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The influence of prestressing and bending rigidity distribution be-
tween rods of a non-linear column on its natural vibrations and sta-
bility is studied. The perturbation method is used for solving the
problem. Regions of divergence and flutter instabilities for a column
have been determined on the basis of courses of eigencurves as a
function of bending rigidity ratio and prestress rate. Discontinuities
of the critical force have been observed for certain values of the in-
vestigated parameters leading to instability of the column, even for
small values of the external load. Although each prestress reduces the
critical force, it can be applied to passive vibration control.

Key words: natural vibrations, prestressing, divergence instability,
flutter instability, compound column

1. Introduction

Prestressing of elastic structures plays an important role im moving na-
tural vibration frequency far enough from the excitation band. That kind of
passive control of vibration was proposed by Holnicki-Szulc and Haftka (1992)
in the case of antenna truss structure, modes of which were reshaped to get
small amplitudes at the desired points. Kwan and Pellegrino (1993) studied a
few problems of location of actuators, their required extension as well as the
best actuator adjustments to improve the incorrect prestress rate arising in
3D prestressed structures. Przybylski et al. (1996) demonstrated the influence
of prestress, axial force as well as distribution of both the axial and flexural
rigidities on the natural frequency of a non-linear two-member frame basing
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on results of both the numerical and experimental investigations. The obta-
ined results indicated that each prestress reduced the natural frequency of the
system. Tomski et al. (1994) found the effect of both the prestressing force
and concentrated mass on the natural frequency of a compound beam.

The stability of nonconservative systems has been extensively studied du-
ring last three decades. Leipholz (1975) presented the state-of-the-art stabi-
lity of elastic systems providing classification of stability problems, indicating
the necessity to use the dynamic approach to investigation of nonconservative
structures. Pedersen (1976) studied the cantilever under a follower force exten-
ded to cover a three-parameter case, including a concentrated mass, a linear
elastic spring and a partially follower force at the free end. He stated that ge-
nerally it was necessary to obtain the characteristic lines of instability in the
load-frequency co-ordinate system to determine the stability of nonconserva-
tive systems. Kounadis (1983) discussed the presence of regions of divergence
instability for an elastically restrained column under a follower compressive
force applied at its end. He found a discontinuity (a jump) in the critical load,
which as he stated, could be evaluated only by using the dynamic stability
criterion. Bogacz and Janiszewski (1986) presented a comprehensive review of
the methods of analysis and optimal design of columns subjected to follower
forces. Sugiyama et al. (1995) described the effect of intermediate concentrated
mass on the dynamic stability of cantilevered column subjected to a rocket
thrust. Although the internal structural damping may stabilise or destabilise
a nouconservative system it can be neglected as it was done by the authors,
in the structures for which it is very small. Sugiyama et al. (1995) presented
the experimental results that agreed well with the theoretical flutter predic-
tions. Kurnik (1997) in his book presented a overal introduction to bifurcation
in 1D and 2D problems introducing its application to divergence and flutter
instability phenomenon in engineering. Kounadis (1997) described the occur-
rence of flutter instability through Hopf bifurcation before static buckling in
the regions of divergence in nonconservative nonself-adjoint systems, to show
that a practically nondissipative model under certain conditions may lose its
stability via flutter for a load smaller than that of divergence instability. In
this work the dynamic approach is used to investigate the influence of prestress
and bending rigidity ratio of both rods of a geometrically non-linear colurmn
upon its regions of instability. The column is loaded by a follower force what
makes the problem a nonconservative one.
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2. Solution to the problem

The scheme of deformed axes of both rods of the column under investiga-
tion is given in Fig.1.
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Fig. 1. (a) Scheme of deflected axis of two-member column rods, (b) physical model
of a column

Basing on the strain-displacement relations for a beam undergoing the mo-
derately large deflection described by vou Karman and applied by Woinowsky-
Krieger (1950), by using the Hamilton’s principle for nonconservative systems
proposed by Levinson (1966), the governing equations for this problem can be
presented in the form:

— for the lateral vibration of the #th column rod

64wi(£’ T)
PIE

0*w;(§, ) + O’ wi(¢,7) i=1,2  (2.1)

+ k'z' 6£2 Wi 67‘2

— for the longitudinal displacement w;(£,7) of the ith rod

3
] 1 611)1 ) .
wil€,7) ; 5/ (C *dc i=12 (2.2)
¢ 0
where
Wi Tt il2 i A
wi(€,7) = (.9 ki:S Wi = 2 1° piki (2.3)
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denote the non-dimensional transverse displacements, load parameters and
non-dimensional frequency parameter, respectively, and

. .72 . \
£=2 r = Ot - wile,my = BET (54
l I [
[ - length of the column
{2, - nth natural frequency
E;I;, - Dbending stiffness of the ith rod
p;A;  — mass per the unit length of the ith rod.

