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The antiplane problem of elasticity theory for a layered anisotropic me-
dium containing the plane ribbon inhomogeneities is solved using the
jump function method. The external load is determined by the boundary
conditions, concentrated forces and screw dislocations inside layers. The
inclusions are modelled by jumps of the stress and displacement vectors
on the middle surfaces. Using the Fourier integral transform we obtain
the relation between the stress tensor and displacement vector compo-
nents and the external load and unknown functions of jumps. Taking
into account the conditions interaction of between thin inclusion and
anisotropic environment, the problem is reduced to a system of singular
integral equations in the functions of jumps. In a general case the last is
solved by means the collocation method. Some example is considered to
illustrate the method.
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1. Introduction

The structure of real materials is far from being ideal and the crystal bo-
dies have frequently occuring flaws, i.e. the inclusions. Thin inhomogeneities
can play a role of the composite reinforcement, e.g., adhesive interlayers during
filling in the gaps to increase the machine or structure life (¢f Klymenko and

!The paper was presented at the Second Polish-Ukrainian Conference ” Current Problems
of Mechanics of Nonhomogeneous Media”, Warsaw 1997
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Liubchak, 1987). A thin interlayer can also describe accurately the imperfec-
tion of a real contact of bodies, where initiates the plastic strain and fracture
due to the stress concentration caused by thin flaws.

The work of Frenchko and Tkach (1978) was the first in investigation into
the antiplane problem of elasticity theory for a medium with inclusions; namely
for the problem of inclusion in terms of the simplified Winkler model along the
circular arc. There was no stress jump. Somewhat earlier (cf Berezhnytski et
al., 1977) the generalized stress intensity factors (GSIF) were introduced and
one-term asymptotic relations between stresses and displacements near a point
elastic inclusion were constructed. The possibility of a synchronous jump of
stresses and displacements was demonstrated by Sulym (1981). The solution
was found on the basis of the jump function method (JFM), the conditions
interaction between a thin inclusion and isotropic matrix were constructed. At
the same time Opanasovych and Drahan (1981) obtained the similar results
and later Opanasovych and Drahan (1984) basing on the method of linear
potential development, as well. General results for a thin elastic inclusion on
the interface of two anisotropic materials were obtained basing on the JFM
(cf Sulym, 1987).

This paper applies the JFM and Fourier integral transform method to so-
Iution the antiplane problem for a packege of anisotropic layers, containing the
plane ribbon inhomogeneities. The concentrated forces and screw dislocations
inside the layers form the external load.

2. Problem statement

Consider the antiplane problem for the anisotropic layers S;
(j = —M,..., L) with the height H; and elastic constants aim (k,m =4,5).
The outer layers can be of a finite or infinitely large height (Fig.1). Let the axis
Oz of the main coordinate system 2Oy be directed along the line between
So and S_l.

The thin elastic inhomogeneities are situated inside the layers S; along
the segments L. that are inclined at the angles «; to the material interfaces
y=4d; (j=-M+1,...,L). There may be some other inclusions in the layer
or none of them. The inclusions may also be located in the interphase. In the
center O; of the segment L;- we locate the origin of two local coordinate
systems z;0;y; and s;0;n; (O;s;{|L%, Ojz;{|Ox), that are related by the
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Fig. 1.
equations
z =40y = 25 + 295 2z = x5 +1y; s5+in; = z;e7'%  (2.1)

The coordinates of the points O; in the inain coordinate systein zQy are
denoted as zp;.

