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The paper presents a generalized model of the bending of beams (with
arbitrary compact cross-sections) due to the effect of constrained cross-
sectional warping. The longitudinal displacement is given in the form
of a finite series of power functions, satisfying the appropriate boun-
dary conditions imposed on the free surface of a beam. The assumption
of functional relationship between the bending angle, shearing angles,
and slope of the deformed centroid of the beam has been abandoned.
Taking into consideration the influence of non-uniform and constrained
shearing, self-balanced shearing forces are derived. Using the example
of some elementary problems, it was possible to investigate the effect of
the assumptions made on free vibration frequencies and phase velocities
of wave propagation. The assumed model enables frequency branches of
a simply supported beam, and a finite number of phase velocity modes
to be determined. Some more accurate numerical values of the shear
thickness mode parameter have also been calculated.
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1. Introduction

The application of some generalized equations of elasticity theory, when
solving practical problems relevant to beams of finite length and variable cross-
sections is, in practice, difficult and very often imapossible. However, exact solu-
tions relating to particular cases of beam geometry provide valuable criteria for
assessment of the usability and accuracy of various approximated models. On
the basis of the Pochhammer-Chree theory (Chree, 1889; Pochhammer, 1876)
of the wave propagation in an infinitely long bar of circular cross-section, it is
known (Abramson, 1957) that:
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e Dispersion of the waves propagated occurs

There are numerous branches of phase velocities

In the case of very small wavelengths, all the phase velocity branches
attain distorsion velocities, except for the lowest branch, which achieves

Rayleigh’s surface wave velocity
e Shape of the cross-sectional warping depends on the wave length.

The above qualitative data are used for a modification of technical theories
of beams with arbitrary cross-sections. Timoshenko (1921) in his pioneering
work, took into consideration the influence of the shearing forces upon ben-
ding vibrations of a beam when it had a uniform rectangular cross-section.
The introduction of this correction to Rayleigh’s model (Reyleigh, 1945) has
made it possible to foresee the wave dispersion and the existence of two forms
of wave propagation. The Timoshenko model is connected with free warping of
beam cross-sections. In many other papers e.g. in Aalami and Atzori (1974),
Cowper (1966), Levinson (1981), Stephen and Levinson (1979), Volterra and
Zachmanoglou (1957) more improved theories were formulated of beams with
rectangular or arbitrary cross-sections. None of them differ in their nature
from the Timoshenko theory, providing qualitatively the same results. Quite
new formulations have also appeared describing the vibrations of short be-
ams of narrow rectangular cross-section (Janecki, 1977, Murty, 1970). Apart
from the bending moment and transverse force, some additional self-balanced
internal forces have been introduced. Expanding the beam longitudinal di-
splacement, by appropriate finite power series, it was possible to obtain the
equations enabling determination of any arbitrary finite number of free vibra-
tion frequency branches. In these equations the constrained warping of the
beam cross-sections was taken into account. Janecki (1977) introduced a new
additional parameter defining the shape of warping. Bickford (1982) basing
on the assumptions made by Levinson (1981), using a variational method,
derived the equations of motion of the bent beam, taking into consideration
the constrained warping of the cross-sections. Unexpectedly, we obtained some
incorrect results, in particular, those relating to phase velocities of the wave
propagation (Levinson, 1985). Some imperfections of his considerations were
explained by Janecki (1998). In this paper, making use of the assumed di-
splacements it was possible to derive the equations of motion of a beam with
arbitrary cross-sections. It has been shown that in the case of constrained
cross-sectional warping, we have an additional equation for self-balanced she-
aring moment. There also appears an extra, third branch of free vibration
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frequencies for a simply supported beam or the third branch of the wave pro-
pagation phase velocity. Ewing {1990), making use of similar assumptions re-
lated to the displacement field, analyzed the effect of the constrained warping
of cross-sections upon the free vibration frequencies of the cantilever beam.
However, he did not go into the essence of bending theory for a beam affected
by constrained cross-sectional warping.