In Eqgs (2.1) and (2.2) only von Karman’s nonlinearity has been taken
into account. When considering the large deflection theory the influence of
other geometrical nonlinearities should be examined after Kurnik and Pekalak
(1992).

By using the perturbation (small parameter) method, the relevant quan-
tities are expanded into an exponential series with respect to the amplitude
parameter € (¢ < 0) (cf Evansen, 1968)

N
T) = ZEQJ“Iwin_L(E,T) +0(eNV )
7=1

N
ki = kio + Ze2jki2j(T) + O(EN_H) (2.5)
j=1
o N .
wf”» = wfbi(l + 26271/2]') + O(ENH)
J=1

where vy; stands for the frequency correction coefficients, and

wi(€,7) = wly (€) cos 7
wiz(€,7) = wf €3 )cosr-{-wz( )(f)cos3r
wzs(é,r) =w( (€ )cosr-{-wf )(5) cos 3T+w§§)(§)cos 57 (2.6)

(

kio(T) = cos 21

kig = k,(g) + kg) cos 27 + kﬁ) cos 47
By introducing Eqs (2.5) into the equations of motion (2.1) and axial displa-
cements (2.2), then equating to zero the coefficients of respective ¢ exponents,

one obtains the following set of equations of motion and longitudinal displa-
cements

0%  win(é) = —i’ﬁ (2.7)

1
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0(e') Ve, )+ kaow); (677) + w2 i) (€, T} =0 (2.8)
_ka
0 wale,r) = =20 1 [ludc,n)] ac 29)
0(e®) 1&¥@nﬁ+kwwm@nv+wmww@n)=
= —k.ig(T)wiILI(é,T) - ngii'd}ﬂ(éﬁ) =0 1=1,2

Roman numerals and dots denote derivatives with respect to £ and 7, re-
spectively.

In view of Egs (2.5), Eqs (2.7) +(2.10) are to be solved under the following
boundary conditions

— for 5 =1,3,5...
w5 (0,7) = wy;(0,7) =0 wy;(1,7) = woi(1,7)
L%@mmﬂ=wMaﬂL0= wl;(67)|,_, = wh &),
wijen)|,_ +emffEn|_ =0 wll€n]_ +mfllEn|_ =0
(2.10)
~for §=0,2,4,..
u15(0,7) = ug;(0,7) =0 u5(1,7) = uy;(1,7) (2.11)
kyj(T)pL + koj(T)pe = p '
where
P2 E\I1,
P= B + By BU= BT+ Eol,
(2.12)
Bl Byl
He = E\I + Fqly b= E I

and P is the external load applied to the column.

Egs (2.7) represent the axial displacement-force relation in column mem-
bers. Substituting these equations into the boundary conditions (2.12) for
7 =0, yields a linear relationship between the axial forces S;g in each rod due
to the axial prestressing with the force P, and the external force P in the
following form

E; I
Sip=%+P + P——" =1,2 2.13
i0 'TUEL + Baly ' (2.13)
The force P, is taken positive when compresses a particular rod. For an
externally unloaded column (P = 0) when one member is compressed the
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second must be stretched by the same force P,. Taking into account different
ways of structure loading, the distribution of internal forces can differ, what
strongly influences both the vibration frequency and stability of the system.

General solution of Eqs (2.8), after separation of the £ and 7 variables in
accordance with Eq (2.6), is as follows

w;1 (£) = Aj) cosh(a;z)+ By sinh(ay ) + Cyy cos(B;12) + D;y sin(F;x) (2.14)

where

1 i 1 I N
;] = \/—iki0+ Zki20+w£n' Oit :\/Eki0+\/zki20+a}éi (2.15)

By substituting Eqs (2.15) into boundary conditions (2.11) for j = 1 oue
obtains the system of eight homogenous equations with unknown integration
constants A;, By, C; and D;y, (i = 1,2). The determinant of coefficient
matrix of the system must be equal to zero to get a nontrivial solution to
the problem. In this way the relationship between the load and the natural
frequency is obtained and solved numerically.

From the results obtained by Przybylski et al. (1996) it follows that for
the vibration amplitudes small enough, ie., when the frequency correction
coefficient is close to zero, this problem can be satisfactorily solved when taking
into account only two terms (e and €') of Eqs (2.5)s.