The ideal mnechanical contact conditions are satisfied along the lines y = d;
between the layers S; and S;_,

j G~1 8'11)] 61[]]—1
o), =0}, - =
' oz oz

(2.2)
Yy =d; —00 <z < +00 j=—-M+1,...,L

On the boundary of the package the stresses or displacements are defined

dw’ ()

szz(z) = f*(z) "oz =g*(x) y=dry
(2.3)
_ _ owM(z)
Usz(Z) =f (l) O =g (2‘) y=d-m
As |z| — oo the stresses, which are equal to 07 =7, (j = —~M,..., L), are

given for each layer. The external load is described also by the coucetrated
forces (7 and screw dislocations with the Burgers vectors & inside the layers
S; at the polnts z.; = @ + 1yxy-

4 — Mechanika Teoretyczna
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3. Jump function method

The concept of the method is based on the following two main postulates:
e Conjugation principle of different dimension continua,

e Interaction conditions between thin inclusion and environment relate the
stresses and displacements at the opposite matrix surfaces by the two
functional relations (for every inclusion)

0y OwIt
:t .
WZJ (037,jz1 TS]) == 0 Sj S L; 1 = 1,2 (3])
which depend on the type of inclusion material (liquid, elastic, elastico-
plastic, etc.), its mechanical properties and thickness.

According to the conjugation principle the effect of thin inclusion on the
stress-strain state of the body is reduced to construction of a stress jump
function and derivative of displacement jump function on L}

. ‘ . o . ‘ .
0y — 03t = f(s5) gj[w] —wt| = f{(s;) sj €Ly (3.2)

Moreover, fg(sj) = fg(sj) = 0 if s; ¢ L;. Generally speaking, the jump
functions are the unknown ones.

For a longitudinal shear in the direction of Oz axis for the anisotropic
medium the relations of Hooke’s law and equilibrium equations are of the
form (cf Lechnytski, 1977)

Ow dw

@ = 0440y, + Q450 z; 9z = 0450yz + A550z; (33)

00y,  Ooy,

xE Ly TTYE 3.4
or dy 0 (34)

The difference between the standard notation z for the complex variable and
the coordinate is evident. If we introduce the stress function F', according to

the definition
oF oF
Ozz = (9—:(/ Oyz = _E (35)

then Eq (3.4) is satisfied identically and Eq (3.3) gives the differential equation

o*F o*F O*F
— —2 =0 3.6
ass5 52 a45 320y + aqq (3.6)

Oz?
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The stress function F7 in the layer S; can be the presented in the form
of superposition of the homogeneous solution F%, induced by the external
loading without inclusions, and the disturbed solution Fi. In turn, FJ is the
sum of the principal disturbed solutions F% for an infinite plane with the
same mechanical properties and inclusions as for S; (if there are no inclusions
in Sj, then F% = 0) and the disturbed corrective solutlon FY9 which should
involve the effect of neighbouring layers and should not initiate the stress and
displacement jumps

Fi(z) = FY(2) + FI(2) = FY(2) + FY(2) + FY(z)  z€S;  (3.9)

The relation between the stresses at infinity is obtained from the condition
for rotation absence at infinity of the interfaces

o . . 5 . .
—|w? — wy—l] = _[MOJ — %Y =

oz |z]—00 oz |z| —oc0

_ (i 0j _ 3-L 0,j-1 - 0,1 1 _

= (a450 + a550 a45 Oys a55 Oy Blson (3.8)

=aj T+ alTj — aflng aZr 17']_1 =0
The homogeneous solution corresponds to the external loading inside each
layer and satisfies the boundary conditions (2.3) and the ideal mechanical con-
tact conditions (2.2). This solution does not induce the stress and displacement
jumps. Therefore, the disturbed solution should satisfy the zero boundary con-
ditions (one of the two equations on each boundary)

5L 5L
= a Ly 0y, =0
Ove (3.9)
owl  oa'  owll
= + =0 y=dr41

oz oz oz

—M_’\O M+0_ MZO

Yz
(3.10)
ouM _ oav M oah M

oz oz oz

the ideal mechanical contact conditions on the material interfaces

Q)

~j ~05 1] ~j—1 — ~0,7-1 ~1,5—-1
Oy =0y, Y0, =0y, =0, +0,;

ow? _ ow%  owt  owi~! _ gp%t gttt
= + = = +

oz = 9z " oe 6z - o Bz (3.11)

Yy =d; —00 <z <400 j=-M+1,...,L
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and should induce the stress jump and jump of the displacement derivative
on L_'j
3]

