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The fundamental matrix of the generalised thermoelastic system is con-
structed with interaction between temperature and displacement fields as
well as finite rate of heat propagation taken into account. Components ol
the considered matrix are represented in terms of Laplace transforms of the
corresponding functions. These functions are represented as integrals over
the segments which connect singular points of their Laplace transforms.
The characteristic properties of these functions are investigated.

Key words: generalised thermoelasticity, fundamental solutions

1. Introduction

The present contribution contains continuation of our previous papers
(1981, 1982, 1985) devoted to investigation of the generalised thermoelastic
system of equations proposed by Kaliski (1965), Lord and Shulman (1967)
and solved with taking into account the interaction between temperature and
displacement fields and the finite rate of heat propagation.

In Mokryk and Pyryev (1981) the Laplace transform of the fundarmental
matrix of generalised thermoelastic system was constructed. Analytical pro-
perties of the matrix components depending on the Laplace transform cornplex
parameter were investigated.

In Mokryk and Pyryev (1982) analytical properties of the characteristic
parameters of generalised thermoelastic system were investigated.

In Mokryk and Pyryev (1985) the fundamental solution F. of the so called
thermoelastic operator A(0) = 97 — 07 (ad? + b0;) + c07 + do? was studied.

'"The paper was presented at the Second Polish-Ukrainian Conference ”Current Problems
of Mechanics of Nonhomogeneous Media”, Warsaw 1997
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The quantities E., A(9) were defined after Wagner (1994). The investigation
of the solution F; was conducted by Wagner (1994) but without taking into
account the finite speed of heat propagation (¢ = 0). The decomposition
theorem for thermoelastic operator A(9) was formulated by Ignaczak (1989).

When studying the transient problemns of coupled thermoelastic two groups
of methods are usually applied. The first of them is based on tine elirna-
tion from the corresponding partial differential equations and the second ouie
employs elimination of space coordinates.

The Laplace integral transform method is a member of the fitst oue and
allows for considering the problem as an elliptical boundary value oue with a
paraineter. For solving of such a problem the well-known methods can be used;
e.g., method of an integral transformation with respect to space coordinate (cf
Sherief and Anwar, 1994), method of an expansion into a series (c¢f Sherief

and Anwar, 1994). method of an integral equations (cf Kupradze et al., 1976).
operator method. But the main obstacle arises, however, when performinug the
inverse Laplace transform.

The second group of methods 1s made up of: method of expansion into a se-
ries with respect to the corresponding complete orthogonal system of [uiictions.
method of finite integral transformation with respect to a space coordinate (cf
Sabodash and Cheban, 1971), method of infinite integral transforination with
respect to a space coordinate (cf Lenyuk aud Kosteuko, 1981). They allow oue
to consider the studied problem as the Cauchy problein for the correspouding
transforms.

Due to substantial mathematical difficulties arising in both the above men-
tioned groups of methods also the asymptotical metlods are applied. For
example in Popov (1967) and Sherief and Ezzat (1994) the method of expan-
sion of a solutiou into a series with respect to a small coupling paraine(er was
used. In Kil’chynska (1971), Norwood and Warren (1969). Wadliawan (1972),
Sherief and Dhaliwal (1981), Dhaliwal et al. (1995) the so called mnethod of
short times Nowacki (1975) is used, i.e. the first terins of near frout asymnptote
were determined. In Popov (1967), Norwood and Warren (1969) the method
of long times was used.

Kil'chynska (1971) and Lazarov (1980) constructed the automodelling so-
lutions to generalised thermoelastic probleimns.

Recently, numerical methods have been widely applied to solving the dyua-
mical thermoelastic problems; e.g., finite element method (cf Ting and Clien,
1982), method of characteristics (c¢f Naval and Sabodash, 1976), method of
numerical inversion of the Laplace integral transform (cf Sherief aud Au-
war, 1994).
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The uniqueness of general initial boundary-value problem forinulation for
the generalised linear dynamic thermoelastic was established by Tgnaczak
(1982) with the us of the associated conservation law involving ligher-order
tume derivatives.

