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The equations of motion are initially formulated using natural coordi-
nates. These coordinates are used to define the position of the system,
kinematic joints between bodies, and forcing functions on and between
the bodies. When using this system of coordinates the definition of initial
system is straightforward. The equations of motion are then expressed
in terms of relative joint coordinates with the wse of velocity transfor-
mation method. The velocity transformation matrix relates the relative
coordinates to the natural ones. The kinematic relationships for each
joint type and the graph theory for identifying the system topology are
used in constructing the velocity transformation matrix. Use of both na-
tural and relative coordinates produces an efficient set of equations wi-
thout loss of generality, then the equations of motion can be efficiently
integrated. ’
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1. Introduction

Recently, the derivation of equations of motion for the Multibody Sys-
tem (MBS) were presented in a variety of forms by Nikravesh (1988), Sha-
bana (1989), Huston (1990), Garcia de Jalon and Bayo (1994). For the rigid
MBS, some techniques allow us to generate the equations of motion in terms
of a large set of dependent coordinates in the form of a large set of mixed
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differential-algebraic equations. Other techniques yield the equations of mo-
tion as a minimal set of ordinary differential equations. Many other in between
approaches provide us with various alternatives.

The equations of motion can be easily expressed in terms of a large number
of absolute accelerations (natural coordinates). These formulation is attractive
because of its simplicity and easiness of manipulation, however thie drawback is
that the coordinates form a large set of mixed differential-algebraic equations,
the numerical solution of these equations is computationally inefficient and,
furthermore, special procedures must be followed to avoid, or to correct, a
phenomenon known as constraint violation.

A method which provides computational efficiency is the so-called joint
coordinates (relative coordinates). With these coordinates, the equations of
motion are expressed in terms of a small set of accelerations. In fact, wheu an
open loop system is considered, the number of coordinates equals the nuinber
of degrees of freedom of the system. The major disadvantage of this method is
complicated derivation of the equations of motion. It is also difficult to incor-
porate general constraints and forcing function, moreover, additional work is
needed in order to determine the absolute values of positions, velocities, and
accelerations of the MBS.

This paper presents a method of formulation of MBS equations of motion
based on natural and joint coordinates. An approach to constructing the ve-
locity transformation matrix based on system topology and its kinematics is
developed. Frst, the equations of motion are formulated in terins of natural
coordinates, this procedure is straightforward and general.

Then, they are transformed into the joint coordinates using a velocity
transformation method. We believe, this enables easy computer implementa-
tion, yields a minimal set of differential equations and allows for an efficient
solution of the equations of motion.

2. Graph theory for topological definition

The order and how the bodies are connected together in the systermn is cal-
led ”systemn topology”. 'The graph theory is an effective method to identify the
topological structure of large scale multibody dynamic systems. The topology
and kinematical properties of the large scale multibody systemn can be efficien-
tly represented by a graph. In the graphical representation of the MBS, each
body in the system is represented by a node (or vertex) while each kinematic
joint is represented by an edge. Each open loop is represented by a branch (tree
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structure), but each closed loop may be represented by one or two branches
depending on the location of a cut joint in the closed loop (spauning tree).
Fach tree starts from a root toward a leaf corresponding to the topological
path which starts from the base body toward the leaf body (Arczewski and
Pietrucha, 1993). The graphical representation employs a preliminary path
matrix which contains the characteristics of the system topology.

The preliminary path matrix called w, 1s constructed in this way, row
and column j of the preluninary path matrix correspond to the node ¢ and
the edge 7, respectively. If we denote the elements of the preliininary path
matrix by m;;, then m;; 1s defined as

1 if edge j is directed away from node ¢
mi; = —1 if edge y is directed toward node ¢
0 otherwise

A base is defined as the main body of the system. For a system fixed to
the ground, ground is the base body. For a floating systermn, selection of the
base is arbitrary, although in most systeins a central body in the system is
a natural choice. For convenience, the ground is considered as node 0 which
is not included in the preliminary path matrix w. The Hoating base body is
assumed to be connected to node 0 througl an edge.