G ~ Ol = fils) 5o [T - @) = fils;)  sj €Ly (312)
j
Consider the interphase inclusion on the interface of two half-planes 5;
and S;_i. For this end we settle a definite value of 7 and consider the
case, when the heights of the corresponding layers S;, Sj_1 are unlimited
(Hj,Hjy = o0, L = 3, M =1 - j). The thin inclusion is characterized by
the jumps (3.2), where the index (-)* concerns S; and (-)~ concerns S;_;

ow-  Owt ;
o=l e — = fl(; 3.13
Yjz f-J (‘I’]) 81] 8.’1,] ff) ('LJ) ( )
The solution of Eq (3.6) in the Fourier integral transform space is of the
form

FRU (g, ) = Ab@@)eMW 4 AB()eMy k=4 1,5 (3.14)
where
A= oFl¢) —ipRe A = —aFl¢| - Bk
1 . ak
AL R

and A’;(ﬁ) (9 = 1,2) are arbitrary functions.
Since the stress function (3.14) has to be limited as y; — o0, therefore

: Ab(g)eMhw for y; >0 ,
FU(E,y) = ?Eﬁ) Ny, y{ (3.15)
Al (&)eM for y; <0

In the transform space the following relation is valid

8FF éay') . g
of, = ) — i€ 1) (3.16)
Yj
aud Eqgs (3.13) are reduced to the form
- ; 13
Tz — Oyt = f3 (6) )
—1 j iF
afm O’ z+ a5 { - ajsaé;j a 5(T£J+ 276
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Having substituted Eqs (3.14),(3.15) into Eq (3.17), we obtain a systein of
linear algebraic equations (SLAE) for A’;(é), the solution of which is

Vsigne f1(€) | Vadsol 7€)
; i

A7) =
(3.18)
Visigne f17(6)  viads oI A" (©)
£ i€

Ay(€) =

where v/ = (al5'a?™" + alsad) .
On the basis of Egs (3.15), (3.16), (3.18), the stress state for a piecewise-
homogeneous anisotropic plane with the interphasic inclusion is obtained

J=b_q—1

oot P it ]
' jzj Pthted) + aititeD) €8 (3.19)
o - —[fuwﬂ
+ [!7 AT + 0 () ce S

where

. ]
L
J

k= pF +i(ab +1) gk =Bk +i(c* ~1)
z’f::c]-+ﬁkyj+iyjak 2k =7 k=5-1,4

If we assume that materials of the half-plane are identical ((L{:m = (Li:nl).,
then from Eq (3.19) we obtain the stress state of a homogeneous plane

5, +i63, = 14| -ghth(z)) + gJth(eD)] + —— [Fth(:) + i (=) (3.20)

4a55a

For the inclusion inside a homogeneous plate, that is turned through an
angle o relative to the axis O;z;, in the coordinate system s,0;n; Eq
(3.20) for the stresses will remain, but one needs only to replace «; and

y; with s; and nj, and the constants ay,., of, 07, ¢/, g with akm



54 G.SUuLYM, S.SHEVCHUK

adiods — (0l /agh, 07 = as/as, gh = BT +i(e? - 1),
g;,j = ﬂ'j +i(a? + 1), respectively. The constants a;cjm characterize elastic
properties of the material in the coordinate system s;O;n; and their relation
to al_ is given by Lechnytski (1977). Using the equation

km

Oyz +104,; = €% (0 ; +105,5) (3.21)

the formulae for stresses in the homogeneous half-plane with the inclusion,
which is turned through an angle «;, is of the form

e—iay —iay

~0j s~0j ' § 7 ie
ijz +10—sz - 4 [ g 22) +gp ( )] + 4a5'75a

|[758() + g785(2D)]

(3.22)
Eq (3.22) is the principal disturbed solution for the layer S;.
The corrective disturbed solution F'Y is of the form

