techniques with criteria in the space of probability density fuic-
tions which has been earlier observed for mean-square criterion in the state
space (Soch and Pawleta, 1994; Elishakoff and Colojanni, 1997, 1998). Also
from numerical it follows that statistical linearization could be recommended
as a good mathematical tool with the criterion defined by square probabilistic
metric.

We note that, similarly to the generalization obtained for the standard
statistical linearization technique several new approaches of statistical lineari-
zation with criteria in probability density function space can be considered. It
includes the cases of criteria depending on the probability density of energy of
the response of nonlinear and linearized elements and linearization of stocha-
stic dynamic systems under parametric excitations. Also other probabilistic
measures (metrics) discussed in mathematical literature (cf Zolotarev, 1986)
can be analyzed.
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Statystyczna i réwnowazna linearyzacja z kryteriami w przestrzeni

funkcji gestosci prawdopodobienstw

Streszczenie

W pracy zaproponowano metode statystycznej i réwnowaznej linearyzacji dla
ukladéw dynamicznych z wymuszeniami o charakterze bialych szumdéw Gaussow-
skich i kryteriami w przestrzeni funkcji gestoéci prawdopodobienstw. Przy wyzna-
czaniu wspolczynnikéw linearyzacji 1 charakterystyk rozwigzan uktadu dynamicznego

12 — Mechanika Teoretyczna
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za pornocg metody statystycznej linearyzacji korzysta sie z minimalizacji kryterium
uwzgledniajacego réznice wyjdciowych funkeji gestosci prawdopodobieristw od powied-
nio elementu nieliniowego i zlinearyzowanego oraz pewnej procedury iteracyjnej.
W przypadku réwnowasnej linearyzacji przeprowadza sie bezpodrednig minimalizacje
kryterium uwzgledniajacego réznice wyjéciowych funkcji gestosci prawdopodobienstw
odpowiednio ukladéw dynamiczoych nieliniowego 1 zlinearyzowanego. Szczegélowa
analize i obliczenia numeryczne przeprowadzono dla oscylatora Duffinga.
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