Fig. 1. (a) System counected to ground; (b) its graphical representation

Consider the two examples shown in Fig.1 and Fig.2, the first is conuected
to the ground, and the other is floating. Both systems are an example of a tree
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(b)

! floating joint O
>

Fig. 2. (a) Floating system; (b) its graphical representation

structure. The first system contains four moving bodies and three revolute
(R) and one prismatic (P) joints. The second system contains five moving
bodies and three revolute (R) and one prismatic (P) joints.

Based on the graph, the preliminary path matrix = is obtained for both
the above systems as

1 1 0 0 1

_(1) . (1) 8 0 -1 1 0 0

my = Mo = 0 0 -1 1 0
00 - L 0 0 0 -1 0

00 0 =1 ], 0 0 0 0 -1

(2}
X
(2}

where matrix 7r; 1s for the system connected to ground and matrix my is for
the floating system.

In order to get all the information on the connectivity and path fow of the
system, the preliminary path matrix # will be modified to a secondary path
matrix #*. An efficient computer implementation of the algorithm given by
Gim and Nikravesh (1992) has been modified and used in this paper. Therefore,
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the secondary path matrices for both systems are

-1 0 0 0 0

:; _(1) 8 8 -2 -1 0 0 0

m = m=|-3 -2 -1 0 0
-3 -2 -1 0 -4 -3 -2 -1 0

B S P -2 0 0 0 -1

5X%5

Recall that 4 is refers to the body (or node) and j refers to the joint
(or edge), the numeric order of negative integers indicates the path flow of
the system. The columns of the secondary path matrix indicate the nodes
connected to the root by the edges. For example, we have element 7y = —4,
this means that there are four paths between body four and edge one. Matrix
o contains all the necessary information on the connectivity of the MBS, it
can be used to construct the velocity transformation.

3. Dependent and independent coordinates

When modelling the motion of the MBS, the first problem to consider is
that of finding an appropriate system of independent coordinates whose num-
ber coincides with the number of degrees of freedom; in this case their number
is minimum. Another choice is the dependent coordinates the nurmnber of wlich
is larger than that of the degrees of freedom. With these dependent coordi-
nates, the MBS can be described more easily, the positions of all the bodies
in the system are determined, while only the positions of the input bodies
or the values of the externally driven coordinates are determined when the
independent coordinates are used. The dependent coordinates are interrelated
through scleronomic constraint equations of the form

¥(g) =0 (3.1)

The first and second time derivatives of the constraint equations yield the
kinematic velocity and acceleration equations

wq(‘])‘.] =0
(3.2)

\Ilq(q)é + \i’q(‘Ia q)q=10

where ¥, is the Jacobain matrix. The equations of motion are written as

Mg - ¥ A =Q (3.3)
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where
— Inertia matrix containing the mass and the inertia tensors of
all bodies
A — vector of Lagrange multipliers
Q@ - vector of the forces acting on the system bodies.

Eqgs (3.1)+(3.3) represent a set of differential-algebraic equations of motion
for the MBS when the natural coordinates are used.

Denoting by 8 the vector of joint coordinates of the system containing all of
the joint coordinates and the natural coordinates of base body if the base body
is not the ground (floating base). Therefore, the vector 6 has the dimension
equal to the number of degrees of freedom of the system. The vector of joiit
velocities is defined as @, which is the time derivative of 6. A general and
simple method for formulation of the dynamic equations of the MBS 1 terms
of its degrees of freedom, is based on the so called velocity transformation. It
can be shown that, there is a linear transformation between 8 and q as

g=Ré (3.4)

Matrix R is orthogonal to the Jacobian matrix ¥, Therefore substituting
Eq (3.4) into Eq (3.2), yields ¥, R = 0. Since 8 is a vector of independent

velocities, then
¥,R=0 (3.5)

The time derivative of Eq (3.4) gives the transformation formula for accelera-
tion 3 )
g =R6+ R0 (3.6)
Substituting Eq (3.6) into Eq (3.3), premultiplying by R', and using Eq (3.5)
ylelds . ..
RTMR# = R"(Q — MR6) (3.7)
Eq (3.7) represents the generalized equations of motion for an open loop

MBS when the number of the selected coordinates is equal to the munnber of
degrees of freedom.