+00
P(e,g) = o [ [M© + ajre]es i

+o0
5oy = o [ [AONN + M ]e e dg (3.28)
s

P = 3 [ [B©N + Ao ee e ag

Ag({) are the unknown functions. Moreover, if the height H; of some layer is

infinite, then one of these functions is zero: AL(¢) =0 for Sp; A;ME) =0
for S_ps

Having substituted Eqs (3.22), (3.23) and (2.1) into the conditions (3.9) +
(3.11), we obtain the SLAE for A}(¢)

L 2 6

Y (X040 -3 [aenfwa) =0 k=-M,...1)
J

=M q:l TZSL;,
(3.24)
the solution of which is

Z Z/g €00 dt  q=1,2 j=-M,. ... (3.25)

=—-Mr=5
p L;,
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The functions ck] (€), di; (&, 1), g »(¢,t) depend on the elastic constants and
the package geometry. The values obtamed of A{I(g) (Eq (3.25)) are substituted
into Eq (3.23) and the corrective stresses are determined in the form

54 (2) + 164 (2 Z Z/Rﬂr(z 1) f2(t) d

= Mr= 5LI
(3.26)

RJT(z t) = 2 / glp 6 t) 4+ )\])e ly +9%p £, t) +)\g)e/\§y]e—i§z d¢

Eqgs (3.7), (3.22) and (3.26) give the complete solution for the layer S;. Using
Eqgs (2.1) and (3.21), it can be rewritten in the local coordinate system s;0;7;
and according to the Sochotski-Plemely formulae we can obtain the solution
to the boundary value problem on inclusion middle surface

U%J.i (s;) + wji(s]) = UOJi + woji + 14[21a]t7(3j) +2(i87 - l)fg(sj')] +
1 riyo g 14
4%]50,]{ (1~ i69)(s) 4(s7)]
+e\aJ Z Z/RJT sje el +Zo_7,t)fp(t) dt

p=—Mr= 5Lz
(3.27)
Ouw*(s;)
Js;
The substitution of Egs (3.27) into the interaction conditions (3.1) yields
a system of singular integral equations (SSIE) for the jump functions f7(t)
(r=5,6;j =—M,...,L). By solving it, we determine finally the stress and
displacement field at the arbitrary point of the layers package.
Near the inclusion ends in the homogeneous anisotropic material S; the
stresses will be of a root singularity (cf Muskhelishvily, 1962) and are deter-
mined by the formulae (cf Sulym, 1987)

{ayz—agz}: K3, [ 1 ]—1__ K3y [_131]_1_+0(1) (3.28)

i+
= a‘4J UJ (S]) + G‘SSU.S z('s])

1
Ozz =0 V2rr | =8 | Jwi 277 R
where
1
} . a

wy = cosf + s'sinf st =gl +is) sh=%4
ass

Lrl I — 1 y2 1 .1

32 - Tt = 1/(a45)* — agqa55

Q55
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r and 6 are the polar coordinates, Kj; and Kj9 are the generalized stress
intensity factors determined by the formulae (r =5, 6)

r—ta

+
. . D .
Ky — Ky = FV2 (p;f +1ﬁ) pE = lim ( v F a[fr(:y)) (3.29)
Give the jump functions in the form

Fi(t) = fo(t) !=q fl=v
20j = Zxj 7=5,6 j=-M,... L (3:30)

where 4(t) is the Dirac delta (¢f Gelphand and Shilov, 1959). The substitu-
tion of Eq (3.30) into the disturbed solution yields the homogeneous solution
for the resultant of the concentrated forces 7 and screw dislocations with
the Burgers vectors & located at the points z.; of the layers S;. There-
fore Egs (3.22) and (3.26), taking into account Eq (3.30), give the principal
homogeneous and corrective horogeneous solutions, respectively

o0 it = L (T Gy W (T G
yz oAr N\, dral ol N2, 2
z = (@ = 2a) + Py = ye) + i (y = ) Ay =71, (3.31)

L 6
op +iog = Y D R (2,0)f7
=—Mr=5

When the inclusion lies on the interface of two layers S; and S;_i, then
the procedure of solution to the problem is solved. The only singularity is
that the principal disturbed solution for such an inclusion is defined by Eq
(3.19) for both layers S; and S;_;. The inclusions located inside the Jayers
mentioned above contribute independently to the complete solution according
to the general rule.