In this paper a generalized model is given of the bent beam, where the effect
of the constrained shearing is taken into consideration. Using examples of some
elementary problems, the influence of the assumptions made was analyzed
with regard to free vibration frequencies and phase velocities of elastic wave
propagation.

2. Basic assumptions
In the determination of the beam model, definition of the internal forces,
and derivation of the motion equation, the following assumptions will be made:
e Straight beam of uniform, bisymrmetrical cross-sections is cosidered

e Material of the beam is homogeneous and isotropic, and subject to Ho-
oke’s law

e Beam moves in one plane
e Deformations and displacements are small

e Tangential stresses acting within the cross-sectional plane, and the di-
rect stresses acting in a normal direction to the cross-section, will be
regarded as significant, with the remaining ones as secondary, which will
be neglected.

In compliance with these assumptions, the displacement components of an
arbitrary material point are taken in the form of

u; =0 uy = ug(z3,t)
(2.1)
M
uy = 2w (23,1) + D xm(Z1, T2)¥m (23, 1)
m=1

where
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w,¥m — unknown functions defining the rigid rotation and the cross-
sectional warping
Xm —  known functions satisfying appropriate boundary conditions

and characterizing the warping distribution in a specified
beam cross-section
x1,o9 — are the coordinates of the material point in the cross-section.

Confining ourselves to the linearized theory, the components of the strain
tensor are

M M
1 Oxm I Oxm
€13 = §mz::1 8/—1;17’" €23 = §<ll<)-4-c4)+m:l EEN Wm)

M
£33 = Tow' + Z Xm Y
m=1
where (-)) = 8/0z3. The remaining components of strain are equal to zero.
Under the action of external loads internal forces appear in the material of
the beam. In the assumptions made with regard to the beam material, some
significant components of the stress tensor are

T13 = 2Ge 3 Tog = 2Geng T13 = Fegs (2.3)

where G and F are the elasticity constants of the beam material.

3. Equations of beam bending

With the above assumptions, the equations of beam bending will be derived
by applying some general equations of slender bodies described by an arbitrary
one-dimensional model of the continuum (Janecki, 1998). They are expressed
in the following form

OH

Vectors of the internal forces, with the assumption of small deformation, are
defined by the relations

H=[(Te)UdA Q= [ 5(TVU) dA (3.2)



MULTI-MODE BEAM THEORY WITH CONSTRAINED... 1025

The vector of body loadings due to the beam motion is

h= —g/uTu dA (3.3)
A

In the above relationships T, e and g are the stress tensor, the unit vector
tangent to the beam axis, and specific density of the beam material, respecti-
vely. Moreover, matrix U = du/dq, where u is the displacement vector and
q is the vector of the generalized coordinates. Assuming, in the case under
consideration, that

q-= [uoaw,leafYQa"'afYM}T (34)
we have
0 0o 0o ... 0
U={10 0 .. 0 (3.5)
0 2 X1 .- XM

Using Egs (3.2) and (3.3) we arrive at the definitions of the internal forces
components

Q:/TQ;;dA M:/l'nggdA
A A
(3.6)
Hn:/XnT33dA G’Il: Q‘X—n‘TQ:}d.A TL:1,2’...,M
851:2
A
and the body loadings
q= —Q/ﬂz dA m= —Q/xgﬂ;; dA hyp = —Q/Xnii;; dA (3.7)

A A A

where @ and M are the shear force and the bending moment, H, and G,
are moments and forces, due to the constrained shearing.

The general equations (3.1) provide us with the scalar equations of the
beam motion

Q+q=0 M —Q+m=0 H, —Gn+h,=0  (3.8)

Making use of Eqgs (2.2), (2.3) and (3.6), for internal forces we have
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S M M
Q= GAKEE +w+ "12::1 'ym) — ,,12_:1 nm'ym]
EJ 8 M
=7 % (w + mz:l 77m')’m)
- (3.9)
EJ 8 M
H, = T(T)Z (‘T]n,w + mzl Emn')’m)
o M M
G, = GA[(l - Kn)(% +w+ z 'Ym) + z (kmn — Km)')’m]
m=1 m=1
where
Ox,n 1 .
A/ axz Nm = 7A/zzxm dA
- % [ xmxa 4 (3.10)
A
B 1 me Oxn OXm Oxn
kmn = 3:1,1 o 1 - )(1— 8:1;2)] dA

are the cross-sectional characteristics connected with shearing and L, A and

J are the lenght of the beam, area and second moment of inertia of the cross-
section, respectively.

