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STRESS INTENSITY FACTORS IN PLANE BODIES
WEAKENED BY CRACK-TYPE DEFECTS!

YURII KUHARCHUK
GEORGI SULYM

Faculty of Mechanics and Mathematics Lviv State University, Ukraine

A technique of approximation of stress intensity factors in a plane body
weakened by crack-type defects with the use of direct numerical methods
is presented. Efficiency of the invented technique is shown in the case of
an unlimited layer with a boundary crack solved by the boundary element
method.
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1. Formulation of the problem

Strength investigation of a mechanical design weakened by a crack-type
defect frequently reduces to solving the corresponding plane elasticity problem
and analysing the stress-strain state near the defect tip.

The formulation of the failure criteria within the framework of fracture
mechanics is based on the concept of Stress Intensity Factors (SIFs) (Savruk,
1988). They are defined as some factors near the square root singularity in the
formulae for stresses at the crack tip expressed in the local polar co-ordinate
system (p,6).

Using of analytical methods allows for precise SIEF calculation, however,
they are applicable mainly to unlimited bodies. Application of direct numerical
and experimental methods is very difficult since:

e they do not allow the stress field to be calculated with a sufficient accu-
racy near a point defect (e.g. crack) tip involving, therefore, bigger SIF
evaluation errors;
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Fig. 1. Distribution of stresses along the axes thin elliptic hole in the neighbourhood

of its tip

though the SIF is defined from asymptotic equations, in the case of crack-
type inclusions of finite curvature the error of asymptotic representation
ncreases;

therefore, it seems to be reasonable to take the following approach: repre-
sent the point defect by a hole or inclusion with a certain finite curvature
of the tip;

find the zone, where the asymptotic representations are closest to the
exact solution;

check out the direct numerical methods to see to what extent they allow
the stress field in this zone to be determined. It will enable us to find
the optimum (in the viewpoint of exactness) non-linear SIF solution by
means of a numerical method.

2. Solution to the problem

We discuss this problem in detail by considering a thin elliptic hole in a

plane loaded at infinity by a uniform stress field perpendicular to its greater
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semiaxis a (Cherepanov, 1983). In the neighbourhood of the defect tip it is
possible to distinguish the three following zones (Fig.1); zone of stress concen-
tration (I), zone of stress intensity (I7) and distant zone (I17).In most cases
it is extremely difficult to obtain the complete solution (the exact analytical
one), which would describe the real stress field in all those zones (curve 1). The
complete approximate solution which is, to some extent, close to the complete
one can be arrived at by using numerical methods (curve 2), e.g., the boundary
element method. Sometimes it is possible to model a real defect by a slit or a
thin strip with the properties of inclusion and solve precisely this approximate
problem. For example, such a solution can be obtained by using the jump
function method (JF'M), which is a singular one and describes adequately the
stress-strain state only in the second and third zones (curve 3).

By virtue of the microscope principle, in the part of zoue I close to the
defect, the asymptotic methods allow for obtaining solutions near the edge
of heterogeneity and very close to those obtained by using the asymptotic
solution.

The asymptotic representation of the stress tensor components in terms of
the stress intensity factors K|, Ky (SIF) in the neighbourhood of the defect
tip is very important in mechanics of brittle fracture. In the polar co-ordinates
(p, ) they can be written as follows (Savruk, 1988)

Oyy K, 5cosfy — cos fs
Oy | = ———=1| 3cosf +cosb; | +
oy | V2T | —sinf + sinbs
(2.1)
K —sin#| + sinfs

+—2_ | —7sin6, —sinfs | + O(r'/?)
42 3 cos B, + cos b5
where 0, = p8/2.