4. Example

Consider a piecewise-homogeneous anisotropic plane that consists of two
half-planes S; (j = —1,0; M = 1; L = 0). We assume that inside Sy along
the segment Lj parallel to the interface y = 0 of the half-planes there is a
thin elastic inclusion; at the point 2z, the concentrated force Q0 and screw
dislocatoin with the Burgers vector 5 act. The coordinates of center of the
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inclusion Lj in the main coordinate system zQy are zoy = iH. The inclusion
has the lenght 2a and thickness 2.

The interaction conditions (3.1) for an elastic anisotropic inclusion are (cf
Sulyin, 1981, 1987)

o7+ (z;) + 07 (a5) = (2N + /ff ) dt)L 2 € l—ayq] j=0

. . . A o (4.1)
where f7(t) = [f(t), fi(t)] and N’ = [N} Nj] is the vector of a priori
constants

0

: : a
N]:UOJ. —(L;——L;—
= o) e )

3 0 n
; minags, 551 o 04 0 04
N = =0 [0, 05 (o) 1 oo (o))

@44

a'w](z)}

o) = |of,.(2) =,

L[ —aip frinp?
L = n __1 . in
a4 15

The principal disturbed solution for the half-plane Sy (Eq (3.22) at j = 0)
along the line y = 0 is as follows

o 0,0

~ +o0
RTINSy (TRF

-0

q(é,x):%e—i&e—k‘f”’(/ fO(e)eiet dt + ““g“ﬁ / Rt d)  (42)
T

~0,0
g ’
yz y=

r(€,z) = —e 7 _’\OH( lag aYsign(é /f0 el gt +/f elét dt)

0 0

47r

The corrective disturbed solutions in the half-planes S_| and Sy
are obtained from Eq (3.23) at 7 = -1,0, respectively, considering that

AV = AN =0
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. ‘oo
50(,) = o [ EAB©MeTE gt
—o0

1
dy.—i
a10,y) = 5 [ AN e

. too
G ) = 5 [ EATH O e de
—o0

1 7
~1.— — - =l
‘T:iiz Yz, y) = . / ATHEA] teh veTitT g¢

The displacement derivatives 8w ~'/8z and 0w'°/dz are calculated by
Hooke’s law (3.3).

If we substitute Eqgs (4.2), (4.3) into Eq (3.11) at L =0, M = 1, we obtain
the SLAE

9 i{z
AT - A3(e) = TG
(4.4)
9 NplfT
agy @~ ATH(E) — agsa®AY(E) = —_ﬁr(f',ﬂz)e
the solution of which is
A7) = 2m°r§,z)e“f a25a°2mi°§q(£,z)eiff
(4.5)
A6y = 262 agga”12myg(€, 2)e

€l i§

Then we substitute Eq (3.30) at j = 0 into Eqgs (4.5), (4.3) and obtain the
corrective homogeneous solution

(R : 0
o010 100 = LV (% _Tmy 0 (9 Tn)
Tyz 2w\ 7 4malia®\2) 7
z:]; (l - :E*]) + ﬂj(y y*]) + aj(y + y*j) (46)

d= (ag5a0 - assla_l)
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for the force Q° and dislocation #° at the point z.o. The principal hormoge-
neous solution for this load is of the form (3.31) at j = 0.

