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This paper presents a potential function method for solving three-
dimensional interface inclusion problem of a two-layered periodic space,
treated within the framework of linear elasticity with microlocal parame-
ters. By constructing the appropriate harmonic functions, the resulting
boundary-value problems involving a thin rigid interface inclusion are
reduced to classical mixed problems of potential theory. Further, an in-
tegral equation formulation for an arbitrary shaped inclusion is given to
be used in numerical techniques.
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1. Introduction

In the present contribution a continuation of earlier studies (see Yevtu-
shenko et al., 1995; Kaczynski and Matysiak, 1997) into interface crack and
thin rigid inclusion in periodic two-layered elastic composites is given. Effec-
tive results have been obtained using the method of microlocal homogenization
presented by Wozniak (1987) and Matysiak and Wozniak (1988).

We aim at solving and carrying out the analysis of three-dimensional pro-
blems of a rigid lamellate interface inclusion embedded in a periodic two-
layered unbounded composite.

In Section 2 the governing equations of homogenized model of the linear
elasticity with microlocal parameters are briefly reviewed. The general re-
presentations of the displacement and stress distribution are also given. In
Section 3, the problem of a sheet-like rigid inclusion lying on one of the inter-
faces of two-layered laminated space is posed and solved by using a method
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of potential functions similar in the form to that used in formulating the ana-
logous crack problem. Next, the problem in terms of integral equations for an
arbitrary shaped inclusion is given in Section 4.

The literature on the subject related to the problems under study but con-
cerned with the inclusions in homogeneous solids is extensive (see, for example,
Collins, 1962; Keer, 1965; Kassir and Sih, 1968; Selvadurai, 1980; Mura, 1982;
Silovanyuk, 1984; Panasyuk et al., 1986, which are pertinent to the present
study, and references therein).

2. Governing equations

rigid sheelt-like
inclusion

e two-layered

e — i SRR e

periodic space

Fig. 1. Two-layered periodic space with an interface rigid plane inclusion

Consider a composite consisting of an infinite number of periodically repe-
ating isotropic elastic layers of two different types, with thicknesses &, = 1,2
(6 = §)+4,) and characterized by the Lamé constants A;, y; as shown in Fig.1;
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herein, all the quantities (material constants, stresses, etc.) pertaining to the
layers denoted by 1 and 2 will be associated with the index [ or () taking
the values 1 and 2, respectively.

Referring to the Cartesian coordinate system (z,z9, z3) with the zj3-axis
normal to the layering, denote at the point & = (z),z9,z3) the displacement
vector by u = [u;,u9,us] and the stresses by o1, 012, 022, 013, 023, 033,

We take into consideration the specific homogenization procedure called
microlocal modelling (cf Wozniak, 1987, Matysiak and Wozniak, 1988) leading
to certain macro-homogeneous model of the treated body with the following
approximations’

u; = w; ugla = Wi q ugg Z w3+ h(l)di

Ug[); = Nl(wa,ﬁ + ’Ulﬂ,a) + éaﬂ/\l(wz’,i + h(l)dg) (2.1)
Ugg = p(we3 + wse + h(l)da)
o 2= (N + 2u) (wa 3 + B0ds) + Ay

Here 445 is the Kronecker delta and h®) is the derivative of the assumed
é-periodic, sectionally linear shape function, defined as

RO 1 if =1 (z belongs to 1st layer)
] —n/(L—=n) if =2 (z belongs to 2nd layer)

(2.2)
=%

Moreover, w; and d; are unknown functions interpreted as the macrodispla-

cements and microlocal parameters, respectively.

The asymptotic approach to the modelling of the periodic laminated space
under consideration leads to the following governing equations and constitutive
relations of the homogenized model, given (after eliminating microlocal para-
meters and in the absence of body forces) in terms of the macrodisplacements
w; as follows (see Kaczyniski, 1993)

1 1
5(611 + Cl2)w7,7a + 5(611 - Cl?)wa,'y'y + C44Wq 33 + (013 + 644)“13,30 =0
(2.3)

(€13 + €44) Wy y3 + Ca4Ww3 4y + C33w333 =0

'The indices 14,5 run over 1,2,3 and are related to the Cartesian coordinates
while the indices «, 3,7 run over 1,2. Summation convention holds unless orthewise
stated.
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é;); cas(Wa,3 + w3 o) 0;(;[3) = C13Wq,y + C33W3,3
EQ) m(wl 2 + wWo 1) gll) = d(l)'wl,l + d(lg)'wg,g + d(ll:;)w;;,;; (2.4)
o8 = dQwi 1 + dQws s + dws 5

