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The paper deals with the inverse simulation problem of aircraft general
motion. The aircraft is constrained to follow a specified 3D trajectory
(two program constraints), and two other demands, are imposed on air-
frame attitude with respect to the trajectory and on flying speed. The
guidelines for effective modelling of aircraft prescribed trajectory flight
are discussed, and a method for computing time histories of state varia-
bles and program control (that ensures the programmed motion realiza-
tion) is developed. Some results of numerical simulations are reported.
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1. Introduction

Inverse simulation techniques are computational methods for determining
the control inputs to a dynamic system that produce desired system outputs.
Such techniques can be powerful tools for the analysis of problems associa-
ted with manoeuvring flight (cf Azam and Singh, 1994; Blajer and Parczew-
ski, 1990; Hess et al., 1991; Kato and Sugiura, 1986; Lane and Stengel, 1988;
Thomson and Bradley, 1990). The problem addressed herein involves four pro-
gram constraints imposed on aircraft motion; i.e., a specified space trajectory
(two constraints), a condition on airframe attitude with respect to the trajec-
tory, and a specified time-history of flying speed. The aircraft is controlled by
aileron, elevator and rudder deflections, and by thrust value changes.
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The number of motion specifications is smaller than the number of airframe
degrees of freedom. The problem at hand may thus be considered as a partly
specified motion. This is not the case, however, since the realization of tra-
jectory constraints is tangent (cf Blajer, 1997; Blajer and Parczewski, 1990).
The control surface deflections influence primarily the aerodynamic moments,
and give small (if any) effects on aerodynamic forces. The induced control
reactions cannot thus directly govern the balance of the applied and inertial
forces in the orthogonal to the trajectory (constrained) directions, and can-
not therefore directly ensure the trajectory realization. Nevertheless, since the
aerodynamic forces depend on airframe attitude with respect to the trajec-
tory, the force balances can be assured by suitable fitting the attitude, which
can directly be governed by the appropriate control surface deflections. That
means two additional requirements imposed on airframe attitude or, in other
words, the trajectory constraints are ”doubled” consequent upon their tangent
realization. This provides also an explanation of why at most four program
constraints (including two "doubled” trajectory constraints) can be imposed
on the aircraft in order to fully specify its motion, and why the six-degree-
of-freedom system can explicitly be controlled by four control inputs. Since
the realization of the other program constraints is orthogonal (cf Blajer, 1997;
Blajer and Parczewski, 1990), we deal thus with a mixed tangent-orthogonal
realization of the program of motion as introduced above.

In the paper, the guidelines for effective modelling of the aircraft prescribed
trajectory flight are discussed, and a method for computing time histories
of state variables and control in the programmed motion is developed. The
solution gives an opportunity to study the simulated control strategies and
evaluate feasibility of the modelled manoeuvres. Such analyses may be useful
in analysing extreme flight conditions (e.g. aerobatic manoeuvres) or may be
used for planning missions of pilotless vehicles. In the latter case, the computed
program control can be applied as feedforward control, while the predicted
time-variations of state variables can serve as the reference for the monitored
actual flight state variables. The obtained differences can then be used in a
feedback control loop added to the feedforward control.

2. Mathematical model

2.1. Coordinate systems

The following coordinate systems are used:
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(X) Inertial Ojzyyrzr, with Ojzy axis pointed vertical and downward

(G) Gravitational Ozgygzg, with the origin at the aircraft mass centre O
and parallel to Oyzyyrz;

(A) Aerodynamic Oz4yaza, with Oz 4 axis pointed along the flying speed
vector v

(B) Body-fixed Ozpypzp, with Oxzpzp plane being the airframe symmetry
plane.

