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The contribution outlines a general modelling method leading from the
general equations of thin shells with locally periodic structure to the
averaged equations with slowly varying coefficients. The proposed model
describes the effect of periodicity cell size on the overall shell response
and hence can be applied to the dispersive analysis in dynamic problems.
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1. Introduction

It is known that 2D-theories of shells, derived from three dimensional pro-
blems of solid mechanics, are valid if a shell is sufficiently thin. This require-
ment makes it possible to formulate 2D-constitutive shell and plate equations
as physically reasonable approximations of three dimensional equations, obta-~
ined by means of the well known Kirchhoff hypothesis or using the asymptotic
approach to derive 2D-theories of plates. Hence, the undeformed shell mean
thickness h plays an important role of a certain small length parameter (here
and in the sequel the plate will be treated as a special case of the shell); on the
basis of this parameter estimation of orders of various terms in shell equations
can be performed as shown by Koiter, Simmonds (1973) and Pietraszkiewicz
(1979).

By a substructured shell we shall mean a thin shell endowed with a ma-
terial inhomogeneity and/or a variable thickness having what will be called a
locally periodic structure in directions tangent to the undeformed shell mid-
surface M. It means that every medium-size piece of the shell constituting a

'The contribution was presented as a part of a plenary lecture on SSTA’98, Gdarsk-
Jurata, 1998



256 C.WOZNIAK

shallow shell, with a sufficient accuracy, can be described as having a perio-
dic structure related to the Cartesian coordinates on a certain plane tangent
to M. This situation takes place for shells made of composite materials or re-
inforced by systems of fibres or stiffeners. Hence, to every point £ € M we as-
sign the plane Ty tangent to M at z and periods l4(z), @ = 1,2 in direction
of unit vectors e,(z) on Tz. Moreover, we assume that d,(z) = [,(z)es(z),
z € M, are slowly varying sufficiently regular functions. Define by { the
mean value of functions {(-), lo(-). This value will be treated as a substruc-
ture length parameter, provided that it is sufficiently small compared to tle
minimum shell midsurface curvature radius as well as to the characteristic
wavelength of midsurface deformation patterns.

Thus, we jump to a conclusion that in the description of thin substruc-
tured shells two small parameters are present: mean shell thickness h and
substructure length parameter [. The cases [ <« h and [ & h require a special
treatment since then the Kirchhoff hypothesis cannot be applied to the deri-
vation of 2D-theory. On the other hand the case ! > h can be investigated
within the framework of the known 2D-theory which will be referred to as the
mezostructured shell 2D-theory. Notice, that the situation discussed above is
similar to that investigated for plates by Kohn and Vogelius (1984). In the
sequel we shall confine ourselves to mezostructured shells, where [ will be
referred to as a mezostructure length parameter. 2D-equations of mezostruc-
tured shells have a form similar to that of homogeneous shells but involving
rapidly varying and often discontinuous functional coefficients. That is why the
aforementioned equations cannot be directly applied to the numerical analysis
of many special problems.

The aim of this contribution is to propose a certain general approach
leading from 2D-equations of mezostructured shells to the averaged 2D-
equations with slowly varying functional coefficients. Moreover, the obtained
equations have to describe the effect of mezostructure length parameter on the
overall dynamic shell behaviour (a length-scale effect). This fact is important
in dynamic problems where we have to calculate higher vibration frequencies
and analyze the dispersive properties of the system. For this reason the asymp-
totic homogenization methods, neglecting the length-scale effect, will be not
used in this paper as a tool of modelling. Notice, that the asymptotic approach
to averaging of 2D-shell equations, based on that used by Kohn and Vogelius
(1984), has been proposed by Lewinski and Telega (1988) (cf also Lutoborski,
1985). Unfortunately, the results have been obtained under rather artificial
assumption that the shell stiffnesses are periodic with respect to a certain cu-
rvilinear coordinate system on M; the above assumption eliminates even such
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fundamental composite shell problerns as those related to shells reinforced by
a system of fibres or stiffeners with a constant cross section. This drawback
is implied by a very restrictive definition of the concept of locally periodic
structure used by Kohn and Vogelius (1984) and in related papers. That is
why in this contribution a more general notion of a locally periodic function
and hence a more general description of a local periodic shell structure will be
taken as a basis of analysis.