Positive coefficients appearing in the above equations, describing the mate-
rial and geometric properties of the composite constituents, are given in the
Appendix. It should be emphasized that the condition of perfect bonding be-
tween the layers is satisfied (the components o3,, 033 do not depend on |
implying the continuity of the stress vector at the interfaces). Finally observe,
that setting u; = po = 4, Ay = Ay = A we obtain ¢ = ¢33 = A + 2p,
Cclg = €13 = A, ¢44 = p, passing directly to the well-known equations of
elasticity for a homogeneous isotropic body (cf Kassir and Sih, 1975).

According to the results obtained by Kaczyniski (1993), the general solution
of the governing equations (2.3) may be expressed in terms of three harmonic
potentials. However, the form of the representation depends on the material
constants of the sublayers and will be given below in two cases?.

Case 1: p) # po
Here, the displacement field is expressed by the potentials denoted by
@i(.’l’[,l’Q,zl'), 2 = 1;x3, such that

8° 8° 0?
V2% =— 4+ =+ —\3; =0 Vie{l1,2,3
’ (612{ dx3 8z22) ied J
as follows
wy = (P + §2),1 — P32 wy = (P1 + @2),2 + P31

o~ o~

3}
w3 = mltlg(:L + moto 852
1 2

From the stress-displacement relations (2.4), the stresses o¢3; are expressed as

_ 9¢1 02 RS
031 = €44 [(1+m1)t16—+(1+ ma)ty 25, 2] _t38z36z2
_ 99, 0P2 0*p3
039 = C44 [(1 + ml)tl 92, (1 + mg)tg Ep 2} ) B2301) (2.6)
_ g1 5% @y
033—044[(1+m1) g 2 +(1+ ) 6z§ ]

2The constants t;, m, appearing in the representations are defined in the
Appendix.
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For the purpose of further discussion the remaining stresses afxlz, are not of

immediate interest.

Case 2: p) = po = p, AL # Ao
The governing equations (2.3) take the simple form

(B+ u)w,-,,-]- + pw; 5 =0 (2.7)
where

B AtAg + 2p[nA; + (1 —n)Ag]
(L= + 1o+ 2p

and the displacement representation is given now in terms of the three space
harmonic functions ¢;{(z,z2,z3) as

w1 = (@1 + Z302)1 — P32 wy = (@1 + Z302) 2 + @31 2.8)
B+ 3p
Wy = @13+ 23923 — B+ ©2
The formulae for the corresponding stresses are
I
031 = 2 [901,3 “ BT u902 + 1’3902,3] | T M3
7
032 = 2 [901,3 " B4 u<,02 + $3<P2,3] , T HPsLs (2.9)
_ 9 B+2pu
033 = 24/4|P1,33 — B+ 4 ¥2,3 + T3¢2.33

Note that putting in this case A} = Ay = A (then B = A) we pass to the case
of homogeneous isotropic body with the Lamé constants A, p.

3. Formulation of rigid plane inclusion problem and the method
of solution

Consider a two-layered periodic space with a rigid sheet-like inclusion oc-
cupying the region S (of an arbitrary shape with a smooth boundary) in the
z1z9-plane being one of the interfaces of the materials.

Within the framework of the homogenized model presented in Section 2
and applying the principle of superposition to satisfy the global mechanical
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boundary condition ensuring that the faces of inclusion are free from displace-
ments, the problem is separated into two parts: the first one representing the
multilayered space in the absence of the inclusion with the applied external
loads and the second, corrective part in which the negative of the displace-
ments (denoted by wo;i(z1,z2)) generated at the prospective inclusion faces in
the first part are prescribed to the sites of the inclusion. Next, the attention is
focused at the non-trivial perturbed problem, solution to which tends to zero
at infinity and satisfies the necessary boundary condition

w; = —wo; Vie {1,2,3} V(z,z9) €S (3.1)

assuming that the functions wy;(z(,z92) (including rigid body motion) are
known from the solution to the first problem (i.e. without the inclusion).

