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The paper deals with dynamic analysis of low structures subject to ki-
nematic excitations caused by transversal waves when using nonlinear
discrete-continuous models. The models consist of rigid bodies and ela-
stic elements which undergo only shear deformations. In these models
discrete elements with a damper and a spring of a nonlinear characte-
ristic representing local nonlinearities can be included. In the study a
wave approach is used, in terms of the wave solution of the equations of
motion. Numerical calculations are performed for model with single, two,
three or four rigid bodies. They focus on the determination of amplitude-
frequency curves and investigation into the effect of local nonlinearities
on displacements of selected cross-sections of elastic elements in the con-
sidered models.
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1. Introduction

In the paper nonlinear discrete-continuous models are proposed for dyna-
mic investigation of low structures subject to transversal kinematic excitations.
The discrete-continuous models consist of rigid bodies connected by means of
ponderable elastic elements. Continuous elastic elements in these models are
assumed to be described by the classical wave equation representing a beam in
which shear deformations are the dominating ones. In the discrete-continuous
model some additional discrete elements can be included. These elements con-
sist of a spring and a damper. The spring may reveal a nonlinear characteristic.
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Linear discrete-continuous models of low structures subject to shear defor-
mations were discussed by Pielorz (1996). In that paper the cases when the
use of the classical wave equation is justifiable were also shown. The results
obtained confirmed the suggestions put forward by Humar (1990) that many
structural systems could be described by the classical wave equation, e.g. low
buildings and an isotropic or horizontally layered soil deposit undergoing ho-
rizontal deformations.

The aim of the present paper is to generalize the results obtained by Pielorz
(1996) by introducing local nonlinearities into the models studied by Pielorz
(1996) and to investigate the influence of these nonlinearities on displacements
of selected cross-sections of ponderable elastic elements in the models. The in-
clusion of that type of nonlinearities is justified by many engineering solutions
for low structures, see e.g. Humar (1990), Mengi and Dindar (1988), Okamoto
(1973), Sackman and Kelly (1979), Su et al. (1989). Generally, from the lite-
rature it follows that in each structure one can find the elements which can be
taken into account in the dynamic analysis as local nonlinearities.

In the literature there is a lack of papers dealing with nonlinear discrete-
continuous models in contrast to the vast literature about nonlinear discrete
models, cf Hagedorn (1981), Mickens (1981), Szempliriska-Stupnicka (1990).

In the present paper the approach utilized by Pielorz (1996) for linear
models of structures undergoing shear deformations is adopted to nonlinear
cases. Investigations are limited to the systems with a nonlinearity represented
by a spring of hard characteristic of the Duffing type. In numerical calculations
the effect of the local nonlinearity parameters on amplitude-frequency curves
for selected multi-mass systems is considered.

2. Assumptions and governing equations

The paper concerns dynamic investigations of low structures subject to
kinematic excitation caused by transversal waves. Kinematic excitations can be
of the seismic type or can be caused by highway traffic, surface and subsurface
railways, or machinery located nearby. [n the literature, engineering structures
subject to various kinematic excitations are discussed in terms of discrete as
well as continuous models, cf Okamoto (1973), Sackman and Kelly (1979) and
Mengi and Diindar (1988).

The elastic elements of the structures considered in the present paper have
the transverse dimension, alongside of which shear forces act, close to the ele-
ment length, i.e. they have a low slenderness ratio. Those structures are, e.g.,
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machine supports, bridge piers and low columns in buildings. Many structure
elements subject to transversal excitation can be modelled by means of the Ti-
moshenko beam. In the paper by Pielorz (1996) it is shown that in the case of
short beams in which the shear forces are predominant, the Timoshenko equ-
ations can be replaced by the classical wave equation. Some suggestions about
applying the classical wave equations without any discussion on frequencies
were given by Humar (1990).