The fundamental matrix of the generalised thermoelastic system was stu-
died by Gawinecki {1988), Gawinecki and Hung (1990). The rewiev of papers
on the generalised thermoelastic models can be found, e.g.. in Chandrasekha-
valah (1986), Podstryhach and Kolyano (1976), Ignaczak (1989).

2. Formulation of the problem

The generalised thermoelastic model proposed by Lord and Shulman
(1967), in which the interaction between temperature and displacement fields
and finite rate of heat propagation have been taken into accouut, is consi-
dered. This systern can be represented iu terms of the displacemnent vector
components u = [u), Uy, us] and the texmperature 6

18, 0,)U(z,t) = —B(z, t) (2.1)

where J(9;,0;) - linear matrix differential operator,

8z, 8) = [Jum(82,8)], (2:2)
with the cornponents
Wonm Iy + (A + u)@%nu’l n,m=12,3
) =70, n=123 m =4
Jnm(azaat) - ‘ﬂg(at)at%nm n =4 m = 1)273
I, n=4 m =4
where
—c; %0} j=1,2 i
;= A - lat J 1, G, = 1 = m
A—x )G 7=23 0 £

A=092 +02,+ 0%,

A+ 2 \/ﬁ K
) = _— Cy = —_— Cq — —
V » p b
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and

ue -~ vector functions which are considered as one-columnn na-
trices, U = |uy,ug,uc 8],
S = [, Py, Py, £(0,)Q(z, 1)/ Xo] T

F,(z,t) - components of the body force vector

Q(z,t) - density of an internal heat source

A, 1t — Lame coefficients

P — density

e — coefficient of linear thermal expansion

yy - coupling coefficient (cf Podstryhach et al., 1976),
n =600/ Ao, v = (3 + 2p)

o -~ temperature of the body in the undeformed state

Ap ~ heat conductivity

K - thermal diffusivity

tr — heat flow relaxation time.

3. Construction of the matrix of fundamental solution

Using the Fourler integral transform with respect to the space coordinates
T = (21,29, 23) and the Laplace transform with respect to time, the solution
of Egs (2.1) can be written in the form (Mokryk and Pyryev, 1981)

U(z,t) = L(z,t) x ®(z, 1) (3.1)

where L(z,t) = [Lnm(Z,t)]axa — matrix of fundamental solution (the delay
Green function of free space) of Eqgs (2.1), i.e. a square matrix satisfying the
equation

N8,,00)L(z, t) = ~3(z)5(1)! (3.2)

where |is the 4x4 unit matrix. The asterisk * corresponds to the convolution
of the corresponding functions with respect to all variables, ¢(-) stands for
the Dirac delta function

Lym(z, t) = 4—;#“{6”"15@ - Ei) +

|z )
40k, [ (F(t = ) + R G (al,1,1)
Lpg(z,t) = mgm&rn [;—(Glﬂz],t,l)} n,m=1,2,3
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2
n=T %5 (La,
L’lm(z-/ t) - dmp (/szuEm{‘z] [G1(15|7t70) + t,,G[(|£L'|.,t,1)} }
1 ¢
L ) = —RTG t,—1 M= =
+ an (2%
R*Gy(lal 1, k) = 3Gy(Iz k) + G (lal, b,k +1) £
J A%
1 .
i§Gj+1(\I”t,k) J=1 =
. 1+e¢ K
ag = M*(1 +¢) —1 (L/l:*% E:XZ:“Q;;
1 t>0
Hy(t) = 4(1) Hi(t) = { 0 t <0
Ho(t) = H ()= () a>0
AT AN H N () dtN a#0 a+N>0 N —iunteger

where the mth column { m = 1,2,3) of the fundamental solution matrix
represent the displacement and temperature field due to the body force of
the components 6(z)d(t)0nm applied at the point z = 0 in the xz,, axis
direction; the 4th column of the fundamental solution natrix represents tle
displacement and temperature field in infinite space due to the heat source
2(8,)Q(z,t) in the form §(z)é(t).