4. Velocity transformation matrix

The velocity transformation matrix R depends on the kinematics and
the topology of the MBS. If block matrix R;; is defined to represent the
local properties of a kinematic joint, then the matrix R can be obtained by
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assembling block matrices R;;‘s based on the system topology. The block
matrices are determined for a floating base body and various kinematic joints
(Kim and Vanderploeg, 1986), where the subscript ¢ stands for body i (or
node <) and the subscript j stands for foating base body 7 or kinematic joint
J (or edge 7). It should be noted that the block matrix R;; for a composite
joint is determined as a combination of those joints. For a floating base body,
a vector of natural coordinates is defined as the joint coordinates, while for
kinematic joints the relative joint coordinates are used. The vector d;; is
defined as a vector toward the attachment point of body ¢ from the center
of mass of floating base body 7, or from the attachment point of joint j. If
body ¢ is the same as floating base body 7, then di; = 0.

To illustrate this method, the above two examples are considered. In exam-
ple one (cf Fig.1), 85, for j =1,...,5 are defined as joint coordinates shown in
Fig.3. The joint coordinates, 6y, 8y, and 85, are relative rotational coordinates
about the revolute joints R,, Ra, and Ii5, while f3 is a relative translational
coordinate along a prismatic joint Ps. The absolute velocities of the bodies of
the system can be determined in terms of the joint velocities.

base

Fig. 3. Schematic representation of the vectors d;; for kinematic joints of the
grounded system
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We have numbered the basic points from 1 to 6. Basic points 1, 2, 4. 5, are
considered to be the reference points for bodies 1, 2, 3, 4, respectively. The
formulae for the absolute translational velocities can be written as follows

Ty =w; X (Te — 7)) Ts = T4+ w3 X (5 — T4)
T3 =79 +ws X (T3 —'rg) Te = T5 + wq X (T — T5) (4.1)

T4 = T3 + wa X Uz + Uzl

where
u3 — unit vector along the prismatic joint axis
w; — angluar velocities of bodies, 1 =1,...,4.

Recall that, since the incoming joint for body 1 is fixed to ground, the
basic point 1 is not considered in the vector of velocities because its velocity
remains zero.

The above absolute translational velocities can be put in terms of the
vector dj; (d;; = 7; — ;) and performing the vector product operation one
can get

To = —Dyjw, 75 = T4 — Dsqws
T3 = T2 — Dgows _ 76 =75 — Deswy (4.2)
74 = T3 — Dyawy + uzfs
where D is a skew-symmetric matrix associated with the components of vector
d = [dy,dy,ds] ", which is defined for vector product operation as

0 —d3 do
D= ds 0  ~d
_d2 dl 0 3x3
The angular velocities of the four bodies are
wi = uf, ) W3 = W» ) (4.3)
Wy = Wy + Uy wq = w3 + usfs .

We now substitute Eqs (4.3) into Eqs (4.2) in a forward process fromn the
base toward the leaf, and simplify the equations by using relationships such
as d; + dig; = d;j;, the absolute translational velocities can be written in the
form

7o = —Doyuif,

75 = ~Dy,u,0, — D3ouqbsy

74 = —Dyg1u,8) — Dygurfy + u3bs (4.4)
75 = —Dgyu,0, — Dby + usfy

76 = —Dg1u,0) — Degusbly + u363 — Dgsusbs
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Since the absolute translational velocities for the basic points are deter-
mined, it remains to determine the absolute velocities for the unit vectors. In
general, the absolute velocity of any vector wu; located at joint j relative to
joint 7 is defined as

Uj = w; X U (4.5)

or
ﬂj = —iji (46)

where Uj is the skew-symmetric matrix associated with the vector wu;. and
w; = uw;f; is the angular velocity at joint ¢, where u; and 6; are the unit
vector and rotational coordinate at joint i, respectively.