Fig. 1. Orientation of (K) and (G) reference systems

The three angles that orientate (A) and (B) reference systems with respect
to (G) are traditionally Bryant’s angles ¢k, 0k and 9k, for K = A, B (see
Fig.1), and the respective transformation matrix is

Cocy COS+y —Sg
ArG = | 5¢59Cy — CpSy  SpSpSy +CeCy  SpCo (2.1)
CHpSPCy T CpSy  CpSeSy — SpCy  Colh

where s, = singk, ¢y = cosfk, ... . The absolute angular velocity of (K),
Wy, expressed in (K) is

p 10 —s b b
w(K ) = 0 Co S¢Co Q}( = B[{ 0']( (2.2)
0 =354 cyep Vi YK

8 — Mechanika Teoretyczna
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Fig. 2. Orientation of (B) and (A) reference systems

The angular orientation of (B) and (A) reference frames is described by
the angles of attack « and sideslip 0 (Fig.2), and the transformation matrix
1S

Call  ~Cad8 —Sa
Aga = Sg g 0 (2.3)
SaCg —SaS8  Cu

while the angular velocity of (A) with respect to (B), w,,p, expressed in
(A) is
A wse Uy é
wi‘/)B =1 0~-¢s O .| = BA/B . (2.4)
0o 1 B 6
Based on Eqgs (2.1) = (2.4) two other useful relations can be derived. The first
one is a matrix representation of the vector formula for the aircraft absolute

angular velocity Wp = Wa+Wp/a = Wa~W, . Expressed in (B) the formula
reads

p
w(BB) —|q|= ABA(w(AA) _ “’(AA/)B) —
T

:ABA(a,[j)(BA((/)A,HA) 9:,4 - Ba,p(0)

Pa [ :
YA
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and serves to determine p, g and r (the roll, pitch and yaw rates, respectively)
in terms of «, 8, ¢4, 64, and &, B, b4, 64, wA The other relation is

ABG(¢B,93a¢B) = ABA((Y,,B)AAG(¢A,9A,'¢A) (26)

and can be used to determine the classical airframe roll, pitch and yaw angles
(¢B,037 ¢B) in terms of G, /B’ ¢A) 9A7 ¢A-

Some other important features of the transformation matrices introduced
in Egs (2.1) and (2.3) are

Akr = A¥K - ALK (2.7)

Ak = U(K/)[ALK = AKr~(LL/)K

for K = G,A; L = K,B, and (-) in Eq (2.7)2 denotes a skew-symimetric
matrix, which for a vector a = [ag,ay,a,]' is defined as

0 —a, ay
a=| a, 0 —a; |=-3' (2.8)
—ay a4 0

2.2. Dynamic equations

For the sake of simplicity of the mathematical description of prescribed
trajectory restrictions imposed on aircraft, it is convenient to use the dyna-
mic equations of translatory motions in (A), while using the angular motion
equations expressed traditionally in (B). The matrix form of the equations
reads

mit ) 4 mat A~ FA)

(2.9)
Jot) 4+ 5w = ND
where
m - mass of the aircraft
V;A) — flying speed vector representation in (A),
v = [1,0,0] T
w(AA) — representation in (A) of the absolute angular velocity of (A)
frame
w(BB) - defined in Eq (2.5)

J - matrix of aircraft moments of inertia in (B).
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Assumed the jet thrust 7T is pointed along the Oz g axis, the components
of applied forces F) and torques NP) respectively in the (A) and (B)
reference frames, are

1 Cy Calp —35g
F(A):—EpSv2 ¢y | +T | —caSg | +mg | spco
Cz —Sq C4Co
(2.10)
) bey
N(B):§p502 CaCm,
bey,
where
p — air density
S - lifting surface
g — acceleration of gravity
b - wingspau
¢, — 1mean aerodynamic chord.

The matrices appearing by T and mg in Eq (2.10), are, respectively, the
first and third columns of Asp = AEA and Ayg defined in Egs (2.3) and

(2.1). The drag, side and lift force coefficients c(FA) = [ez, ¢y c.) ", and the
coefficients C(A?) = [c1, ¢m, €] | of rolling, pitching and yawing moments, have
been assumed as follows

CI:CI(Q,,B,(Se,Ma) Cl:Cl(a767p;T7(sa>6’l')
Cy = Gy(a’rﬁap',ra (57) Cm = Cm(Q, Qaée) (2.11)
Cy :CZ(Q)CL(SG) Cn:Cn(a76;p7T7(saa5‘l‘)

where Ma is the Mach number.

2.3. Equations of program constraints
2.3.1.  Prescribed trajectory

The 1ost convenient representation of a desired trajectory in space is

Z
fD=#Dgy = | 7(s) (2.12)
z

—

where (-) denotes specified, and s is the arc length parameter (Fig.3). For the
purpose of this model, a continuous second derivative of ?U)(s) with respect
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to s must be assured. In this application, the trajectory is first sketched
by successive points in space, and then interpolated/approximated by spline
functions of appropriate order. The foundations of such a procedure were given
by Blajer and Parczewski (1990).