4. Functions G,(&,1,n)

Components of the fundamental solution matrix are represented in terms
of the standard functions G;(|z|,t,n), 7 =1,2,...,14. Cousider the functions
G;(&,7,n) of dimensionless distance ¢ and dimensionless time 7 using the
following relations

Gj(é,T,TL) :(w*)”Gj(}th,n)vj :|I|/€ T:tw*
w=vn =g = (&) =y =1 _ (kY
“_’”2_W_ Wy Vo = Vg = U7 = V13 W
k ko4 .
,()3:’[}5:'[)8:'()14:%:?}1_6:&)_1 'UH:<—"«) k*::%
_a
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Characteristic properties of the functions Gj;(|z|,t,n) are studied in details
by Mokryk and Pyryev (1985). They can be rewritten in terms of the inverse

Laplace transform

Gj(&,7,n) = Gj(€,7,n) + GHE,7,n) j=1,14 (4.2)
1 d N2 +oo+iys ( . )
P Y SLINNNA S / P _EXPATIXT)
G] (f,T,TL) - 2r (dT X?) . G](f,T, n)(_-lX _ XIQ,)N+2 dX (43)
—oo+1x2
X2 > x4 > max{0, x3} c= M
~ _ exp[ivp(x)€] _
G?(&T,“)—R?(X)W p=1,3
13 ! x*
R7(x) = Sitomy £ iam—1) t BL3
7700 = 32 {biam) o am-n B0
1 ¥3,1(X)
BY(x) = 1 B () = — _m,
! ’ B’ (x) X
1 ¥ : 1
BY(0) = —— = %109 BYA0) = —rr— = 'YI(X)ZS(X)
B4 (X) X Bs (X) X
71’3:\/% ax + 16+ 2(x) o=1+M*1+¢) b=1+¢

2(x) = \/(ax +16)% — dx(cx +id) =

¢;u—xﬁu—xﬂ

d=1 pL=a’ —4c pa = d(ub — d) — b*¢
X+ = 1Xp £ Xo Xo— — ” XO*T

For full determination of the four-valued function

Y00 = x/2yax + b+ 2(x)

it is necessary to introduce four leaves of the Riemann surface of complex

variable x = x1 + lxo, Fig.1l. The leav

join the branch points x+, X3, x4. For the definitions of functions -y(x)

es are connected along two cuts which

v3(x) and detailed investigation into their properties the Reader is referred to
Mokryk and Pyryev (1982). We can write

)= e
C+

1,3 =7(x X = ix2

2

= ur

N

X2 — o0
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Fig. 1. Four leaves Riemann’s surface

In Fig.2 one of the possible closed integration contours for calculation of
the integrals (4.3) is presented. The solid line corresponds to the integration
contour which is located on the upper sheet of the Riemann surface, while
the dashed line corresponds to the integration contour on a lower sheet of the
Riemann surface (the third sheet). Different integration contours correspond
to five characteristic variants branching points x4, namely, to the points
Xx=x3=0,x=x4=—id/c.

According to the Cauchy theorem the integral over a closed contour is
equal to the sum of residues of the integrand at its singular points. Finally,
the integral (4.3) can be write down in the form of a sum of integrals along the
edges of cut [},l],m;, m!, along the contours Iy, 15, mo, msy which connect the
branching points x., along the arcs 3,15, m3; l4, 1y, mq, my; g, 5, ms, my,
of circles of sufficiently small radii é3,d4,0g with the centres at the points

X=x3=0,x =x4= —id/c, x = x+,; along the contour segmeuts I, I;
l7,15,mg, mg and along the segments Is,[f, ms, my which are located suffi-
ciently far from both the origin and the points x4. Thus, if N = -2 we
have
1,3 £y o .
Gyo(&,7,m) = —H, (T - a) Zéz 51:{52~>ogjp (&,7,m,8p) (4.4)
p=1 85— 00

where

m

gjp M dp) / / +(1 — 8y7) / +(1 — dpg) / & xn)e X dy
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Fig. 2. One of possible contours of integration for integrals calculation
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From Fig.2 it can be seen that the integrals along the segments [g, [,
l7,15,me, mi; disappear because the integrand is a single-valued function. The
integrals along the segments [s,lf, ms, mi tend to zero as &5 — oo formn the
points x = 0, x = x+ if the following conditions are satisfied