Therefore, the velocities of the unit vectors (Fig.3) are deterinined by tlhe
following equations

ﬂQZ—UQUJI ﬂgZ—U5UJ3 (4 7)
u3 = —Ugws g = —Ugwy '

Substitute Eq (4.3) into Eq (4.7), the velocities of the unit vectors are

uy = —Upu 0y us = —Usui 01 — Usuyb,

Uz = —U3u101 — U3U202 U = —U6u101 — U6U202 - Usﬂs()s ( 8)

Now we have gathered all tlie information necessary to construct the velo-
city transformation matrix for the above system, therefore, the velocity traus-
formation equation is obtained in the matrix form

[ 1"2 ] [ —Dgl’ul 0 0 0 )
ﬂQ —U2U| 0 0 0
1“3 —D31U1 ——Dggﬂ.g 0 0 9
ﬂg ——Ug’ul —U3u2 0 0 9‘1
‘i‘4 = ——D41uL —D42u2 us 0 02 (49)
Ts —Dsyu;  —Dssuz  ug 0 {;
ﬂ5 —Ug’ul —U5’u2 0 0 5
Tg —Dgjur  —Dgous ug —Dgsus
L 1-15 ] L —Usul —Uqu 0 —U6U5

By comparing Eqgs (4.9) and (3.4), the velocity transformation matrix R can
be found.

For the second system (Fig.2), which is shown schematically in Fig.4, the
body 1 is floating base body, vectors of absolute translational and augular
velocities, 7; and u;, are defined as the joint velocities, while at the revolute
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! floating joint

Fig. 4. Schematic representation of vector d;; for kinematic joints of the Hoating
system

joints, IRs, Rs and Ry, relative rotational velocities, 92, 93, and 07 are
defined as the joint velocities. At the prismatic joint Py, (94, represents the
relative translational velocity between bodies 3 and 4.
The absolute angular velocities of bodies in the system can also be obta-
ined as )
wy = Wy + U2t wq = w3

. 4.10
w3 = wo + uzbs ws = w + u7ly ( )

where w; is the angluar velocity of floating base body.
A sirmnilar process to that of the previous example yields the translational
velocities as

r9 =711 — Do Ty =T — D:}lwl - D3‘2u2é'2

ry =7, — Dyw; — D42U292 - D43u393

5 =71 — Dsyw) — Dgprgfy — Dssugfy + w64 (4.11)
76 = 71 ~ Dgiw, — Dgpufy — D63u393 + uqb4

77 =, — Dyw, g =1 — Dg1w; — Dgrus6;
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and the absolute velocities of the unit vectors are

u; = —-Ujw ug = —Usw; — U6u292 - U6U393

U = —Usw, - u7 = U, - (4.12)
U3 = —U3w1 - Ug’ugeg ug = —Ugwl — U3’U,797

’114 = -—U4w3

The vectors d;;’s are shown in Fig.4. From Eqs (4.11) and (4.12) the vector
of absolute velocities of the system can be written in terms of joint velocities
vector as