Fig. 3. Aircraft prescribed trajectory flight

2.8.2.  Airframe attitude specification

The following two optional requirements imposed on airframe attitude with
respect to the trajectory are considered

B=0 or ¢=4¢(s) (2.13)
The first one specifies the coordinated turn flight conditions, while the other
is useful in modelling of such aerobatic manoeuvres like roll or bunt.
2.5.83. Specified flying speed

A reasonable specification of this type is v = ¥(s). For the purpose of this
model the constraint should however be modified to

s = 3(t) (2.14)

In some simple cases, e.g. ¥ = const, the formulation (2.14) is evident. In a
more general case, Eq (2.14) comes as a solution to ds/v(s) = dt. Herein it is
assumed that Eq (2.14) is given, and the flying speed constraint is equivalent
to v =35.
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3. Equations of program motion

3.1. Trajectory constraint conditions

Differentiating with respect to time the trajectory constraint (2.12) we
(1 . . . . .
obtain 3 = (N = (1) — V(&) which means that the aircraft linear velocity
7 is tangent to the trajectory path. Since (&) = Agav(®) (4 = [1,0,0] T,
and v = §, the condition can be transformed to

cos B4 cos )4 7!
cosbasmypy | = | 7 (3.1)
—sinf4 z

where ()" denotes differentiation with respect to s. As 84 € (—n/2,7/2)
and ¥4 € (0,27), Eq (3.1) serves for the explicit determination of 84 and
14 angles that orientate ¥ with respect to the (G) frame.

Differentiating once more the above trajectory constraint at the ”velocity
level” (Aav* = T3), and then using Eq (2.7)2, we obtain the trajectory

constraint condition at the ”acceleration level” in the following form
Aca (\;(A) +m§;‘>v<A>) = 7?54 P/(D32 (3.2)

The right-hand side of Eq (3.2) expresses the representation in (G) of tangent
a, (a.g-G) =7%) and normal d, (asf’) =7"(1§?) accelerations imposed on the
aircraft by the trajectory constraint (2.12). Premultiplying Eq (3.2) by Aag,

and using the dynamic equation (2.9),, we finally arrive at
—FY 4 mAag (P +70D52) =0 (3.3)

According to Eq (3.1), 7 is equivalent to the first row of Asg (the first
column of Aga). It is thus the representation in (I)/(G) of a (unit) vector
pointed at ¥ direction (along the first axis of (A) frame). Then, P'!) repre-
sents a vector pointed at the centre of trajectory curvature, contained in the
orthogonal to trajectory plane. It is then

1 0
AAG/I:’(I) = 0 and AAG’F’(I) = X (3.4)
0 X

where (x) denotes a non-zero entry. The first scalar equation of Eq (3.3),
expressing balance of the applied and inertial forces at the tangent to the
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trajectory direction, is therefore
1, . ) }
EpS'u ¢ —Tcosacosfl+mgsinfq+ms =10 (3.5)

The other two scalar equations of Eq (3.3), which express balance of the applied
and inertial forces in the plane orthogonal to the trajectory (along the second
and third axes of (A) reference frame), are then

1 . .
§pszcy +Tsinf —mgsing4cosfs +
+m$2{§"(sin pasinfacosths —cospasinygy) +

+4" (singasinfsin4 + cos ¢ cosya) + 2" sing4 cos HA] =
(3.6)