The use of the classical wave equation enables one to discuss the models of
engineering structures consisting of many elastic elements and of rigid bodies.
The approach applying the classical wave equation and its wave solution is used
in dynamic investigations of the nonlinear discrete-continuous model shown in
Fig.1. Special cases of this model can be employed in the investigation of the
structures mentioned above.
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Fig. 1. Nonlinear discrete-continuous model

The studied model consists of n elastic elements connected by rigid bo-
dies. During external excitations all cross-sections of the elastic elements re-
main flat and parallel to the cross-sections where rigid bodies are located. The
elastic elements udergo only shear deformations. They may reveal different
mechanical properties, however for the sake of simplicity it is assumed that all
the elements are characterized by the shear modulus G, the cross-sectional
area A, shear coefficient £, density p and length [. To the rigid body myg
a discrete element with a nonlinear spring can be attached. Such an element
may represent any part of the considered structure which needs description
by local nonlinearities. For example, it may represent an elastic segment of
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isolation type, cf Su et al. (1989), Humar (1990). The characteristic of non-
linear spring is assumed to be of a hard type, and the force for the spring is
expressed by the third-degree polynomial

F(t) = kiyi(z,t) + kays (z, 1) for z=0 (2.1)
where
yi(z,t) — displacement of the sth elastic element
ki,k3  — linear and nonlinear terms in Eq (2.1), respectively.

The nonlinear function of the type (2.1) is widely exploited in the literature
in dynamic investigations into nonlinear discrete systems, cf Hagedorn (1981),
Mickens (1981), Szempliniska-Stupnicka (1990). The function (2.1) can be used
in the cases of the hard and soft characteristic of the nonlinear spring. Here,
the investigations are limited to the nonlinear spring of the hard characteristic,
so it 1s assumed that k3 > 0.

The rigid body my is subject to the absolute acceleration &%[y,(0,t) +
Yeat(t)]/Ot2, where y(0,t), is the displacement of the rigid body myg relative
to the ground and . (t) is the ground displacement relative to the fixed
spatial system.

Damping in the model is described by means of the equivalent external
and internal damping

where the constants d; and D; represent the coefficients of external and in-
ternal damping, respectively, and the comma denotes partial differentiation.
The equivalent damping is taken into account in the boundary conditions. It
is assumed that the z-axis direction is normal to the direction of displace-
ments y;, its origin coincides with the location of the rigid body myg in the
undisturbed state and velocities and displacements of the cross-sections of all
the elastic elements are equal to zero at the instant ¢ = 0.

Determination of the displacements, strains and velocities in the cross-
sections of the elastic elements for the analysed model reduces to solving the
following n classical wave equations

Yitt — CYigz = 0 for ¢=1,2,..,n (2.3)
with the inmitial conditions

vi(2,0) = 9i1(2,0) =0 i=1,2,..,n (2.4)



NONLINEAR DISCRETE-CONTINUOUS MODELS... 983

and the nonlinear boundary conditions

—mo[Jeal(t) + y1,u] — doyr,e + AKG(D\ Y10t + Y1) +

—kyy — ksyt =0 for z=0
Yi = Yit1 for z=4d i=12,.,n—-1
(2.5)
—AKG(D;yigt + Yiz) + ARG (Dig1Yit1,0t + Yit1,2) +
miYi+1,6t — diYi+1,6 =0 for z =il i=1,2,...,n—1

—AkG(DnyYn gt + Ynz) — MnYn gt — dnYne = 0 for z =nl

where ¢? = kG/p. Eqs (2.5) represent the conditions for displacements and
forces acting in the contacting cross-sections of neighbouring elastic elements
of the considered model, and y.q(t) is a given time function representing the
external excitation which can be irregular (cf Okamoto, 1973; Sackman and
Kelly, 1979; Mengi and Diindar, 1988) or regular. Egs (2.5) differ from the ap-
propriate boundary conditions for linear discrete-continuous models discussed
by Pielorz (1996) by the nonlinear term in Eq (2.5);. When k) = k3 = 0 they
become the same.

Although the equations of motion which take into account continuously
distributed damping would describe the problem more precisely, they cannot
be solved as effectively as classical wave equations using the wave method.
Moreover, it was shown by Pielorz (1988) that the appropriate equations with
continuously distributed damping and with the equivalent damping yield prac-
tically the same results beyond a short initial time interval.