T I 0 0 0 0 0
Uu) 0 -U; 0 0 0 0
) [ —Dy 0 0 0 0
Uy 0 -U, 0 0 0 0
‘I"3 I —D31 —-D32’u2 0 0 0 r 7'1 b
’L.l,3 0 —U3 —U3‘U2 0 0 0 w,
‘I"4 I —D41 —D42’U,2 ——D43’U,3 0 0 0
’l:L4 = 0 —U4 —Uqug -—U4’LL3 0 0 02 (4.13)
Ts I' —Ds1  —Dspus  —Dszus  ug 0 0_4
Tg I —D¢1 —Deauy —Dgsus  uq 0 0-4
’llﬁ 0 —Us —UG‘uQ —Uc’ug 0 0 L 77
T7 | —-Dg 0 0 0 0
U7 0 -U; 0 0 0 0
‘I"g I —-Dgl 0 0 0 —D37u7

i ’l:Lg | i 0 —Ug 0 0 0 —Ugur |

The structure of matrix R in Eq (4.9) or Eq (4.13) shows that R can be
constructed from small block matrices R;;. Table 1 shows R;; matrices for
a variety of kinematic joints. For automatic construction of R, the negative
integer entries (m;; < 0) in the secondary path matrix 7* are replaced by
their corresponding R;; block matrices from Table 1. Then, the zero entries
(m;; = 0) in secondary path matrix 7* are replace by their corresponding zero
matrices. For the first and second figures, and give rise to Eqs (4.9) and (4.13)
respectively. _

The time derivative of the matrix R is needed, matrix R can also be con-
structed systematically. Table 1 shows R;; block matrices for several kinematic
joints.
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Table 1. Elementary block matrices

Joint Joint R o
t g §
ot type velocities J j
Floating T I =Dy 0 -D,
u; 0 -U; | . 0 -U
I L 6x6 (2
Revolute éj [ —Dyju; } [ ~D_ijuj — Dij;inj !
“Uiyy g, —Usu; — Uy
- - d u 1"
Prismatic 6]- [ 0] } | [ OJ }
6x1
-1
: -D,ut -Dj;u?
Universal || ) o (AR
@- _Ulu] —Ui u]-
t J L 6x2
where ‘
O R s=1.2
_Uzuj - U,L"U.J

5. Conclusion

The joint coordinates method ernploys a linear velocity transformation ma-
trix between the joint and natural velocities of a multibody system. The graph
theory is used for representing the system kinematics and topology. Kinematic
relations between natural and relative joint coordinates are derived. Initially,
natural coordinates are used straightforward in formulating the constraints,
forces acting on the bodies and equations of motion. Then the equations of
motion are transformed into the relative joint coordinates using a velocity
transformation matrix. This method generates a small or even a minimal set
of equations of motion necessary for the dynamics of the multibody systems.

The relative coordinates are not recornmended to be used at early steps
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of formulation, because of their mathematical difficulty. Using the relative
coordinates later on, in velocity transformation process, will reduce the number
of equations, hence higher computational efficiency will be achieved.

Using a combination of natural and relative joint coordinates yields au
efficient modelling method, without loosing generality. The relative joint coor-
dinates method gives rise to easy computer implementation of the algoritlims
and efficient numerical solution.
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Zastosowanie wspélrzednych naturalnych i wzglednych oraz transformacji
predkosci w kinematyce i dynamice ukladéw wielocztonowych

Streszczenie

W pierwszej fazie modelowania matematycznego réwnania ruchu formulowane sa
we wspélrzednych naturalnych. Wspétrzedne te zostaly zastosowane do okreSlenia
polozenia uktadu, polgczeri kinematycznych miedzy cialami, a takze do wyrazenia
sil dziatajacych na ciala. Nastepnie réwnania ruchu wyrazone zostaly za pomocy
wspolrzednych wzglednych do czego wykorzystano tzw. metode transformacji pred-
kosci. Macierz transformacji predkosci wigze oba uklady wspdlrzednych. Maciers ta
tworzona jest na podstawie informacji o rodzajach poltaczen kinematyczuych miedzy
cialami oraz na podstawie informacji o topologii uktadu. Przy zastosowaniu obu rod#a-
jow wspolrzednych otrzymujemy réwnania ruchu w ogdlnej postaci, ktore nastepnie
moga byé efektywnie calkowane.
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