By substituting the complete solution for the upper half-plane Sy (see Eq
(3.7)) in the interaction conditions Eq (4.1), we obtain the SSIE

Zo
1
- /fo(t)L dt + t%(zo)V + t°(zg — 210’ H)D + t(zg + 2ia°H)B =

(4.7)
= 20%9(z¢,0) - 2N°L zy € [—a,al
where
j j 0 —asrao
¥(2) = [(2), (=) v=| _1_
124184
10 aoraoé ) 13912 1)

D= 5 B=| § %

2a550 2 20550 2

Requiring that the displacements be unique (when going around the closed
contour of inclusion) we obtain the complementary condition

/fo(t) dt =0 (4.8)
Ly

The SSIE is solved using the collocation method (cf Bozhydarnyk and Su-
lym, 1990) with the accuracy of 1%. In calculations we assume that a unidirec-
tional fiber-glass plastic (cf Ashkenazy and Ganov, 1980) is the material of the
half-plane Sy {aly = 1/Gy.;ad5 = 1/Gp5ads} = {0,2;0,174;0} - 107° 1/Pa;
the material of the half-plane S_, is either the normall fiber glass plastic
{agtsass; g} = {0,271;0,273;0}-107% 1/Pa (the solid line in Fig.2 = Fig.5)
or the absolutely flexible material (the dotted line in Fig.2 and Fig.3), or the
absolutely rigid material (the dashed line in Fig.2 and Fig.3). The inclusion
is isotropic aft/af} = 1, ait = 0. The absolute flexibility S_, is equivalent
to the problem for the half-space Sy with a free boundary and the absolute
rigidity is equivalent to the one for the half-space with a fixed boundary.

Fig.2 presents the dimensionless GSIF K3, = Ks;1/a/(Q"\/7) versus the
parameter of the inclusion rigidity G = log(a¥%/aY,). The inclusion is loca-
ted on a relative depression d = H/a = 1 from the interface y = 0. The
concentrated force QU acts at the point (0,2a). Fig.3 presents the analogous
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relation when at the point (0,2a) there is the dislocation b°. For such loading
K3, = K3jad5+/a/(0.1746°y/7). When G > 3 or G < -3, the numerical
solutions with the accuracy of 1% yield the boundary values, that are pecu-
liar to the solutions for the gap and ARI, respectively. Whatever the elastic
properties of the half-plane S_; are, the corresponding solid line of graphical
dependence GSIF will always be located between the dotted and dashed lines
that correspond to the free boundary and its rigid fixening.

Fig.4 and Fig.b present the dependence of ng = K3ja25+/a/(0.17460 /)
(7 = 1, 2; respectively) the relative inclusion depression d when the dislocation
b0 is located at the point 2z, = (0, H + a). Each line in the figures refers to
different flexibility of inclusion a%% = ai* - 10! (aJ* = 0.1 - 107°1/Pa). As
d — oo we arrive at the solution for the elastic inclusion an the homogeneous
plane that is obtaind with the accuracy of 1% if we assume d = 10.
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Antyplaskie zagadnienie dla anizotropowego wielowarstwowego osrodka
z clenkimi sprezystymi inkluzjami poddanego dzialaniu skupionych si}
i dyslokacji érubowych

Streszczenie

W pracy rozwigzano metoda funkeji skokéw antyplaskie zagadnienie teorii spre-
zystosci dla pliku anizotropowych warstw, w ktérych sy cienkie laminarne inkluzje.
Zadane sg naprezenia lub przemieszczenia na granice o$rodka, dzialanie skupionych sit
i dyslokacji érubowych. Inkluzje sa modelowane przez skoki wektoréw naprezen i prze-
mieszczen na powierzchniach srodkowych. Przez zastosowanie wykladniczej transfor-
macji calkowej Fouriera, otrzymujemy zaleznosé wspélrzednych tensora naprezein i po-
chodnych wektora przemieszczen od obcigzenia zewnetrznego i poszukiwanych funkcji
skokéw. Z uwzglednieniem warunkéw oddzialywania cienkiej inkluzji ze rodowiskiem
anjzotropowym zagadnienie jest sprowadzone do ukladu réwnar catkowych osobli-
wych typu Cauchy. W ogélnym przypadku ten uklad jest rozwigzywany metoda ko-
lokacji. Metode ilustruja obliczenia dla konkretnego zagadnienia.
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