1 .
EpS'uzcz + Tsinacos f —mgcosdacoshy
+n? [E"(cos pasinbcosyhs + singasingy) +

+7"(cos pasin@ sins —sing 4 cospa) + 2" cos ¢4 cos HA] =0

Setting § = s, Egs (3.5) and (3.6) express the conditions imposed on aircraft
dynamics by the acceleration forms of the velocity, and trajectory constra-
ints defined in Eqs (2.14) and (2.12), respectively. Only the first condition,
regulating the demanded variations of ¥(s) — 5(¢), can be directly and expli-
citly governed by appropriate changes of T control parameter. The two other
conditions, however, denoting the condition of vanishing motion in the plane
orthogonal to the trajectory, are not explicitly governed by the available con-
trol reactions (7' has already been ”"used” and the control surface deflections
induce small/vanishing effects on ¢, and ‘c;). The realization of flying speed
constraint (2.14) is thus orthogonal, while the realization of trajectory constra-
int (2.12) is tangent (refer to Blajer (1997) for more details). In consequence,
Egs (3.6) denote two additional constraints imposed on the airframe attitude
- the trajectory constraints are "doubled”. As the realization of the airframe
attitude constraint (2.13) is orthogonal (the condition imposed on aircraft dy-
namics by the constraint acceleration form involve control reactions induced
by control surface deflections), we deal thus with a fully specified motion of
six-degree-of-freedom aircraft - the four constraints (2.12) +(2.14) are supple-
mented by the additional constraints (3.6). We can also state that there are
three constraints imposed on airframe attitude, Eqgs (2.13) and (3.6), governed
by coordinated deflections of ¢, d. and é,, and one constraint imposed on
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the flying speed, Eq (2.14), regulated by T changes. The realization of con-
straints (3.6) ensures then the realization of trajectory constraints (2.12). In
this way, the six-degree-of-freedom aircraft can be controlled explicitly by the
four control parameters.

3.2. Recapitulation

Let us introduce the following vectors of algebraic variables y, differential
variables z, and control variables u

y = [pa,0a,0a, a8 z=[p,q,r]" u=1[6g,0.,6,T|" (3.7)

After setting s = §(t), § = v = 8(t) and § = 5(¢), and then ¥ = 7[5(t)]
and 7' =T7'[5(t)], the six algebraic equations: (2.13), (3.1) (which stand for
the two requirements on 4 and 14) and (3.5) and (3.6) can be symbolically
rewritten as

F(y,z,u,t) =0 (3.8)

Note that Fgs (2.13) and (3.1) can be solved separately for B(t), 84(t) and
Da (t) or ¢a(t), Ba(t) and 4(t), depending on the requirement of Eq (2.13)
which is in use. The kinematic relation (2.5) can then be rewritten as three
equations of the following symbolic form

z=G(y,y) (3.9)

Finally, the dynamic equation (2.9), constitutes three differential equations of

the symbolic form
z=H(y,z,u,1) (3.10)

Taken together, Eqgs (3.8) = (3.10) form twelve differential-algebraic equations
(DAESs) in twelve variables y, z and u, called equations of program motion.
The index of DAEs (3.8) =+ (3.10) is three (Brenan et al., 1989).

3.3. Numerical procedure

The solution to DAEs (3.8) + (3.10) is formed by program variations of
the state variables g(t) and Z(t), and control #(t) that ensures realization
of the program. In order to obtain this solution, Gear’s approach can be used
(Brenan et al., 1989). Given vy,, z, and u, at time ¢,, using the Euler
backward method, the values y, |, z,11 and Up4 at time t,4) = &, + At,
can be found as a solution to the following set of non-linear algebraic equations
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F(yn-i—lﬁzn-i—l; Uptl, tn—f—l) =0

Zny) — G(yn.+1) Y‘m_lzz_)’@) =0 (3.11)

z'rL+] - Zy

At - H(Yn+l:ZTL+l.a un+l>tn+l) =0

In this way the solution can be advanced from time ¢, to t,,. If necessary,
in order to improve numerical accuracy, higher-order backward difference ap-
proximation methods (Brenan et al., 1989) can be applied.

It may be worth noting that, in the developed model, there is only a weak
coupling between Eqs (3.11); and (3.11)3 through the control parameters u.
The jet thrust T is represented onfy in Eqs (3.5) and (3.6}, included in Eq
(3.11);, while the effect of control surface deflections is manifested mainly in
the dynamic equations of rotational motions (2.9);, included in Eq (3.11)3,
and their effect on aerodynamic forces (aerodynamic coeflicients) in Eqgs (3.5)
and (3.6), and thus in Eq (3.11),, is usually small or even vanishing (as it was
assumed in Blajer and Parczewski (1990)). The above procedure results then
in the exact solutions for ¥(t) and T“(y), based mainly on Eq (3.11),, and
approximated solutions for Z(t) and 5(t), obtained from Eqs (3.11)3 3. Note
also that neither the nurnerical error accurnulates in time nor the approxima-
tions influence the solution. For these reasons, the simplest Euler backward
difference method, indicated in Egs (3.11), was used to solve the problemn at
hand.