Proceeding as in the homogeneous case considered by Silovanyuk (1984),
we shall seek a solution in a potential form in the half-space z3 > 0 taking into
account the symmetry of stress state by summing solutions to two problems
(denoted by (A) and (B)) with the following boundary conditions

wy =ws =0 V(z),z9) € Z

(A) w3 = —wWp3 V(zi,22) €S (3.2)
o33 =0 V(.’L’l,illg)EZ—S
wy =0 V(:El,:lig) € Z

(B) w; = —wor wy=-wez V(z1,32) €S (3.3)
031 =039 =10 V(:El,:lig)EZ-'S

where Z denotes the entire z;zs-plane.

We now proceed to reduction of the above-mentioned problems to the
mixed boundary-value problems of potential theory related to a half-space. It
will be done by constructing the potential functions well suited to the boundary
conditions defined by Eqgs (3.2) and (3.3).

Case 1, Problem (A)
The potentials representing the displacements (see Eqs (2.5)) are expressed

~

by in terms of harmonic function f(z,,z2,z3) as follows

@1($1,l‘2a21) = —f($1a$2,21)
Pa(z1, 22, 22) = f(z1,72,22) (3.4)
p3=0

Note that on the boundary z3 = 0 (then z; = 2z, = 0) this suitable repre-
sentation automatically satisfies the condition w; = wy = 0 appearing in Eqgs
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(3.2). In addition, in view of Egs (2.6), the quantities of interest are

wy(@1,22,07) = (maty = mity) [Fa(en, z2,20)] ),

(3.5)

a33(21,22,0%) = caa(ma — ml)[)?,ss(ﬂil,ﬂimfcs)]
:113:0+

Thus, the inclusion problem described by Egs (3.2) is reduced to the classi-

cal mixed problem in the potential theory (cf Sneddon, 1966) of finding the

harmonic function f in the half-space z3 > 0 with the boundary conditions

- 1

[f,g,(xl,arzg,ar:g,)]m:o+ = —mwm(ﬂ!l,f@) Y(zi,29) €5
(3.6)

[ﬁ33($1,$2,$3)]$3:0+ =0 Y(zy,20) €Z =S

Case 2, Problem (A)

An appropriate displacement representation in terms of a single harmonic
function f(z,,z9,23), which frees the plane z3 = 0 of the displacement w,
wy is obtained by taking in the general solution (2.8)

o1 =93=0 o= f3 (3.7)

On the plane z3 = 0 the corresponding displacement and stress components

become
_B+3u B+ 2p

B+p B+u
Application of the conditions (3.2) yields a similar problem to that appearing
in Egs (3.6)

w3 = f3 033 = —24 f.33 (3.8)

B+
[f,3($1,$2,$3)]$3:0+ = B+3;Lw03($1,$2) Y(z1,22) € S )
3.9
I:f,33($17$21$3):|x3=0+ =0 V(l’l,.’EQ) eZ-S

Case 1, Problem (B)

The procedure for satisfying the conditions (3.3) is more sophisticated
than that used in the problem (A) and follows similarly to that used in the
skew-symmetrical crack problem (cf Kassir and Sih, 1968; Kaczynski, 1993).



88 A KACZYNSKI

Let us introduce and define the six harmonic functions G;(z,zs,z3),
Hi(l‘l,l‘Q,fL‘;;), 9 = 1,2,3

-~ -~

Gi(z1, T2, 2i) = G(Z1, T2, %) Hi(z1, 29, 2:) = H(z1, %2, %)
Fo(z1,20,2) = aa,l + ﬁa,Z a=1,2 (3.10)
F3($1,$2723)=§3,2—ﬁ3,1 9=Gg3 ﬁ:HQ

Their relationships to @; (see Eqgs (2.5)) are

~ Mmots ~ m)t) ~
=2t p -1 g - F
e mato — mt) ! ¥2 Moty — Mt 2 ¥3 3
(3.11)
The quantities that need to be specified are found in the limit as z3 — 07 to
reduce to

wy(z1,79,0") = [?,3] - % = Ga3 +0(G22 ~ h12)
wa(z),z9,0) = [E,s]zszm %::7—2 =has+ 0k~ Gu2) (3.12)
ws(zy,z9,0") =
in which t
t — t
2ﬁ:c44% p=1- % (3.13)

Thus, the conditions (3.3) involve the reduction of the iuclusion problem to
that of finding the two harmonic functions g, & which satisfy the mixed
conditions on the z;zs-plane

33 = —wn h3 = —wp Y(z1,29) € S

(3.14)
G334+ 0(Ga2 — ha) =0
2L N 2 V(z,z2) € Z -5
has+U(hi—gu2) =0 (21, 22)

This form is dual to the well-known one obtained for the shear loading crack
problem (cf Kassir and Sih, 1975).

