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Application of the PDF method to turbulence modelling is surveyed.
Important parts of the algorithm and of variance reduction techniques
used therein are described. The computation results for a free-shear flow
(mixing layer) and a wall-bounded flow in simple geometry (channel flow)
are reported and perspectives for further development of the method are
suggested.
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1. Introduction

The Probability Density Function (PDF) method represents a statistical
tool for description and computation of turbulent flows (Pope, 1985). Contrary
to the classical Eulerian approach, where averaged equations representing con-
servation laws are considered, in the PDF method turbulent flow is described
with the use of the one-point probability density for instantaneous velocities
and locations of fluid elements, as well as other variables (passive or reactive
scalars, such as chemical composition, temperature, etc.).

The PDF method represents the Lagrangian approach, due to the fact that
equations for instantaneous variables are modelled directly (Pozorski, 1997).
Stochastic particles (representing fluid elements) are introduced, with a set
of variables (location, velocity, possibly scalars) attached to them, and their
time evolution is followed in the solution domain. Models used to describe the
evolution of the variables are usually stochastic in nature. Such a description
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gives a closed PDF transport equation. Equivalent to the equation is a system
of stochastic differential equations (SDE) that is numerically solved. Statistical
averaging (cf Monin and Yaglom, 1971) is applied to the realisations of the
stochastic process, and data on the flow are obtained (as moments of the
distribution): mean velocity field, turbulent stress tensor, skewness and Hatuess
coefficients of velocity components, intermittency factor, etc.

2. Governing equations

The crux of the PDEF method is the closure of the evolution equation
for the probability distribution of instantaneous velocity and otlier variables
(depending on the level of description taken) that characterise the flow; i the
presented work, knowledge of the spatial flow structure is input in the form of
the dissipation rate € of the turbulent kinetic energy £.

Cousider high Reynolds number turbulent incompressible flow of density
p and kinematic viscosity v. After the Reynolds decomposition into the mean
and fluctuation

@ = (P) + ¢ (2.1)

wliere @ stands for any variable describing the flow (velocity comnponent U;,
pressure P, etc.), the Navier-Stokes equation in the Lagrangian approach
writes

dU; = —1-6<P>
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Now, fluid elements are modelled as the stochastic particles with a set of
attached (Lagrangian) variables. Their positions evolve with

dz; = U; dt (2.3)

and the Navier-Stokes equation is modelled as (Pope and Tclhen, 1990;
Pope, 1991)

1 9(P)

p Oz
Here, dW stands for an increment of the Wiener process (white noise). Tt
is readily seen that the mean viscous term has been neglected and the sum
of the fluctuating terms (pressure gradient and diffusion of momentum) has
been replaced by a stocliastic process of the diffusion type (Sobczyk, 1991).
Arguments can be put forward in favour of such a closure model (Pope, 1994;
Minier and Pozorski, 1997b).

dU; = dt + D; dt + B;; dW; (2.4)



COMPUTATION OF PLANE TURBULENT FLOW... 5

On the other hand, the evolution equation for the dissipation rate ¢
has been modelled altogether through a stochastic process of the diffusion
type, formulated in terms of the characteristic turbulent frequency w = ¢/k,
with the account taken of the standard Eulerian modelling of the e-equation
(Pope, 1991)

dw = D, dt + B, dW,, (2.5)

The components of the drift vector D and the diffusion matrix B are,
in general, rather coinplicated functions of location =z, tune #, flow variables
(U, w) and their statistics.

Denote by (V,0) the sample space associated with the fHow variables
(U,w). The evolution equations for the stochastic particle locations (2.3). ve-
locity (2.4) and turbulent frequency (2.5) give the closed transport equation
for the probability density f(V,8;z,t) in the phase space of flow variables.
It is a PDE of the parabolic type (the Fokker-Planck equation, see e.g. Sob-
czyk, 1991)

of 3] a B
Bz, + aT/;(Dz‘f) + %(Dwf) =

of
ot

+ Vi
(2.6)

1 0 1o,
= Ew(BikBjkf) + 58—6?2(B“f)

From the above closed formula, all moment equations can be derived (Reynolds
equation, transport equations for the turbulent stress tensor compounents, etc.).