Upon the introduction of the nondimensional quantities

_ . - . . :
D == di = mhe 9i= 4 (2.6)
Rj= i k= __T’CLZQ Fa — k3_y$_l;

mr ' mee mec

where m, and vy, are the fixed mass and displacement, respectively, Eqs
(2.3) + (2.5) can be rewritten as

Yigt — Yigz = 0 for i=1,2,...,n

yi(z,0) = yir(z,0) =0 for i=1,2,..,n
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Rofeai(t) + Royyge + doyie — K (Diy1,ee + Y1,2) +

+kiyy + ksyt =0 for z=0

(2.7)
Yi = Yi+l for z =4 i=1,2,..n—-1
Ko (Diyi ot + Yiz) — Kr(Dit1¥iv1,at + Yitr,z) + Rilfigree +
+diyir 1t =0 for z =47 i=1,2,...,n—1

Kr(Dnyn,zt + yn,:r) + Rnyn,tt + dnyn,t =0 for z =n

For convenience, in Egs (2.7) the bars denoting nondimensional quantities are
omitted.

The solutions of Eq (2.7), taking into account the initial conditions (2.7),
are sought in the form

vilz,t) = filt — ) + g; (t - 20— 1)) i—1,2,..,n (2.8)

where unknown functions f; and ¢; represent the waves caused by kinematic
excitation, propagating in the :th elastic element of the discrete-continuous
model in the directions consistent and opposite to the z-axis direction, re-
spectively. In the sought solution (2.8) it is assumed that the first disturbance
occurs in the ith element at the instant ¢ = ¢—1 in the cross-section z =4—1
for ¢ = 1,2,...,mn. The functions f; and g¢; are continuous and for negative
arguments identical to zero.

Upon substituting the solution (2.8) into the boundary conditions (2.7)3_¢
and denoting the largest argument of functions appearing in each equality
by =z, the following nonlinear equations are obtained for the functions f;
and g;

g’t(z) = fi-i—l(z - 2) +gi+l(z - 2) - fi('z - 2) 1= 1a2a ey T — 1
Tn-i—l,lgx(z) + Tn+1,29;(z) = Tn+1,3f7’1’(2 - 2) + Tn+1,4f7’1(z - 2)

rf1 (z) = —Roficar(2) + 71297 (2) + 113f1(2) + 11491 (2) +
~ki[f1(2) + 91(2)] — ksl f1(2) + g1(2)]* (2.9)

ricfi (2) + riafi(2) = risgi (2) + riagi(2) + ris fi (2) +
rf o (2) i=923 .n
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where
Ty = Ky Dy + Ry T2 = K: D) — Ry
ri3=—K; —dp T4 = Ky — dy
rit = Ky Dy + K, Dy + Ry Tio = 2Ky + diy
T3 = KrDi - KrDz!l - R//L—l Ti4 — —digl (2.10)
Tis = 2K, Dy Tig = 2K, i=2,3,..,n
Tn+1,1 = KDy + Ry Tn+1,2 =K, +d,
Tn+1,3 = K.D, - R, Tn+1,4 = K, —d,

Eqgs (2.9) are nonlinear differential equations with a retarded argument.
Though appropriate equations for linear models can be solved analytically or
numerically by means of the finite difference method, cf Nadolski and Pielorz
(1980) and (1992), Pielorz (1996), the nonlinear equations (2.9) can be solved
only numerically using e.g. the Runge-Kutta method. Having obtained from
Eqgs (2.9) the functions f;(z) and g;(z) and their derivatives, one can deter-
mine displacements, strains and velocities in an arbitrary cross-section of the
elastic elements in the considered model at an arbitrary instant. The solution
can be obtained in both transient and steady states.

3. Numerical results

The numerical analysis is carried out for the model presented in Fig.1 when
n = 1,2,3 with one, two, three or four rigid bodies, respectively. An arbitrary
function of the external excitation .4 (t) can be irregular or regular, periodic
or nonperiodic. In the paper it is assumed in the form

ycal(t) = Qg sin(pt) (3'1)

and the considerations focus on the determination of displacements in the ste-
ady states. The function (3.1) represents various direct and indirect external
excitations, where p is the nondimensional frequency of the external excita-
tion.