Case 2, Problem (B)
Following the some procedure as in the previous case, introduce two har-
monic functions G(z\,zy,3), H(z1,22,23) and denote ¢ = G 3, H = H3.
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The potentials appearing in the displacement equations (2.8) are selected ac-
cording to

or=—(G 1+ Hp) w3 =Gy —H)
(3.15)
B+yu
= — Gus+H
02 B+3#( 13 23)

It can be shown then that the conditions (3.3) now imply the problem of
finding the harmonic potentials ¢ and A taking a similar form as that stated
in Eqs (3.14)

g3 = —woi h3 = —wp V(z1,22) €S
(3.16)
g33+v(go —hi2)=0
: 22 = h, V(z1,29) € Z — S
has+v(hin —ga2) =0 (@1,22)
with
v = _Brw
2(B + 2p)

4. Integral equations

In the previous section, the boundary-value problems of interface inclusions
have been written in terms of harmonic potentials satisfying the mixed boun-
dary conditions in the half-space with the inclusion region S of separation.
The forms of these conditions are proved to be dual to those of well-known
from the corresponding crack problems (cf Kassir and Sih, 1975) and are re-
lated to the typical punch problems for a semi-infinite elastic solid (see, for
example, Galin, 1980; Gladwell, 1980). Explicit solutions to the resulting po-
tential problems are possible to obtain only for circular and elliptical shapes
of the surface S (see the general survey presented by Sneddon (1966) and the
results achieved by Kassir and Sih (1968), (1975)).

This section will be devoted to formulation of the problems for an arbitrary
shaped thin-sheet rigid inclusion in terms of integral equations by using the
same line of reasoning as in Panasyuk et al. (1986) for the corresponding
problems in the homogeneous bodies.

The starting point of the solution consists in two-dimensional Fourier in-
tegral representations of harmonic potentials f, g, h (Case 1) and f, g, h
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(Case 2) written in the following general form

J(@) | exp|~z\ 6] + € +i(méy + ma6a)] | Ar(61:8) |
g(a:) _ // xp x3 1 622-*_6 T1G1 262 ] é (61,62) dfldfg
h(z) J 2 | An(€1,6) |

(4.1)

[ f(=z) | // exp —I3 §1 £3 +i(z, &) +12§2)] [ ifggl’?i _ de, e
= g(€1,82 1082

€+ | A(61,60) |

where Ef, Eg, Eh and Ajf, Ay, Ay are unknown functions to be determined.
Putting (see Eqs (3.5)2, (3.6)2 and (3.8)2, (3.9)2)

c m m)A\f(£7£2) xoli(z .
/ / [ T S e | ettt + ) deat

(4.2)

_ |} oss(zi,22)  V(z1,72) €S
0 V(:L'l,:l;Q)EZ—S

and upon application of the inverse Fourier transform theorem, we find

Ap(€1,8) | _ [caa(ma —my)] ™! _
Ag(61,62) —(B+ 1)/ [2(B + 2p)]
(4.3)

+00
1 .
a2 // o33(n1, m2) exp[—1(€1m1 + E2m2)] ddne

In a similar way, using the conditions (3.14)2 and (3.16), yields the following
system

_ 23 v€1€o R
él +£2 §1 +£% l ég(élaé?) } —
23 v Ap(&1,62)
rel 818
(4.4)

o31(n1,M2) .
- + 7 dmd
87r m // l: o32(n1,m2) :l exp[—i(mé&1 + n262)] dnidne



RIGID SHEET-LIKE INTERFACE INCLUSION... 91

which has the solution

~\ A 962 1
(1-9)Ay(e1, &) = (1- W)M

// o31(n1,m2) exp[—i(&xm + Eamp)] dmudny +
5

v€1&o
51 + €3

// o32(n1,m2) exp[—i(&1m1 + &2n2)] dmydno

(4.5)
6é 1
GG ELT

// o31(m,m2) exp[—i(€1m1 + Eama)] dnidns +
5

(1 - D)An(61, &) =

2
+<1 élV?é? - 2A // o32(m,m2) exp|—1(&1my + Eamp)] dnidne

The same system and its solution is obtained for A4(¢1,&2), An(&1,€2)
with the evident change p, ¥ into p, v, respectively.