With regard to the body loadings we have

. CE ok e L M
R ™= Jpw(“’*,nz_l”m”"‘)

(3.11)
C% o*
hn = _QJL—ga P (nnw + Z Emn’Ym)

m=1

where ¢ = z3/L, 7 = (Cg/L)t, u = ug/L, Ck = E/p, and p is the specific
density of the beam material.

In order to interpret Eqgs (3.9) and (3.11), for bending and shearing mo-
ments, the following averaged values will be introduced (Janecki, 1998)

1 1
= —j/wgu;, dA v, = j/XnUS dA (3.12)
A
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Making use of Eq (2.1) we obtain

M M
®=w+ Z TmYm Uy = Tnw + Z EmnYm (3.13)
m=1 m=1

The first relation is the mean rotation angle of freely warping cross-section
of the beam introduced by Cowper (1966). The second relation describes the
mean rotation angles of the constrained warping cross-sectional surface. If
M =1, we obtain some relationships given by Janecki (1998).

Applying the formulae for the internal forces (3.9) and loadings (3.11), the
equations of motion (3.8) can be presented in the form of

g E 6%u

35[3£+‘“+Z 7m] EW:O

3 2 M

(;1" [w+ Z 7]m7m] - ;2 [/\ u+68£(w+ Z nmfym)] =0

! (3.14)
M

696;3 [77nw + Z Emn')/m} — /\22066 Z (kmn — K bn ) Ym +

% ., )

_W[’\ (1— Kn)u+ a—ﬁ(nnw + Z e,,mn/m)} —0

m=1

after eliminating the shearing force @ from Eqs (3.8) for moments M and H,.
Here, A = L+/A/J is the slenderness ratio of the beam and (n =1,2,..., M).

To solve the above equations it is still necessary to have some boundary
conditions.

At the free end : Q=M=H,=0
At the fixed end: U=w=", =0 (3.15)
At the simply supported end: u=M=H, =0

Janecki (1998) has shown that in the case of bending, if M =1 the relation-
ship I' = 0u/0¢ + w + v = 0 is fulfilled with some approximation, exept in
the nearest vicinity of the fixed beam’s end. As a result of the above, let us
investigate the case where the following relationship occurs

Ou

8€+w+2'ym—0 (3.16)
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Making use of (3.16) in Eqgs (3.8) defining the shearing forces @ and G,
and proceeding as in the case of Egs (3.14), we obtain the equations for the
bending and the shearing moments in the form

4 2 4 M
;;4(“ anvm)JrA 66m(w+ va) —%(M ZUm'Ym) =0

66—;(77nw+ Z smn’ym) _)\22652 Z kmnYm + A ;—Q(w—i— Z fym)

m=1 m=1

(3.17)

" M
_W(nnw‘*‘mgl(;mn’)’m)zo n=12...,M
Janecki’s equations (cf Janecki, 1977, Eq 41) are given in a similar form.
Inserting €my, = 0 and 7, = 0 we shall obtain the Timoshenko type equations
with free cross-sectional warping. If M = 1, the classical Timoshenko equation

will be obtained.