The considered discrete-continuous systems representing low structures are
described by the nondimensional parameters R;, K, see Eqs (2.6). These
parameters can take various values. The constants R; are the ratios between
masses m; and the foundation mass mg while the constant K, is the ratio
between the mass of columns and mg. For real structures those parameters
are usually smaller than 1. In the presented calculations they are assumed to
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be equal 0.5 and 0.3, respectively (cf Pielorz, 1996), where the linear models
were studied and the efficiency of the wave method was demonstrated.

For that reason, in numerical calculations in the present paper we con-
centrate on the representation of the influence of local nonlinearity on displa-
cements in selected cross-sections. The effect of the assumed nonlinearity is
represented by the parameter k3 standing by the nonlinear term in Eq (2.1)
and by changes in the damping coefficient dp and amplitude ag of the exter-
nal excitation (3.1). This is done for the nondimensional value of k; in (2.1)
equal to 0.3.

3.1. Single-mass system

The form of the external excitation (3.1) enables us also to perform some
comparative numerical analysis. Such an analysis can be done in a special case
of the discrete-continuous model presented in Fig.l; namely, for the system
consisting of a single elastic element and a single rigid body with the higher
end being fixed (cf Pielorz, 1995), using the wave approach and the method
of variables separation and neglecting the internal damping.

When applying nondimensional quantities (2.6), the analysis of steady mo-
tion of the system with a single mass is reduced to solving the equation of

motion
Kr(yl,tt - yl,zz) =0 (32)

with the nonlinear boundary conditions

ROylytt + dOyl,t - Kr'yl,z + kiyr + kSy:f = ay sin(pt) for =10 (3 3)
yi(z,t) =0 for z =1 ’

where the bars are omitted for convenience.

When using the wave approach, the considerations are reduced to finding
the solution of Eqs (2.9) in the steady state with n=1and D; =0, R = oc.
On the other hand, seeking a single modal solution of Eq (3.2) in the form

yi(z,t) = X (2)T(t) (3.4)

where
X1 (z) = (k1 — Row?) (w1 Ky) ! sin(w) z) + cos(w) z) (3.5)

is the first eigenfunction in the linear case with X,(0) = 1, according to the
Galerkin method the following nonlinear equation for the unknown function
T(t) from (3.2) and (3.3) is derived

T + dyT + wiT + k4T® = afsin(pt) (3.6)
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with

1
d k
dhy = -2 Ky =22 ay = — SO:K,/XEd;HRO
So So 4

(3.7)
The first approximation of the solution of eq (3.6) according to the Duffing
method is sought in the form, cf Hagedorn (1981), Szempliriska-Stupnicka
(1990)

T(t) = Asin(pt — vy) (3.8)
where -y is a phase angle. This leads to the relation between the amplitude
ap of the external excitation and the amplitude A of the solution (3.8) in the
form | 42
3k
A|(wh = p") + =] 4 p2(dh)? A7 = (ap)” (3.9)

Numerical calculations for the single-mass system are made for the follo-
wing nondimensional quantities

K, =03 w; = 0.737 do = 0.05 n=1
ag =1 R =0 k=103 ks =0, 0.01, 0.05, 0.1
(3.10)
The value of the frequency of free vibration w; = 0.737 is obtained for given
K, and k, from the frequency equation in the linear case of the examined

system.

Amplitude-frequency curves for the single-mass system, according to Eq
(3.9) and when using the wave approach are presented in Fig.2. Continuous and
broken lines denote stable and unstable branches, respectively, for the solution
(3.8), while stars correspond to the steady solution in the cross-section z =0
for the single-mass system with the parameters (3.10). Diagrams in Fig.2 show
a good agreement between the results obtained for the nonlinear equation of
Duffing type and the nonlinear single-mass discrete-continuous model. The
above comparative numerical analysis was made not only in order to show the
agreements with available analytical solutions but also in order to estimate the
values of the coefficient k3 representing local nonlinearities of the type (2.1).
From Fig.2 it follows that for the assumed value of the parameter k; = 0.3
the value of kg should not exceeded 0.1. Similar comparable calculations can
be done for other values of k;.