3. Results of numerical calculation

All the results are presented as functions of dimensionless quantities to
allow for comparison with the results obtainable for a single rod column. These
quantities are as follows

J/ - external load parameter, p = PI?/(E\I, + Eyly)

De — critical value of p (p£B> is the critical parameter for Beck’s
column equal to 20.0509)

Pmi — internal prestress parameter, p,, = P/I*/(E /1, + EyI)

(when the positive the rod 1 is compressed and the rod 2
is stretched)

wy,  — natural vibration frequency parameter,
wy, = (prAg + p2A2) 221 [(EV T + Exly)
wgr — coefficient describing the relation between the bending rigi-

dity of both rods, wpr = Eyly /(F11).
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During calculations the sum of bending rigidities was coustaut (F |\ [} + Eoly =
const), identical values of mass per unit length for each rod. as well as ideuntical
values of longitudinal rigidity of each rod were assumed.
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Fig. 2. Eigenvalue curves for unprestressed column with different bending rigidity
ratios

Fig.2 shows the natural frequency curves obtained for zero prestress and
different bending rigidity relations. For wgy =1 the flutter critical load arises
for exactly the same value as for Beck’s colurnn (p(cB) = 20.0509), because both
identical rods due to equality of their rigidities and masses per unit length vi-
brate with the same frequency and mode shape as a single column. The greater
asymmetry in rigidity the smaller is the value of critical load. That phenorue-
non is connected with the decrease in the second natural frequency. The flutter
critical load is the value of load to which the two smallest eigenvalue courses
approach each other until they join. As it can be seen from Fig.2 all branches
of the eigenfrequencies representing the second frequency are parallel to each
other, while those for the first frequency overlap each other. Since the second
frequencies decrease with the decrease in wgy, all points of joint of adequate
eigencurves depend on the course of the second eigenfrequency curves. The
decrease in the second vibration frequency may be understood when one ob-
serves the second mode shapes — Fig.3. The normalization condition for each
computation was the same (w;;(1) = 1). The second modes obtained at the
points B to B’V (Fig.2) are different for each wry, especially for the rod 2.
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The greatest lateral displacements of that rod along its length arise for the
maximal asymmetry in the bending rigidity, i.e. when EsI,/(E\I;) = 0.1. For
the same value of wpr = 0.1, the second frequencies take the smallest values.
The greater amplitude is connected with the smaller vibration frequency.
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Fig. 3. Mode shapes for unprestressed column loaded by the external load p= 2.5
for different wpyy

The regions of instability for a column with identical rods internally pre-
stressed (in relation to Beck’s load parameter) are presented in Fig.4. There
are two regions of instability for the column, the flutter instability region
for 0 < pml/pr) < 0.557912 and the divergence instability region for
0.557912 < pml/pgy) < 1. Between those regions a jump in the critical force
occurs from the flutter load p. = 4.0787 to the divergence load p. = 0.0.
That results from the courses of eigenvalue curves depicted in Fig.5.

Each prestress up, to its boundary value, introduced into identical rods
of the column reduces the flutter load shifting simultaneously the first frequ-
ency branch of the eigencurves closer to the origin of co-ordinate system. The
divergence critical load is the value of the load to which the smallest square
of the eigenfrequencies becomes equal to zero. For both p,; = 0.557912;0&8)
and the external load the first frequency is equal to zero. There is no stable
static shape of the column for such a prestress for any external compressing
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Fig. 4. Regions of instability for different prestressing ratio for a column with
symmetrical rods

force. There exist, however, the eigencurves for the same prestress which join
at p. = 4.0787, what causes a jump in the critical values. Further increase
in the prestress changes the shape of eigencurves so they lose their maximum
peaks and cross the y-axis at the points of divergence critical loads; to show
it a sample curve for p,, = 0.7p£B) has been drawn in Fig.5.

The combined effect of prestress and asymmetry of the bending rigidity
of column rods on the eigenvalue curves is shown in Fig.6. The prestress can
increase (Fig.6a) or decrease (Fig.6b) the critical flutter force depending on
the asymmetry in the bending rigidity. For wgr = 0.1 and pp,, = 0.4p£B)
there exists a critical load of the divergence type, however, its value is greater
than that of Autter type appearing for tlie point of join of tle second and third
eigenvalues. So the value of flutter load must be taken as a critical one for the
system.