£

T—=>0 n=0
Ct

The integrals along the circle arcs g, Iy, mg, mg of the radii dg around the
branching points x1 tend to zero as dg — 0. The integrals (4.4) for different
locations of the points x4 and x3 = 0, x4 = —id/c can be represented
in terms of the introduced variable integration parameters 4, dq, by, by which
take the corresponding values (see Fig.3) and which Imy; satisfy the following
inequalities

Imy4 > 43 Imys 4+ 04 € Imy4 < =03
[Ty 4| < 43 Tmyx+ + Imx4| < 94 lmxs < Iy, — 4
1e.
djc 41
o2, rm 0 = o[- / S mam) o~ [ S5 (€ 70,m) dal
b3
932 e, 7,m,8,) = ~6X0 /S]2 (&,7,2,mn) do (4.5)
bp 3n/2
9],, (5 T, m,by) = ]+1 / / SH{T,JPei‘p,n) do +
—r/2  7w=by
w-'bp
- / S_?;({,T, épei‘p,n) dnp] p=3,4
by

The integrands S?I’,l(é,T, z,n), m =13 p=1,2 which appear in Eq(4.5), are
combinations of the values of integrands appearing in Eq (4.3)taken on the

corresponding segments.
Let us put down the direct representation of the functions G,(¢,7,0),
Gy (&, 7,1), Go(&,7,0), which are used in the present paper

Gj(&,’l',’n) = Ij(€a7_7n752)[Hl(T*) - HI(T-F)] +I]'L(§,T,’IL751)H1(T+) +

+H(=1) (&, 7,n, 6)) H (=) =12 n=01 T1i=7- >
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Fig. 3. Variable ranges of integration 6y, dz,bs3,b4

where
R
eXo” i + o é - oo €

L& m.8) = 5 /(zpjne g e ) de

42

+ _ 1 + _ 1 ol !
z/;m——l—cosgoi wu—m(wnw—xocowi)
0 0hg

b = £l = (x)? -2 ko =1/(x{)? - «*

os = Era 7z ve = 5 (V204 XUK, +/2° - XK
Ky = /K" £ x{ ay = QIW(\/Z(HLXQK_— ZU—XiK+)

ZOZ\/Z;iV*.(YO)Q Xi:X(I)‘LﬁLbiZO\/p_l v 44
d/c 61
" 5) = ~((~1)6 )
167, 80) = — (=1 6ms | +ém [ ) -
& 83
e 7t i :
(=) Ojnsin(§V Az) dz — (1) djn m=1,3
4 z
/90:\/(X([)?Lfﬂ)?WL(X(I})2 911:910:—@ B0 =1

1
A:§(/€0\/p—1+b—$a) dip =0 dog = —1
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4 VP ] sgnxg Ixo| > &
U ) 2nlaresin(xd /0s) x| < 8
d3 ~x{ < 33 0 x| <6
Xol < 03
0y = “X(’) 03 < X(’) <dfe 0y = { o p 7
ye de<xi Ve - 0d x> 4
01,09 — variable ranges of integration
03 - arbitrary small value.

Using the results of analysis of the functions v, 3(x) carried out by Mokryk
and Pyryev (1982) and expanding the functions é;’s(g,x,n), §=1,14 into a
series in the neighbourhood of the characteristic points we obtain some charac-
teristic asymptotical representations of the functions G;’3(§, 7,n), Gj(&, 7,n),
j=1,14.