2. 2D-equations of mezostructured shells

For the sake of simplicity we shall investigate the simplified linear
Kirchhoff-Love theory of thin elastic shells in which the terms depending on
the second metric tensor of M are neglected in the formulae for curvature
changes (cf Koiter, 1960). The governing 2D-equations of this theory can be
written down in the matrix form

Ls—pu+f=0 s=C: FEu (2.1)

where 4 = [v,w]" are the midsurface shell displacements (in tangent and
normal directions, respectively), s = [n,m|’ are the stress resultants and
stress couples, respectively, f stands for the external force components,
C = diag{D, B}, where D, B are the membrane and bending stiffness tensors,
respectively, u is the shell mass density per midsurface unit area and L, E
are differential operators

v 0 Ve ~b
L:{ b: (V®V):} E:{ 0 —(V®V)} 22)

with V as the covariant derivative on the midsurface M and b as the
midsurface second metric tensor. For mezostructured composite shells pu(-)
and C(-) are rapidly varying discontinuous functions; that is why Eqgs (2.1)
cannot be directly applied to the numerical analysis of special problems. To
overcome this difficulty we shall derive from Egs (2.1) a certain averaged form
of the mezostructured shell theory. This could be done by the asymptotic
approach using the concept of G-convergence, cf Jikov et al. (1994). However,
using this approach we obtain the resulting averaged 2D-equations in the form
independent of the mezostructure length parameter [. Hence, the problem
arises how to derive fromm Eqgs (2.1) the 2D-equations with slowly varying
coefficients depending on the mezostructure length parameter. In order to solve
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this problem we shall apply the modelling procedure based on the concept of
internal variables proposed by Wozniak (1997).

3. Basic concepts

Let the shell midsurface be smooth and to every z € M be uniquely
assigned a vector basis d,(z), @ = 1,2, on the plane 77 tangent to M at z.
The vector fields d,(-) are assumed to be smooth and slowly varying; the exact
explanation of the latter concept will be given below. Moreover, the values of
|do(-)| have to be sufficiently small cornpared with the minimurm characteristic
length dimension of a midsurface M and sufficiently large compared with
the maximum thickness of a shell. Define A(z) = {z € Tz : z = z +
n%dgy(z), 7% € (=0.5,0.5)}. By MO we denote a set of points on M such
that for every £ € M the plane element A(z) is the orthogonal projection on
Tz of some piece Mz of M. Obviously, every Mg, £ € M, is a midsurface
of a certain shallow shell element and M"Y is a part of midsurface M which
does not comprise a certain near-boundary layer.

Let ¢(-) be an arbitrary integrable function defined (almost everywhere)
on M. In every M, this function will be treated as a function ¢(z) of a
point z € A(z); this situation is typical for parametrization of shallow shells.
We assume that in a vicinity of every My, z € MY, the material and inertial
properties of a shell can be described with a sufficient accuracy by A(zx)-
periodic functions and hence defined on 7. The averaged value of ¢ over
A(z) will be denoted by

1
D)= [y (/z) o) dz  zEM (3.1)

where |A(z)| = mesA(z). Hence the averaging operator (-) is uniquely de-
termined by the mapping A: M 3z — A(z). In the sequel all functions
under consideration are assumed to be defined (almost everywhere) on M
(they can also depend on the time coordinate %) and to satisfy the required

regularity conditions. Moreover, an arbitrary function ga(-)}Mz, i.e. a functior

¢ with the domain restricted to Mg, £ € M?, will be treated as a functior
of z € A(z). A function (p)(-) will be also denoted by (¢).

The leading concept of the modelling approach is that of the tolerance
space, proposed by Zeeman (1962), as a pair (S,~), where § is a certain
nonempty set and = is a tolerance relation defined on S x &. It has to be



ON DYNAMICS OF SUBSTRUCTURED SHELLS 259

remembered that in the general case this relation is not transitive. Roughly
speaking, the tolerance relation will be treated as a certain indiscernibility
r< lation between elements of S; s; = s means that s, can be approximated
with a sufficient accuracy by s» and wice versa. In the sequel the symbol =~
will stand for a certain tolerance relation describing the accuracy of performed
calculations or required measurements but it has to be remembered that in
different formulas the symbol == is related to different tolerances.

A differentiable function F'(-) will be called slowly varying, F € SV(A),
if for every integrable function ¢(-) satisfies conditions of the form

{pF)(z) =~ (p)(z)F(z) z e M (3.2)

and the similar conditions are also fulfilled by all derivatives of F(-).

An integrable function f(-) will be termed locally periodic, f € LP(A), if
(f)() € SV(A) and if for every z € MY there exist A(z)-periodic function
fz(-) (defined on T;) which approximates f()‘.A/T; The function fg(-) will
be called a local periodic approzimation of f(-). It has to be emphasized that
the concept of locally periodic function introduced here does not coincide with
the definition of locally periodic structure used by Kohn and Vogelius (1984)
and related papers on homogenization.

At last, by the highly oscillating function, h € HO(A), we shall mean a
differentiable function A(-) such that h € LP(A) and for every F € SV (A)
the conditions

(V(FR))z) =~ (FV)(z) zeM° (3.3)

are assumed to hold. The detailed discussion of the above relation can be found
in Wozniak (1997), where an alternative approach to Eq (3.3) was applied.