3. Numerical algorithm

Because of high dimensionality of the phase space, Eq (2.6) is not solved
with the help of classical difference method. Rather, the use is made of equ-
ivalence of the closed PDF Eq (2.6) and the system of SDE for flow variables
(2.3) and (2.4), and the latter is integrated using the Monte Carlo technique.

Evolution equations (2.3) and (2.4) are solved in time; because of their
features, different from those of ODE, higher order numerical schemes become
complicated. In the case of wall-bounded flows, the appropriate boundary con-
ditions are added to simulate the presence of the solid walls (Pozorski and
Minier, 1998a).

Contrary to the Bulerian approach, in the PDF method for incompressible
flow the continuity equation is not solved explicitly. It is shown (Pope, 1985)
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that satisfaction of this equation is equivalent to the set of two conditions:
constant spatial concentration of stochastic particles, zero-divergence of the
mean velocity field. To satisfy both conditions, at every time step the correc-
tion equations (of the elliptic type) for instantaneous particle locations and
velocities are solved (Pozorski and Minier, 1998b). Actually, the latter correc-
tion (that of particle velocities) is akin to the pressure correction algorithm
(correction of mean velocity field) well known in the Eulerian approach.

A characteristic feature of the PDF imethod in the present impleinenta-
tion is a twofold description of flow: basic one, with stochastic particles, and
so-called secondary, with mean variables computed witlin cells of a computa-
tional mesh superimposed on the solution domain. The numerical algorithin
must take account of both descriptions respectively and of the (otherwise evi-
dent) relationship between them, known as the ”particle-mesh coupling”. The
relationship 1s accounted for by procedures of computing statistical moments
(means, variances, etc.) on the one hand, and interpolation of the statistics to
the particle locations — on the other hand (Hockney and Eastwood, 1481).

Because of the fact that the Monte Carlo technique is used in the PDF
method, the obtained solution is always Hawed due to the statistical error.
The ability to reduce this error for a given amount of computational work
and within an assumed accuracy (spatial and temporal resolution) is thus of
crucial importance in view of the practical application of the method. The
variance reduction techniques (VRT), or, in other words, techniques of im-
proving the solution quality, have been used in various ways in Moute Carlo
algorithms (Kalos and Whitlock, 1986); in the PDF method for turbulent fows
new techniques are developed. The quality improverent applied to the pre-
sent algorithin has several aspects (Pozorski and Minier, 1998b). First. the
computation of statistical moments takes an important place. In the simplest
way, they are found using the NGP (nearest-grid-point) method wlere the
identical weights are ascribed to all particles with regard to their cell center
where the average values are computed. Alternatively, in the more precise CIC
(cloud-in-cell) method, the particle weights reflect particle location with re-
spect to the centers of all neighbouring meshes. Another possibility to improve
the solution quality is to consider the evolution equations for sorue statisti-
cal moments ((U;), (ujuj), (w)), and integrate them at the time step; next,
instantaneous values are corrected according to the computed moments. Yet,
another possibility is to integrate instantaneous evolution equations using a
set of properly prepared vectors of random variables and to take their average
as the final value (so-called tetrahedron method).
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4. Computation results

To illustrate possible application areas of the PDF method, the results of
computations for two flow counfigurations will now be reported and compared
to available experimental data.
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Fig. 1. Turbulent mixing layer: (a) mean axial velocity, (b) turbulent shear stress;
(—) computation results; (o) experiment of Patel (1973); (x) Wygnanski and
Fiedler (1970)

First case of study was the turbuleut mixing layer (Minier and Pozorski,
1995). It is characterized by the external intermittency; thus, the entrainment
of the laminar flow into the turbulent core has to be accounted for in a pro-
per way, through the input of stochastic particles at the edges of the mixing
layer. Fig.1 presents some of the computed statistics: mean axial velocity and
turbulent shear stress (obviously, all conponents of the Reynolds tensor are
available) versus the cross-stream coordinate y normalized by the local flow
width ¢ (thickness of the layer).