Basing on the expansion of the functions é;’s(ﬁ,x,n) into a series in the
neighbourhood of the points x; = 0, x+ and using the Felsen-Marcuvitz the-
orem (cf Felsen and Marcuvitz, 1973) of asyinptotical behaviour of the inverse
transforms as 7 — oo we obtain the following asymptotical represeutation

’ g =1,14
G2(E,m,m) ~ Q1) £ Ry(r) ¢ = const (4.7)
T — OO

where

Q;%(r) = a0 H,10(7)
7

(4.8)

1 sin
Ri(1) = — eXp(X[’)T - {Imaar)Pj [cos {xézT - {Reag'}]

VT
1,3 1,3 4

Pj[-] - some functions which are neglected; a;%, v;™, ay - are represented by
following formulae

1 .
atgzig aéjgzl ag = Z(Qi(X+a+1b)
(4.9)
vt"‘;:n '05’3:7L+1

The analysis of Eqs (4.7), (4.8) shows that in the case when Imys = x§ > 0,

3

. 1 . . .
the functions G;”(£,7,n) increase as 7 — 0o according to the exponential
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law. For xJ < 0 the term R;(r) decreases exponentially and the behaviour
of the functions Gji-’s(ﬁ, 7,n) is determined by the term Q;’:;(T).

The asymptotical representation of the functions G;(§,7,n) as 7 — oo,
& = const can be obtained basing on the theorem (Felsen and Marcuvitz, 1973)
of the asymptotical behaviour of the inverse transforms as 7 — oco. Finally, it
can be written down in the form

Gj(& 7,n) ~ Q;(1) Jj=114 ¢ = const T — 00 (4.10)

where
Q;(71) = ajoHy (1)

a;0, vj are given by the formulae

m:n—é al,U:ai,l v =mn +1 ag0 =2

vz =N+ % a3 = a%,o U =n+ % 04,0 = u'j’o
Vs =N+ % as,0 = aéyo Ve =T+ —‘25 06,0 = ué}o
VT ="n aro = u%o vg =n+1 ago = ugyo
" agp = Gg Vg =1 + % a1p,0 = 20jp
vy =n—1 au)o:al“:l vig=n+ 3 19,0 = 201y
Vi3 =N 0130 = a}3’0 vig =n+1 a0 = (LLI,O

The analysis of the functions G;({,7,n) behaviour as 7 — oo shows that
in contrast to their components G]l-’s(ﬁ,T, n) which increase exponentially for
Imy+ > 0, they do not increase exponentially for any value of Imyi. Their
behaviour at infinity is determined by Q;(7), i.e. G;(&,7,n) increases if
v; — 1> 0, tends to some constant value if v; = 1 and decreases if v; < 1.

Basing on the expansions of functions é]l»’s(&, X,n) Into a series at infinity
we obtain the asymptote

1,3 ~ 13 —ény _ i T _ i
G; (&, 7,m) R;"e Hn+1(7 Ci) j=114 T o -0
(4.11)
where R;-’a, n+ are defined by the formulae
1,3 ’ cic 1,3
m=1 - +

c+(b ! 1

i:*——i( :FXO\/p_L) Blmzl B;’SZ 13 = CF
4 B
1 1
B = —— =y B = =cyC_

4 Bé’s 6 le,'} +
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Note that the dimensionless expansion coefficients 74, 77— can be represented
in terrns of dimensionless velocities ¢y, ¢, ¢g as follows

T Tl (4.12)
N+ = o 9 o~ .
2ney (¢ —c?)
where
b ¢
co =1/ c- < ¢y < ey n=- (4.13)

d d

We apply the method of crossing the top (Felsen and Marcuvitz, 1973) to
calculation of G;’a(é,T,’IL), j=1,14

1,3 3 £ £ T
G Tn) ~ (L]-’OE<T - £> Hv}}(T) T — o =0 H_(Q) — oo (4.14)
where
(T—€/c0)?
E<T_£>_exp[ = ] T =&
co T/ ! 0

and coefficients a?yo, ’U? are defined by Eqgs (4.9).

According to Whitham (1959) the waves which propagate at the speeds
¢+ and c¢g are called higher and lower order waves, respectively.

The above analysis of the functions G]L-’B(ﬁ,T,n), G;(,7,n), j =1,14, as
T — 00, £ = const as 7 — oo, {/7 = const and for 7 — £/cy — 0 allows for
formulation of their characteristic properties.