4. Case study

The proposed mathematical model has been used for digital simulatior
of a prescribed trajectory flight of an Unmanned Aerial Vehicle (UAV). The
mission is to pass successively through a set of points. For large scale missions,
the points are specified by their geographic coordinates and QNH heights
(above the sea level). Taking into account the ellipsoidal shape of the Earth,
the points are then identified in a geocentric cartesian coordinate system, and
in this frame the trajectory is interpolated/approximated by spline functions.
For a given UAV position, the functions F''(s), P)(s) and #()(s) are thus
referred to a local (I) frame, with Orzyyr plane tangent to the Earth ellipsoid.



974 W.BLAJER ET AL.

For small scale manoeuvres, the modelling and interpolation/approximation
of the desired trajectory can directly be completed in one (I) frame.

Yy |m]|

4000

3000

2000

T 1

1000

1 Fo! 1 ) L 3 PR
0 1000 2000 3000 4000
X [m]

Fig. 4. Specified trajectory

In the considered case, the trajectory was sketched by five way points
(shown in Fig.4), and then interpolated through these points by using cubic
spline functions (see Blajer and Parczewski (1990) for details). The aircraft
was then required to fly along the modelled trajectory at a constant speed
ve = 180 km/h, and the condition of coordinated turns (5 = 0) was assumed.

0
60
¢ |deg)
0
-60¢ L | L
0 5000 10000

s |m]
Fig. 5. Angle of attack and bank angle variations
The results of numerical simulation of the modelled UAV iission are de-

monstrated in Fig.5 + Fig.7. As seen in the graphs, the simulated flight is
characterized by five phases of practically steady motion, separated by three
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Fig. 6. Angular velocity variations
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Fig. 7. Changes of control parameters
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highly non-linear phases in the neighbourhood of the inner way points indica-
ted in Fig.4. The extreme flight conditions at those places are, in part, due to
that cubic splines were used to interpolate the trajectory. The produced chan-

ges of the trajectory curvature (\/:1:”2 + y"* + z"?) are shown in Fig.8, and
the maximal values appear at the inner way points. Using five-order splines to
construct the trajectory would probably smooth the curvature variations and,
consequently, the changes of state variables and control parameters. Similar
effects could possibly be achieved by setting additional points to sketch the
trajectory more ”"rounded”, and using additional points as approximation po-
ints (Blajer and Parczewski, 1990). This problem will not however be discussed
here.

°
=)

Curvature |[1/m]|

10000
s [m]

Fig. 8. Changes of trajectory curvature

5. Conclusion

A unified and general model of aircraft prescribed trajectory flight is de-
veloped. Given program of motion defined in Egs (2.12) + (2.14), consequent
variations of aircraft state variables in the specified motion as well as the de-
manded control can be determined. Such results can be useful for at least two
reasons:

e To study the nature of an UAV mission and to examine its feasibility.
On this basis the mission model can be improved/optimized. In future
research, the mathematical model will be generalized by considering the
wind drift.
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e To develop flight control systems based upon the non-linear inverse dy-
namics, which may provide an improved level of safety and performance
over the conventional designs. The obtained variations of program (no-
minal) control can serve as feedforward control, while in future work it is
planned to construct a feedback control loop to stabilize the prescribed
trajectory path flight.
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Programowany ruch i sterowanie UAV w zadanej misji

Streszczenie

Praca dotyczy zagadnienia symulacji odwrotnej ruchu samolotu. Zada sie, by sa-
molot wykonywal lot po zadanej trajektorii przestrzennej (dwa wiezy programowe)
a dodatkowymi wymaganiami sa narzucone zmiany konfiguracji platowca wzgledem
trajektorii oraz predkosci lotu. Dyskutuje sie sposéb modelowania tak okreslonego ru-
chu programowego oraz przedstawia metode wyznaczania przebiegéw w czasie zmien-
nych stanu tego ruchu oraz wymaganego sterowania samolotem. Zamieszcza sie wyniki
symulacji numerycznych.
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