3.2. Multi-mass systems

The equations with a retarded argument (2.9) describe more complex sys-
tems than the nonlinear equation (3.6). Eq (3.6) concerns vibrations in the first
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30

Fig. 2. Amplitude-frequency curves of the single-mass system according to the
Duffing equation (continuous and broken lines) and according to the wave approach
(stars)

resonant region for the single-mass system and the solution (3.8) concerns the
steady motion only, while the nonlinear equations (2.9) enable us to obtain
solutions in the first and further resonant regions and in transient states. For
that reason, in further numerical analysis of nonlinear discrete-continuous sys-
tems with more than one rigid body only the wave approach is adopted, i.e.,
Eqs (2.9) are employed.

Eqs (2.9) are solved from 2z = 0 until the steady state for displacements
expressed by (2.8) with zero initial conditions for the functions f;, g; and
their derivatives. Then, for each frequency p of the external excitation (3.1)
there exists a value pg for which the displacement amplitudes jump from the
upper to lower curves. However, Eqs (2.9) can be also solved with nonzero
initial conditions. Eqs (2.9) have a retarded argument with the argument shift
equal to 2, so the nonzero values of functions f;(z), g;(z) and their derivatives
should be known in the interval < —2,0 >. If Eqs (2.9) with p > py are
solved up to zx = 2mm/(po + kAp), £ =1,2,... and m is a fixed integer, and
next the values of the functions f;(z), g:(2) and their derivatives from the
interval < zp — 2,2 > are assumed to be the initial values of these functions
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in the interval < —~2,0 > for p = pg + (k + 1)Ap, then the displacement
amplitudes y4 with these initial conditions lay on the prolongation of the
upper amplitude-frequency curves up to the next jump.

Sample numerical calculations are made for two-, three- and four-mass
nonlinear discrete-continuous systems shown in Fig.l. They are done for the
following nondimensional parameters (cf Pielorz, 1996)

Ry=1.0 ap = 1.0
KT - 0.3 My = mO
ki =03 ks =0, 0.01, 0.025, 0.05, 0.075, 0.1

The efficiency of the method applied in the paper was shown by Pie-
lorz(1996) in the case of linear discrete-continuous systems for low structu-
res subject to shear deformations. For that reason, in the present paper we
concentrate on the representation of the influence of local nonlinearity on
amplitude-frequency curves for selected cross-sections of the elastic elements
in the considered models.

3.2.1. Two-mass system

Eqgs (2.9) together with Egs (2.8) enable one to determine displacements in
arbitrary cross-sections of elastic elements of the multi-mass system shown
in Fig.1. Amplitude-frequency curves for the two-mass system (n = 1) for
the cross-sections z = 0, 0.25, 0.5, 0.75, 1.0 and for k3 = 0.05 are plotted
in Fig.3 for a frequency p < 3.8 of the external excitation (3.1) including
3 resonant regions (w;, = 0.379, wy = 0.975, w3 = 3.407). From Fig.3 it
follows that the maximal displacement amplitudes in the first resonant region
increase with the increase of z and that such regularity does not occur in
the remaining resonant regions. Amplitude jumps, typical for the nonlinear
discrete systems (cf Hagedorn, 1981) occur in the second resonant region. The
jumps appear place in all considered cross-sections of the model for the same
frequencies of external excitations. In the third resonant region no effects of
the local nonlinearity are observed. The solution in this region coincide with
the solution in the linear case.

From Fig.3 it follows that the effect of the local nonlinearity can be inve-
stigated for an arbitrary cross-section of the elastic element in the considered
model. In order to avoid plotting too many diagrams, we concentrate on the
study of this effect only for the cross-section z = 0 for p < 2. The effect of
the assumed nonlinearity is represented by the parameter k3 standing by the
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Fig. 3. Amplitude-frequency curves for the two-mass system for
z =0, 0.25,0.5,0.75, 1 with k3 = 0.05

12(

Fig. 4. The effect of k3 for the two-mass system with do = 0.05, a9 =1
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nonlinear term in Eq (2.1) and by the changes of the damping coefficient dj
and amplitude ag of the external excitation (3.1).