The diagrams of functions G;(€,7,n) can be easily shown (see Iig.4).
The equations of wave fronts || — c.7 = 0 as well as the equation of main
disturbance |£] — ¢g7 = 0 motion are also sketched in Fig.4. In Fig.4 for
Eqgs(4.11) either the sign ”-” or ”+” should be taken, while Eqs (4.14) and
(4.10) hold.

The functions G;’B(g,T,n) are equal to zero for 7 < £/cy. For n > 0 the
functions Gjl.’:’(g,r, n) are ordinary, for n > 0 continuous and for n <0
generalised singular functions with singularities at the points 7 = §/cy,
respectively. They should be considered as n-derivatives of the functions
G;’a(é, 7,n) for n = 0.1f n > 0 at the points 7 = {/cy the nth derivatives of
the functions G]L-’S(é, 7,mn) reveal jumps of the value of R]l-’3 exp(—£&ny), which
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i |
|El=c, T
. (El=c, T
H
2 75
3
— 4
//
[
I El=c
|
Gi(&.7)=0

Fig. 4. (|¢], 7) diagramme

decrease when the spatial coordinate ¢ increases. For fixed £ and increasing
7 the functions Gjl-’s(f,f,n) behave in accordance with Eqs (4.7).

The functions G;(&,7,7n), 7 = 1,14 are equal to zero if 7 < £/c_ and take
non-zero values for 7 > £/c_. For n > 0 the functions G;(¢, 7,n) are ordinary,
and for n > 0 - continuous. For n < 0 the functions are distributions with
singularities at the points 7 = £/c_ and 7 = £/cy. When passing through
the point 7 = £/c_ the nth derivative of the functions G;({,7,n) for n >0
reveal the jump of the value of R?- exp(—£&n_). Between the poiuts 7 = ¢/c_
and 7 = {/c4 the functions are infinitely differentiable. When passing through
the point 7 = £/c; the nth derivatives of the functions G;(€,7,n) reveal
the jumps of the value of R; exp(—=€ény) for > 0. For 7 = ¢&/cy the
functions are infinitely differentiable and behave in accordance with Eqs(4.10)
as 7 — o0, £ = const. Note that the jump of the nth derivative of the
functions G;(¢,7,n), n > 0 exponentially decreases with the increasing space
coordinate &. Thus, the last parameter n in the functions G;(€,7,n) shows
that for n > 0 they are ordinary and the nth derivatives of these functions
reveal discontinuities of the first kind.

The characteristic feature of the functions G;(¢,7,n) is their behaviour
between the points 7 = ¢/c_ and 7 = £/c4 in the neighbourhood of 7 = ¢/¢
as 7 — oo which is determined Eq (4.14).
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After differentiation of the functions G;(£,7,n), 7 = 1,14 with respect to
time the following equation is true

anL

arm

G;&,m.,n) =G(€ 1,0 —m) (4.16)

5. Conclusions

The components of fundamental solution of the generalised thermoelastic
system are represented by a series of functions G (£, 7,n). In the general case
the representation of these functions in terms of integrals along the seginents
connecting singular points of the corresponding Laplace transforins with re-
spect to time is obtained. The proposed method allows for investigation into
processes represented by this equation for arbitrary fixed times, arbitrary ina-
terial parameters and selected orders of the singularities of propagation fronts.
In the obtained solution there the waves of higher and lower orders appear,
which propagate at the correspondiug velocities ¢y and ¢.
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Macierz podstawowa uktadu réwnan uogdlnionej termosprezystosci

Streszczenie

Macierz podstawowa uogdlnionej teorii termosprezystosci zostala skonstruowane
dla oddzialywan temperatury, przemieszczent oraz propagacji ciepla. Elementy macie-
rzy sa przedstawione w formie transformat Laplace'a odpowiednich funkeji. Whasci-
wodci charakterystyczne tych funkeji zostaly zbadane.

Manuscript received October 15, 1997; accepted for print April 28, 1998