4. Internal variable model

We begin with Eqs (2.1) where the conditions yu € LP(A) and C € LP(A)
for some A: M 3z — A(z) are assumed to hold. The idea of the internal
variables is based on assumptions which restrict the class of displacement fields
u(-) and external loadings f(-) in (2.1) to certain subclasses. The subclass of
displacement fields comprise motions with wavelengths of an order much larger
then [ on which there are superimposed disturbances of displacements caused
by the highly oscillating character of the shell mezostructure.
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The first modelling assumption states that every averaged displacement
field U(-) = (u) '(pu)(-) under consideration is a slowly varying func-
tion, U € SV(A), and every displacement disturbance field defined by
di-) = u() — (U)(-) is assumed to be a highly oscillating function,
d € HO(A). Notice that (ud) =0.

The next step in modelling is related to the specification of the proper class
of displacement disturbances. To this end for every z € MY we shall introduce
the local periodic approximations Cz(-) and pz(-) of locally periodic functions
C(-) and p(-), respectively. Denoting f = f + L(C : EU) — pU and using Egs
(2.1) we formulate in A(z) the local problem

L(Cq : Fdg) — pzdz + f =0 (4.1)

for a A(z)-periodic function dz(-,t) such that (pzdz) = 0. The above
equation describes vibrations dz(z,t), z € A(zx) of the shell element with
midsurface Mg under forces f and periodic boundary conditions. To solve
this problem we shall use the orthogonalization method known in structural
dynamics. Using this method we have to formulate in A(z) the eigenvalue

problem
L(Cz : Ehg) + WQ,uzhz =0 (4.2)

for a A(z)-periodic function hg(-) such that (ughz)(z) = 0; here w is an
eigenvalue related to this functions. The expected principal modes hz(-) of
natural vibrations of the system described by Egs (4.1) can be obtained, in
most cases only in the approximate form represented by certain A(z)-periodic
functions hz*(-), A = 1,2, .... Hence an approximate solution to Eqs (4.1)
can be expected in the form of a finite sum dz = hz;*(2)Qa(z, 1), z € A(z)
(here and in the sequel A runs over 1,...,N, summation convention over A
holds) where Qa(z,-) are unknown functions of time and (uzhz”) = 0. These
functions are governed by the orthogonality conditions

([L(Cz : Edg) — pads + f| - ha™)(z) = 0 ze M’ (4.3)

where dy = hz?(2)Qa(x,t), z € A(z). The above conditions lead to a system

of N ordinary differential equations for @Q4(z,-), which can be formulated
independently for every z € MO,

Eqs (4.3) involve an unknown averaged displacement field U(-). Because

U € SV(A) we also introduce the following solvability conditions implied by
Eqgs (4.1) )

(L(Cg : Edg) — pgds + f)(z) =0 ze M (4.4)

which have to be considered together with Eqs (4.4).
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The second modelling assumption states that the finite sums dgz(z,t) =
h:?(2)Qalz,t), z € A(z), in Egs (4.3), (4.4), describe, with a sufficient ac-
curacy, the local periodic approximations of the displacement disturbances
d(-,t) defined on M.

This assumption restricts both the class of external loadings f(-) in Eqgs
(2.1) and the class of displacement disturbances. Since d € HO(A) it follows
that Q4(-,t) € SV(A) and there exist functions A* € HO(A) such that hg*
are periodic local approximations of h“ for every z € MO9. The functions
R4(), A=1,...,N, will be referred to as the shape functions.

Taking into account the first and second modelling assumptions, from Eqs
(4.3), (4.4) after rather lengthy calculations we arrive at the following averaged
form of equations of motion

LS ~ (U +(f) =0 (45)
with constitutive equations of the form
8=(C): EU + (C: ER*)Q4 (4.6)
and what are called the dynamic evolution equations
(uh® - hBYOp + (ER* : C: ER®YQp + (ER* : C) : EU+ (f- Yy =0 (4.7)

where A = 1,...,N. The above formulae represent the system of 3 + N
equations for averaged displacements (three components of U(-)) and N
extra unknowns Qa(-), A = 1,...,N. It can be easily seen that for Qa(-)
we have derived the system of ordinary differential equations (4.7) involving
only time derivatives of @ 4(-); that is why Qa(-) have been called internal
variables (or macro-internal variables, cf Wozniak (1997)). Thus, we conclude
that internal variables do not enter the displacement boundary conditions.
Hence, the number and form of these conditions is similar to those of the well
known simplified 2D-theory of thin linear-elastic shells which is governed by
Egs (2.1).