The above formulae can be arrived at by choosing the relevant asymptotic
behaviour of singular solution in the neighbourhood of the defect tip or the
asymptotic behaviour of the exact solution in the neighbourhood of the defect
tip at distances longer than the tip curvature radius p, but shorter than the

defect length [ (cf Cherepanov, 1983)
pLT LI (2.2)

This ring defines the stress intensity zone (in Fig.l zone II) and, at the
same time, two other zones. The curve 4 in Fig.1 represents the stresses o,
calculated from Eq (2.1).
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The angle of inclination of principal axes of the stress tensor 8 (parameter
of isocline, observed in photoelasticity) can be determined from the formula

204y

tan 28 = (2.3)

Ozz — Oyy

In the area where the asymptotic equation (2.1) holds the following relation
Is true

K (—sinf| +sinfs) + Ko(3 cos 8, + cos b5)

tan 20 = —2 K\ (cos @, — cosfs) + Ko(3sin 8, + sinbs) (24)
which proves, that along the position vector of the inclusion
tan(QB(T, 9)) }Bzconst = const or
6tan(2ﬁ(r, 9))
—— =0 {(2.5)

or

3. Numerical results

Eq (2.5) shows, that the set of isoclines of the asymptotic stress distribution
(2.1) in the neighbourhood of the crack tip is represented by a set of rays
released from the defect tip (Fig.2). At the same time, the field of isoclines
of the complete solution in the tip of elliptic hole differs substantially from
the field of isoclines of the asymptotic solutions in zones I and IIT (Fig.2b
and Fig.2d, respectively) and is close to that in the zone of stress intensity
(2.2) (Fig.2c), where the field of isoclines of the complete solution satisfies
condition (2.5).

The developed technique of SIF calculation consists in modelling of a linear
crack-type defect by the elliptic hole with semiaxes a and . We solve such an
approximate problem by a direct numerical method. Formally, determination
of the SIF from Eqs (2.1) is straightforward — one should only calculate or
measure using any method the two components of stress tensor at the point of
a body of given co-ordinates , § and then find K| and K from the obtained
systemn of linear algebraic equations. When considering a numerical solution
for stresses near the defect tip close to the asymptotic one, we substitute
for the left-hand side of Eq (2.1) the approximate values of components of
the stress tensor being found and then using any two relations of Eq (2.1)
we find K, and K,. However, since the monomial asymptotic expression



STRESS INTENSITY FACTORS... 899

0.02 2
y/a ,\’/U
0.014 14
04 0+
-0.014 IS
-2
0.99
0.10 0.02
yla yia
0.054 0.014
0+ 0
-0.051 -0.014
0.95 ' f 0.99 | 1.01

x/a



900 YU.KUHARCHUK, G.SULYM

for o, appearing in Eq (2.1) differs substantially from the complete one, for
defining the SIFs it is reasonable to use the formulae for oy, and o4y. It
is possible to construct more exact asymptotic representations of second and
higher orders, which would take into account constants and subsequent terms
of corresponding series expansions. It would allow one to increase the stress
intensity zone area.

To obtain the SIF values from the numerical solution which does not take
into account the stress behaviour near the defect tip it is important to find the
area, where the SIF-asymptotic solution is closest to the numerical solution,
i.e. to determine the zone of stress intensity. Therefore, it is necessary to find
additional criteria which would allow one to determine an optimum area for the
SIF calculations. We propose that Eq (2.5) be the criteria on the assumption
that at the points of stress intensity zone at which the angle £ is calculated
from Eq (2.3) on the basis of a direct numerical method Eq (2.5) holds. The
direct numerical and SIF-asymptotic solutions are in a very good agreement.

=¥

a/L=0.1
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b

Fig. 3. Scheme of the body

For verification of the presented technique we consider a sample layer with
a boundary crack. Calculation have been made by using the indirect boundary
element method (IBEM).