Second case being computed was the developed (i.e. statistically statio-
nary) turbulent flow in a plane channel (Minier and Pozorski, 1997a). Fig.2
presents the characteristic fluctuating velocity in the cross-stream direction
and the turbulent shear stress. Both variables are made non-dimensional with
the use of the friction velocity wu,, and the cross-streamn coordinate ¥ is
normalised with the channel half-width L.
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The following scatter plot (Fig.3) presents other type of results available
fromn the PDF computation. Instantaneous streamwise velocities of stochastic
particles are plotted versus their locations. From these data, local profiles of
the probability density for the velocity component can be obtained (this holds
also for any other variable attached to particles).
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Fig. 2. Turbulent channel flow: (a) characteristic turbulent cross-stream velocity,
(b) turbulent shear stress. Computation results (solid line) and experimental data of
Comte-Bellot (1965)
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Fig. 3. Turbulent channel flow — streamwise velocity: mean flow velocity (solid line)
and instantaneous velocities of stochastic particles (points)
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5. Perspectives

The PDF method differs in some respects from more traditional pro-
posals based on the closure of equations for moments of the distribution
(k — €, Ity; — ¢). It is formulated in a different way, available set ol data is
much more extensive, nuinerical solution of the How problewn is different. Aio-
ther iinportant feature of the method is that it gives an accurate description
(without modelling) of convective terms in the trausport equations (gradient
Lypotheses, often erroneous, are thus avoided). Simnilarly, source terms for pas-
sive and reactive scalars {chemical composition, temperature) are also exact.
For this reason, the method is promnising, in particular for physically compo-
und problems, sucli as combustion (Anaud et al.; 1997) or two-phase Hows
with the dispersed phase.

The results presented above have been obtained for statistically two-
dimensional flows of a simple geometry. However, generalisation of the mmethod
to the 3D case or/and more complex geometrical configuration does not pre-
sent a major difficulty. Parts of the algorithm dealing witl stocliastic particles
(evolution equations, boundary conditions. computation of statistical avera-
ges) do not ueed to be nodified, basically. On the otlier hand, the rontines
involving the difference mesh (description of geornetry, Poisson solver) lLave
to be generalised — in a similar way as in any numerical method based on the
Eulerian approach.

Work performed to date confirms the poi;ential of the PDF method. A
general algorithm for computation of non-homogeneous turbulent Hows has
been written and tested. The boundary conditions for free-shear flows (with
laminar flow entrainment) and bounded flows (in the presence of the wall)
have been formulated. Nevertheless, as in any Monte Carlo method, slow sta-
tistical convergence remains a limitation. Actually, these methods used "as
such”, without quality improvement, tend to be prohibitively expensive with
regard to the computational cost. To make the PDEF method a viable tool
for practical (engineering) computations, its constituent elements have to be
further developed. They include: higher order numerical schemes for stocha-.
stic differential equations, variance reduction techniques, dynamical particle
management (cloning, fusion) during simulation, and possibly also a coupling
of the particle method with an Eulerian solver.
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Obliczenie ptaskiego przeplywu turbulentnego metoda funkcji gestosci

prawdopodobienstwa

Streszezenie

Omoéwiono zastosowanie metody funkeji gestosci prawdopodobiedstwa (PDF) do
modelowauia turbulencji, wraz » preykladami wlasnych obliczen dla swobodnego prze-
plywu Scinajgcego (strefa mieszania) i przeplywu w prostej geometrii w obecnogci
Sclanek (kanal plaski). Wyszczegéluiono elementy algorytmu metody orasz sposoby
redukeji szumu statystycznego uzyskiwanego rozwigzania. Omoéwiono perspektywy
dalszego roswoju metody PDF.
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