4. Warping functions and shear parameters

In Egs (3.14) and (3.16) the shear parameters defined by Eqgs (3.10) appear.
To determine them it is necessary to be familiar with the warping functions
Xm of a beam with arbitrary cross-sections. For the bending of the beam in
one plane, it will be assumed that

GA
Xm:kmE—J?/Jm+$2 m=12,..., M (4.1)

where k,, are parameters that have not yet been defined, and which are
possible to determine after introduction of some additional conditions. It is
desired that the functions ., satisfy the following equations and conditions:

1. Ay =2z, (z1,20) € A
0
2. —aqpnﬂ:() (zl,zg)eaA (4.2)
3. Ym(—z2) = —Ym(2z2)
4. Km =k
where
A, 84 - area and boundary of the beam cross-section

n — unit normal to JA.
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In the case of a narrow, rectangular cross-section and v = 0 we have

Y = =762+ i

where & = 2z9/h and h is the height of the cross-section.
A similar situation arises in the case of a beam of & circular cross-section
of radius a. We have

2)77,

] (4.3)

3 2\n

Ym = —%9[2 + i %] sin 6 (4.4)
n=1 )

in the polar coordinates (r,d), where p=r/a.
In the general case, the shear parameters can be presented in the following
form

Mm =1— Ankm kmn = Bmnkmkn Emn = Nmn + Cmnkmkn
(4.5)
where
GA /1
A (4.6)
GA 1
Cmn = (EJ /¢m'¢n dA) (J Zfl"ﬂ/)m dA) (FZIZ"/)" dA)]

Taking advantage of the properties of the function ; and using Green’s
formula, we have

G
kim = 225‘_(1 — Nm)k1 (4.7)

It is evident that if n,, = 0, then k;,, is the same for each m =1,2,.... M
For a narrow, rectangular cross-section and Possion ratio v = 0, we obtain

nlzl—gkl ngzl—%kl K1 = ki
Ko = ko en=1- Ekl 51k2

(4.8)
elz:l—:—ikz—gkl+£—lklkz 622:1—§—§k2+%§
ki, = gkf k1o = 3—:/41192 ko2 = %kz

12 — Mechanika Teoretyczna
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Whereas, for a circle

nlzl—gkl 77221—%/62 K1 =k
Ky = ko 511:1—gk1+%1kf

(4.9)
€12 =1-— gkl - ;—Zkg + %klkg €9 =1— f—gk:z + %k%
ki = gkf kip = g—zklk:z koo = %k%

Parameters k,,, which have not yet been identified, appearing in the warping
functions, can be determined from the condition #,, = 0. Then the mean
angle of rotation of the warping cross-section is equal to the bending angle
(3.13), as it takes place in Cowper’s theory (Cowper, 1966). The parameters
km = kcm introduced in this way will be called — Cowper’s shear coeflicients.

For successive modes we shall have, in the case of narrow rectangle:
kc1 = 0.833333, kca = 0.795456, kcz = 0.787500, kcas = 0.786071, and
with respect to a circle: ko) = 0.857143, kca = 0.827587, key = 0.821918,
kcs = 0.820981.

5. Vibrations of a simply supported beam

The solution of the equations of the beam bending vibration, satisfying
appriopriate boundary conditions, will be looked for in the form

u = Usina;€ cospr w = §2cos ;€ cos pT
(5.1
Ym = Iy cos o€ cos pT j=1,2,... m=12,...,M
where «; = mj and p = 27 fL/Cg is a non-dimensional, circular free vibration

frequency. The equations of motion (3.14), with regard to constrained warping
of the beam cross-sections can be expressed in the form of the matrix system

(A - p?B)z =0 (5.2)

where
z=[U,02,1\,Is,..., )" (5.3)
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The elements of the A and B matrices are given by the formulae

a) = af a2 = Q;j a1 mt2 = (1 — k)
ar;1 =0 asy = a? A2,m+2 = Gm42,2 = a?"]m
G

Q24m2+n = aj[ ]2'5mn + /\QE(kmn - nmnn)]

FE
b =5 bis =0 by = A? (5.4)
boo = a; bom,1 = — A (1 — k) b224m = bmy22 = AjNm
boym,24n = Aj€mn 7,8=2,3,....,.M+2 mn=12...,.M

From the above set of equations, it is possible to compute the nondimensio-
nal free vibration frequency k; =p/pgp = p/(af//\) of the simply supported
beam, taking into account the constrained cross-sectional warping. Confining
our attention to the case M = 1, from Eqs (5.2) and (5.4) we arrive at the
equation which was given by Janecki (1998).