The layer of width L is loaded at infinity by uniformly distributed strain
p. A boundary crack of length [ is represented by a half of the ellipse of
semiaxes a = and b = 0.05[, we replace the layer by the rectangular plate
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of length 2L, see Fig.3. The ratio of the crack length to the layer width is
l/L = 0.1. The obtained approximate value of the SIF K is compared with
that, calculated from the approximate formula

K :pf/{;r_a =112 -0, 2311 +10. ss(L) - 21.72(%)3 + 30.39(%):4 )
Ky
= v

constructed on the basis of the numerical results, obtained by means of the
boundary collocation method (Savruk, 1988). Its relative error has not exce-
eded 0.5% at 0 < I/L < 0.6, this solution, therefore, may be considered as
the exact one.

The comparison between the values of K, K7 and the approximate values
of SIFs K = K,/(pv/7a) and K = K,/(py/7a) calculated for the IBEM
solution in the neighbourhood of the defect tip (Fg.4), proves high accuracy
of the obtained SIF values.
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Fig. 4.

To estimate approximate SIF calculation accuracy it is necessary to make
several numerical experiments for different ratios of the ellipse semiaxes and
to compare the obtained results. In Table 1 the results of the KO and KO

4 — Mechanika Teoretyczna
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calculated from the stresses oy, and o4, are given for different ratios of the
ellipse semiaxes. Additionally, the heavy line in Fig.4 represents the values
of SIF' which have been calculated from the stresses at the points, at which
the rays 6 = 30°, 45°, 60° cross the criterion curve, see Eq (2.5). These
SIF values for the distant zone are represented by the dashed line. When
changing the ellipse semiaxes ratio the number of boundary elements N varies
correspondingly to the change of the hole curvature. The value K¢ =1.184 is
calculated using Eq (3.1).

Table 1

a/b?=1/p
100 [ 196 | 324 | 484 | 576 |

L r/a | 0.080 | 0.053 | 0.038 | 0.028 u.025
30° | KO | 1214 | 1187 | 1174 1101 | 1.227
K9 | —0.047 | —0.037 | —0.031 | —0.024 | —0.017
r/a | 0.084 | 0.055 | 0.040 | 0.030 | 0.025
45° | KV | 1200 | 1.176 | 1.166 | 1.185 1.2214

K{ | —0.045 | —0.033 | —0.027 | —0.019 | —0.013
r/a | 0.097 | 0.068 | 0.048 | 0.035 | 0.028
60° | KV | 1.199 | 1.177 | 1.166 | 1.185 | 1.222
KQ | —0.021 | —0.014 | —=0.012 | ~0.009 | —0.005
N | 41 | 5l 55 63 67

y

It is interesting that decreasing values of K are obtained on the rays
§ = 30°, 45°, 60°, where the tangential stresses o, are not equal to zero.

At first, due to enlarging of the stress intensity zone, a gradual rise in the
ratio a/b allows for improving calculation accuracy of KU and KY, but further
extension impairs the accuracy of numerical method and involves bigger errors
of SIF calculation. Due to contraction of the stress concentration zone, when
increasing the ellipse semiaxes ratio the stress intensity zone enlarges. The
most accurate are the minimum values of SIF, which are obtained for the
ratio a/b = 18. In our example they are a little bit lower than the values,
obtained from Eq (3.1} as a result of replacing the unlimited layer by the finite
slice.
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Due to the problem symmetry, condition (2.5) allows one to determine
with a sufficient accuracy the optimum area for the SIF calculation basing on
the IBEM-solution in the stress intensity zone (there is no need for taking the
horizontal part of criterion curve into consideration).
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Przyblizone obliczenia wspdlczynnikéw intensywnoéci naprezen
w ptlaskich cialach ostabionych przez szczelino-podobne efekty

W pracy zaproponowana zostala metoda przyblizonego obliczenia wspdlczynnikow
intensywnodci naprezen dla plaskich cial ostabionych przez szczelino-podobne efekty.
Oparta jest ona na zastosowaniu prostej numerycznej metody. Efektywnosé tego po-
dejscia przy korzystaniu z metody elementéw brzegowych potwierdza przyklad za-
gadnienia o wzdluznym rozciaganiu tarczy z brzegows szczelina.
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