In order to obtain the explicit form of Eqs (4.5) + (4.7) denote
U = [V,W]", f =[fi.f2]", f = f3, where f and f are the external
loadings (per midsurface unit area), tangent and normal to M, respectively.
Let us assume the finite sums h*Q4 in the simplest form [hQ,gP)", where
Q, P are internal variables and h = [hy,h9]", g are locally periodic functions
describing the expected shape of displacement disturbances. Under the extra
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denotation E=V @V — bW from Eqs (4.5) + (4.7) we obtain the following
equations of motion

V-N—(uV+(f)=0

(4.8)
(VOV):M+b:N—(WW+(f)=0
and the dynamic evolution equations
(uh-B)Q+ H+ (f -h) =0
(4.9)

(pg* )P + G + (fg) = 0

where the averaged stress resultants N and averaged stress couples M as
well as H, G are given by the constitutive equations

N = (D):E+(D:(V®h)Q -b: (Dg)P

M = —-(B): (VRV)W—-(B:(VRV)g)P
(4.10)

H = (V®h):D):E+{(V®h) :D:(VOh)Q—b:(¢gD:(VH)P

G = —b:(Dg):E+{((V®V)g:B): (VRV)W —b:(¢D: (V®h)Q+
+ ((V®V)g:B:(VaV)g)+b:(g°D):b)P

Eqgs (4.8) + (4.10) represent the first approximation of general equations
(4.5) + (4.7). The basic unknowns are the averaged displacements W(-), V(-),
respectively, normal and tangent to the midsurface and internal variables Q(-),
P(-). The terms involving {uh - h), {1g?) in Egs (4.9) are of an order (({?),
O(1*), respectively, and describe the effect of mezostructure size on the dyna-
mic shell behaviour, the terms with (gD}, (¢?°D) in Eqs (4.10) are of an order
O(1?), OI"), respectively, and describe this effect on the shell response also
in quasi-stationary problems. The detailed discussion of the above equations,
representing a special case of what is called the internal variable 2D-model of
thin mezostructured shells, will be given in a forthcoming paper, cf Tomczyk
(1998).

It has to be emphasized that solutions U(-), Qa(-) to initial-boundary
value problems for Eqs (4.5) + (4.7) have a physical sense orly if they are
represented by sufficiently regular slowly varying functions; the pertinent con-
ditions can be verified a posteriori. For Kirchhoff plates the above equations



ON DYNAMICS OF SUBSTRUCTURED SHELLS 263

reduce to the form which was introduced by Jedrysiak and WozZniak (1995);
they were investigated by Jedrysiak (1998a,b) and by Baron and Jedrysiak
(1998). A similar approach was applied by Michalak and Wozniak (1996) and
Michalak (1998) to the modelling and analysis of wavy-plates. The internal
variable 2D-models for medium thickness plates were studied by Baron and
Wozniak (1995) as well as Baron and Jedrysiak (1998) and for beams by

Mazur-Sniady (1993).

5. Conclusions

We begin with the main advantages of the 2D-model outlined in Section 3.
Because the averaged locally periodic functions are slowly varying we conc-
lude that all coefficients in Eqs (4.5) + (4.10) are slowly varying functions and
hence their values can be calculated only at some points of M and obtained
using an extrapolation method in all other points. Solutions to the pertinent
initial-boundary value problems can be obtained by means of the well known
numerical procedures which is rather difficult if we deal with Eqgs (2.1). More-
over, the obtained internal variable model is able to describe the effect of the
mezostructure size (i.e. the size of cells A(z), z € M?) on the global dynamic
shell behaviour. At last the values of functional but slowly varying coefficients
in Eqs (4.5)+(4.10) can be derived by a simple calculation of averages at some
points z belonging to MY provided that the systems of functions hz4(-) for
these points were previously determined. The main drawback of the model
lies in the specification of functions hz“(-), which represent approximate so-
lutions to the eigenvalue problems (4.2) with periodic boundary conditions on
the cells A(z). These functions describe free vibrations of shell elements rela-
ted to pertinent cells. It is known that the exact form of these vibrations can
be found for rather simple cell structures. In many cases the approximation of
expected natural modes of free vibrations has to be based on the experience of
the researcher and knowledge of free vibrations in similar elements. However,
some recently obtained benchmark solutions, see the references at the end of
Section 4, show that the internal variable model can be successfully applied
to the vibration analysis of mezostructured plates and shells.

The paper was supported by the State Committee for Scientific Research, Warsaw
under grant No. 7 TO7A 017 11.
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O dynamice powlok z wewnetrzng struktura

Streszczenie

W pracy przedstawiono metode prowadzacg od 2D-modelu cienkich powlok o lo-
kalnie periodycznej strukturze do uérednionych réwnan o wolno zmiennych wspdl-
czynnikach. Otrzymane réwnania opisuja wplyw wielkodci mikrostruktury na reakcje
powloki i s dogodne do zastosowania w analizie zagadnien dynamicznych.
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