Taking into account the results presented in Fig.6 for different prestressing
and bending rigidities ratio, it seemed to be interesting how asymmetry in
the distribution of bending rigidities could influence the stability for a certain
prestress. The two values of prestress were chosen for further investigation:
Pmil = 0.4p£B) and pm = —0.4pS;B). The first prestress makes the rod 1
compressed and the rod 2 stretched, the second one creates an oposite state
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Fig. 5. Eigenvalue curves for a column with symmetrical rods and different
prestressing ratio
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Fig. 7. Flutter critical load as a function of asymmetry of bending rigidity for a
column prestressed by pm1 = 0.4p£3)

The column loses its stability via flutter in the entire investigated range of
0.1 € wgr <1 for the prestress p,,, = 0.4p(cB) - Fig.7. A discontinuity along
the curve of critical force appears due to a change in the flutter mechanism
shown in Fig.8. For 0.1 < wgr < 0.2861 the critical flutter force occurs for
coalescing of the second and third eigenvalues, whereas for the rigidity ratio
above 0.2861 for the first and second eigenvalues. In the first range of wps
the critical force decreases to the value of 9.479, and then increases with the
increase in wgr. In the second range of wgy the critical force monotonically
decreases with the increase in wpgy.

When the rod 1 is stretched (pp, = -—0.4p£B)), two changes in the instabi-
lity mechanism occur for increasing value of wgr - Fig.9. The first jump down-
wards of the critical force exists for wgy = 0.119 and it associates the change
in the instability mechanism from flutter to divergence. After that the diver-
gence critical force increases at first up to 14.111 (the maximum value for the
system) and then drops down for wg; = 0.42395. For wgr = 0.46 the mecha-
nism of instability changes for the second time from divergence to flutter. The
eigenvalue curves obtained for p,, = —0.4p£B) and 0.423 < wgy € 0.46, the
courses of which explain one of the changes in the instability mechanism, are
presented in Fig.10. From that figure it can be noticed that for wpgy = 0.423
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Fig. 10. Eigencurves for a column prestressed by p,,; = ——0.4pEB) and different
bending rigidity ratios

the eigencurve crosses the y-axis at the point of p, = 13.488, whereas for
wpr = 0.424 the divergence critical force p. is equal to 0.0062. This decrease
in the critical load results from the fact that starting from wgr = 0.42395
new eigencurves appear for small values of the external load. Then, with the
increasing values of wpgy the divergence critical load increases up to 4.4607
where the second change of instability from divergence to flutter occurs. There
1s an evolution of eigenvalue curves observed in Fig.10 with a small change of
bending rigidity ratio. Two first eigencurves for wpy = 0.4569 approaching
very close to each other at one point, evolve to one flutter curve existing for
wgr = 0.46.

4. Conclusions

On the basis of dynamic analysis, regions of instability as a function of
both the initial prestress and distribution of bending rigidity of non-linear
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two-rods column have been established.

The instability behaviour of the column may be either a divergence or a
flutter type depending on values of prestress and the bending rigidity ratio.

The prestress can decrease or increase the critical Hutter load depending
on the value of bending rigidity ratio.

A column without prestress loaded by a follower force loses its stability
via flutter. The greater asymmetry in the bending rigidity the smaller critical
flutter force is.

The prestressing of rods for a column composed of identical members can
cause Hutter or divergence instability of the system with a jump phenomenon
reducing the critical load for a certain value of prestress.

The way of prestressing play an important role for the column stability. The
same column of identically distributed bending rigidity between rods can lose
its stability via divergence or flutter under different critical force, depending
on the prestress introduced into a particular rod causing its stretching or
compressing.

There are such cornbination of the values of prestress and bending rigidity
ratios for which the column can be unstable when loaded by a small external
load.

Passive vibration control of an asymmetrical column is possible by intro-
ducing the adequate prestress into rods of the columnm.
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Rola wstepnego sprezania przy wyznaczaniu obszaréw niestatecznodci dla

kolumny nieliniowej

Streszczenie

W pracy zbadano wplyw wstepnego sprezania i asymetrii rozkladu sztywnosci na
sginanie miedsy pretami geometrycznie nieliniowej kolumny dwupretowej na drgania
takiego ukladu. Do rozwiazania zagadnienia zastosowano metode malego parametru.

11 — Mechanika Teoretyczna
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Wyznaczono obszary niestatecznosci dywergencyjnej i fluterowej na podstawie prze-
biegéw krzywych warto$ci wlasnych w odniesieniu do relacji miedzy sztywnodciami
1 stopniem sprezenia. Zaobserwowano skokowe zmiany wartoéci sily krytycznej dla
pewnych warto$ci obu parametréw prowadzgce do niestateczno$ci ukladu przy uie-
wielkiej sile zewnetrzuej. Mimo tego, ze kazde wstepne sprezenie obniza wartosé sily
krytycznej, moze by¢ wprowadzane w celu pasywnej kontroli czestoSci drgai.
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