Substituting Eqs (4.3) and (4.5) into Eqs (4.1) and making use of some
standard integrals from Gradsteyn and Ryzhik (1965), we find that the rema-
ining conditions (3.6);, (3.9); and (3.14);, (3.16), lead to the following integral
equations for the stresses o3;(x),z2) in S

27r044(m2 - ml)
// 033(7717772 ) dnidne = wos (21, 72) m%tg —mt . Casel
fl —m)? + (22 —m2)? ’ mBBT;ﬁ@ Case 2
I
//{ o31(n1,7m2) dmidne [1 3 P(z2 = m2)* ] +
3 VgL —m)? + (22 —m2)? (1 —m)? + (22 — m2)?

vosa(m,m2)(z1 — m)(z2 — 72)
dnidne = 4mu(l — z,
VIlz —m)? + (z2 - 7)2)"’T3 } mdny = 4l = Py (o1, z2)

// 032 771,712) dmdnz [1 B o(zy —m)* ] +
vz - (z2 —m2)? (zy —m)? + (zg — m)?

Oyt

(4.6)

(in Case 2 the replacement 7 — u, ¥ — v has to be made).
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Once the stresses o3;(z),22) acting on the plane S of the inclusion are
known from the solution of the above integral equations, the stresses and
displacements at any point of the composite can be found from the harmonic
potentials f, g, R (Case 1) and f, g, h (Case 2), determined from Eqgs (4.1)
by virtue of (4.3) and (4.5).

It is worth noting that the form of Eqs (4.6) is similar to that given for the
corresponding homogeneous isotropic problem. Moreover, if we assume that
the body under consideration is homogeneous, then in this case the derived
integral equations are in agreement with those obtained by Silovanyuk (1984).

Analytical solutions of integral equations obtained for an inclusion of ar-
bitrary shape appear to be beyond the capabilities of present mathematical
techniques. For this reason, numerical methods must be used to obtain spe-
cific results (see, for instance, the treatment presented by Goldstein (1978)).
Special attention is given to the investigation of stress intensification in the
close neighborhood of the inclusion border ( see the results closely related to
the corresponding crack problems, obtained by Kassir and Sih (1968)).

A. Appendix

1. Denoting by 17 =0,/6, b= A+ 2v; ({ =1,2), b= (1 —n)by + nba, the
positive coefficients in the governing equations (2.3) and (2.4) are given by the
following formulae

_ b (L =m)Aaby + b
€33 = T Cly3 = 5
B An(l — n)(p1 — po) (AL — A2 + p1 — p2)
€1 = C33 + b
_ Ade + 2mpe + (1= )p]inds + (1 - m) A
2 b
Cyg = Kip2 d(l) — 4/.1[(Al + I‘Ll) + /\1(313
(1 —n)p1 + npa H by
PO 2+ Aers FONS A1€33
=" 13 =
by b

2. The constants appearing in Egs (2.5) and (2.6) are given as follows

1 1
tl = §(t+ - t_) tQ = §(t+ + t_)
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1- gl
t3 — \/T],LLl +( 77),”2 My = Cl1ly C44 V(l € {1,2}
C44 €13 + Cq4
provided
Ay +2¢c44)A
ti:\/(_i_m_? Ay = e + e
C33C44

Note that tito = \/611/633 , MiMmo = 1.
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Sztywna cienka inkluzja miedzywarstwowa w nieskonczonym,
periodycznie dwuwarstwowym kompozycie

Streszczenie

W niniejszej pracy przedstawia sie metode potencjaléw zastosowans do rozwia-
zywania tréjwymiarowych zagadnien inkluzji miedzywarstwowej w periodycznie dwu-
warstwowe]j przestrzeni, w ramach liniowej teorii sprezystoéci z parametrami mikro-
lokalnymi. Dobierajgc odpowiednie funkcje harmoniczne, zagadnienia brzegowe sta-
wiane dla cienkiej (lamelkowej) inkluzji sprowadzajy sie do klasycznych mieszanych
zagadunien teorii potencjatu. Dia inkluzji o dowolnym ksztalcie podaje sie nastepnie
sformulowanie w postaci réwnan catkowych, mozliwe do wykorzystania w obliczeniach
numerycznych.
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