The amplitude-frequency curves for the displacement in the cross-section
z = 0 are plotted in Fig.4 in the linear case as well as for the nonlinear model
with k3 = 0.01, 0.025, 0.05, 0.075, 0.1. From this figure it follows that in the
first resonant region the displacement amplitude decreases with the increase
in the parameter k3 while in the second resonant region the amplitudes in
nonlinear cases are higher than those in the linear case. The highest amplitude
in the second resonant region is observed for k3 = 0.05. The jump phenomenon
typical for nonlinear discrete systems occurs for k3 > 0.01. The distance
between jumps for a fixed k3 grows and the angle of diagrams inclination to
p-axis decreases with the increase in k3.

Diagrams in Fig.5 and Fig.6 show the influence of damping (dy = 0.05,
0.075, 0.1) and the amplitude of the external excitation (ap = 0.5, 1.0, 1.5),
respectively, on amplitude-frequency curves for # = 0 for the two-mass system.
From these figures it follows that in the both considered resonant regions the
displacement amplitudes increase with the decrease of damping and with the
increase in the amplitude a( of the external excitation. Amplitude jumps can
occur in the second resonant region and the distances between jumps increase
with the decrease of damping and with the increase in aqg, respectively.

3.2.2. Three-mass system

Diagrams in Fig.7 <+ Fig.9 concern the three-mass system with n = 2 and
parameters (3.11). The amplitude-frequency curves for cross-sections z = 0,
0.5, 1.0, 1.5, 2.0, k3 = 0.05, dy = 0.05, ag = 1 and for p < 4 are shown
in Fig.7 including 5 resonant regions (w; = 0.28, wy = 0.727, w3 = 1.187,
wg = 3.275, ws = 3.595). One can notice that in the first resonant region the
maximal amplitudes increase with the increase in « while in the remaining
resonant regions no regularities of that type occur. The maximum amplitudes
in the second, third and fourth resonant regions are obtained for z = 2.0,
z = 1.0 and z = 0.5, respectively. In the second resonant region the jump
phenomenon typical of the nonlinear discrete systems appears. It appears for
the same frequencies of the external excitation for all considered cross-sections.

The effect of the parameter k3 in the case of the three-mass system is
shown in Fig.8 and Fig.9 for amplitudes of displacements in z = 0 and for
amplitudes of nonlinear forces (2.1) applied in the cross-section z = 0. The
diagrams are plotted out with dy = 0.05 and ap = 1.0 and for p < 2.
From diagrams in Fig.8 it follows that displacement amplitudes in the first
resonant region decrease with the increase in k3, in the second resonant region
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Fig. 6. The amplitude effect of the external excitation for the two-mass system with
ks = 0.05, d¢ = 0.05
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Fig. 7. Amplitude-frequency curves for the three-mass system for
z=20,05,1, 1.5, 2 with k3 =0.05

12
Y

0

Fig. 8. The effect of k3 on the displacement amplitudes for the three-mass system
with dy = 0.05, ag = 1
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Fig. 9. The effect of k3 on the force amplitudes for the three-mass system with
d() = 005, apg = 1

they also decrease with the increase in k3 and in the third resonant region
its influence is rather weak. The jump phenomenon typical of the nonlinear
discrete systems occurs in the second resonant region. From the amplitude-
frequency diagrams for the spring force (2.1) shown in Fig.9 it follows that the
strongest effect of the parameter ks is noticed in the second resonant region
where the amplitude jumps occur. The amplitudes in nonlinear cases are much
higher than for k3 = 0.

The effects of damping and the amplitude of the external excitation are
presented in Fig.10 and Fig.11. Respective diagrams of amplitude-frequency
curves for z = 0 in Fig.10 obtained with dy = 0.05, 0.1, 0.15, 0.2 and
diagrams in Fig.11 obtained with ey = 0.1, 0.25, 0.5, 1.0, 1.5 inform that
in all the considered resonant regions displacement amplitudes of the cross-
section z = 0 in the three-mass system decrease with the increase of damping
and with the decrease in external excitation amplitude. In the second resonant
region these amplitudes may suffer the jump.
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0 0.4 0.8 1.2 1.6 p 2.0
Fig. 10. The effect of damping for the three-mass system with k3 = 0.05,ap =1
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Ya

apg=1.5

4l
2
0 0.4 0.8 1.2 1.6 p 2.0

Fig. 11. The amplitude effect of the external excitation for the three-mass system
with ks = 0.05, dy = 0.05
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3.2.8. Four-mass system

12
Y ky=

Fig. 12. The effect of k3 on the displacement amplitudes for the four-mass system
with dg =0.05, a9 =1

Similar numerical results can be obtained for more complex discrete-
continuous models having more than 3 rigid bodies. Such calculations were
performed for four-mass and five-mass systems. Some of these results for the
four-mass system are presented in Fig.12. Namely, those diagrams show the ef-
fect of the parameter k3 on amplitude-frequency curves for z = 0 including 7
resonant regions (w; = 0.22, wy = 0.594, w3 = 0.949, wy = 1.278, w5 = 3.222,
wg = 3.442, w7 = 3.667). One can notice that the amplitude jumps may ap-
pear in the third resonant region. Similarly as in Fig.4 and Fig.8 showing the
effect k3 for the two-mass and three-mass systems, respectively, displacement
amplitudes in resonant regions before the jumps decrease with the increase
of k3 while after the amplitude jumps no effect of the local nonlinearity is
observed. In the case of the five-mass system, amplitude jumps are noticed
also in the third resonant region. Suitable amplitude-frequency diagrams for
the five-mass system are not given here.

It seems to be interesting to compare the above results with the numerical
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results presented by Pielorz (1995) for nonlinear discrete-continuous models of
mechanical systems undergoing torsional deformations. From those results it
follows that for the assumed parameters corresponding to drive systems jump
phenomenon are observed in the :th resonant region for the system having
i rigid bodies. In the systems under considerations such regularity does not
occur. Here, for the two-mass and three-mass systems the amplitude jumps
appear in the second resonant region and for the four-mass and the five-mass
systems in the third resonant region.

4. Final remarks

The considerations presented in this paper have a theoretical character.
From them it follows that the method utilizing the wave solution of the equ-
ations of motion can be an efficient tool in dynamic investigations not only of
linear but also of nonlinear vibrations of dicrete-continuous models of systems
subject to transverse kinematic excitations. The accuracy of the method has
been examined in the case of the single-mass system the analysis of which can
be reduced to studying a nonlinear equation of the Duffing type.

In the discussed discrete-continuous systems with the local nonlinearity,
some properties of the solution corresponding to the Duffing equation are ob-
served. Namely, in the amplitude-frequency curves determined for multi-mass
systems the jump phenomenon may appear in the second or third resonant
region. The presented diagrams show not only the effect of the parameters
representing the local nonlinearity, but also give some information about the
regions where the local nonlinearity can be neglected.

Numerical calculations concerning the amplitude-frequency curves are per-
formed for selected values of the constant parameters describing the analysed
discrete-continuous models of low structures. Analogous calculations can be
executed for other values of these parameters. However, these results will differ
from those given in the present paper only quantitatively and not qualitati-
vely. The main conclusions about the effect of the local nonlinearity on the
behaviour of discrete-continuous systems remain valid.

10 — Mechanika Teoretyczna
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Nieliniowe modele dyskretno-ciagle w analizie niskich obiektéw
poddanych wymuszeniom kinematycznym wywotanym falami
poprzecznymi

Streszczenie

Praca dotyczy analizy dynamicznej niskich obiektéw poddanych poprzecznym wy-
muszeniom kinematycznym wykorzystujac nieliniowe modele dyskretno-ciggle. Mo-
dele te skiadaja sie z bryl sztywnych i elementéw sprezystych poddanych tylko od-
ksztalceniom $cinajacym. W modelach tych mozna uwzglednié¢ dyskretne elementy ze
sprezyng o nieliniowej charakterystyce reprezentujace lokalne nieliniowoéci. W roz-
wazaniach zastosowano metode falowa, w ktoérej wykorzystuje sie rozwigzanie fa-
lowe réwnan ruchu. Obliczenia numeryczne wykonano dla modeli z jedng, dwiema,
trzema i czterema brylami sztywnymi. Koncentrujg sie one na wyznaczaniu krzywych
amplitudowo-czestoSciowych i badaniu wplywu parametréw repezentujacych lokalng
nieliniowo§é na przemieszczenia w wybranych przekrojach poprzecznych elementéw
sprezystych rozwazanych uktadéw dyskretno-cigglych.
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