The set of equations (3.17) formulated on the symplifying assumption

(3.16) can be expressed in the form (5.2), where
z=[2, 1, y,..., Ty]" (5.5)

Matrices A and B in this case are symmetrical and their elements are given
as follows

4 4
a11 = & Om+1,1 = Clm+1 = Mm@
2( 2 2 G
am+l,n+l = aj (ajemn + /\ Ekmn) (56)
2 2 2 2
by = a; + A bmi1,1 = b1mt1 = Mmag + A

2 2
bm+1,n+1 = Qj€mnp + A

Tables 1, 2 present the calculation results of the non-dimensional, relative
frequencies kg-m) of simply supported beams of narrow, rectangular cross-

sections. On their basis it is evident that:

e An increase of the number M of the series expansion components of
the longitudinal displacement, in the case of constrained warping cross-
sections of the bent beam, results in

— appearance of additional branches of vibration frequencies

— improvement of the accuracy of the vibration frequency calcula-
tions.
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Along with the increase of the number M, the frequencies of specified
branch have smaller values. This is consistent with the results of Murty
(1970).

e The assumption of the relationship u' + w + ¥, = 0 for the transverse
displacement slope, bending angle and shearing angles, causes a stiffe-
ning effect of the vibrating beam. The vibration frequencies are, in this
situation, slightly larger than in a general case. It refers, in particular, to
free vibration frequencies of higher branches and higher modes, as well
as larger beam slenderness-ratios (see also Janecki (1977), Table 2).

Table 1. Nondimensional vibration frequencies lc;-m) of a simply supported
beam of narrow, rectangular cross-section (for A = 10, v = 0.25)

. M 1 2 3 4 5
J
0.853544 | 0.853541 | 0.853541 0.853541 0.853541
6.818758 | 6.816989 | 6.816988 6.816988 6.816988
24.352601 | 17.963735 | 17.736413 | 17.732802 | 17.732784
1 50.388645 | 30.886771 | 29.333358 | 29.236076
85.744939 | 46.129306 | 41.461010
130.503853 | 64.248250
184.679196
0.506204 1 0.505991 | 0.505991 0.505991 0.505991
1.288489 | 1.288254 | 1.288254 1.288254 1.288254
2.896523 | 2.239926 | 2.216778 2.216403 2.216401
3 5.690516 | 3.577066 3.411169 3.400771
9.580704 9.223304 4.714938
14.535381 7.209049
20.544522
0.343473 | 0.342729 | 0.342723 0.342723 0.342723
0.692567 | 0.692482 | 0.692488 0.692488 0.692488
1.166443 | 0.956743 | 0.949426 0.949305 0.949039
9 2.112994 | 1.386174 1.330487 1.326991
3.487231 1.948865 1.772645
5.257810 2.645171
7.413717
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Table 2. Nondimensional vibration frequencies k](-m) of a simply supported
beam of narrow, rectangular cross-section. Case u'+w+3>.v; =0 (for A = 10,

v =10.25)

i M 1 2 3 4 )
0.853548 | 0.853541 | 0.853541 | 0.853541 | 0.853541
6.821073 | 6.816989 | 6.816988 | 6.826988 | 6.816988

1 18.093901 | 17.738133 | 17.732810 | 17.732783
31.436128 | 29.362046 | 29.236775

47.361976 | 41.584467

66.361056

0.506605 | 0.505992 | 0.505991 0.5056991 0.505991
1.288788 | 1.288254 1.288254 1.288254 1.288254

3 2.253165 | 2.216956 2.216404 2.216401
3.635860 | 3.414234 | 3.400846

5.357859 | 4.728356

7.441585

0.345326 | 0.342735 | 0.342723 | 0.342723 0.342723
0.692666 | 0.692488 | 0.692488 | 0.692488 | 0.692488

) 0.960922 | 0.949483 | 0.949305 | 0.949304
1.405977 1.331517 1.327016

1.895706 | 1.777285

2.727398

Putting 7, = 0 and €., = 0 into Eqgs (5.6) we obtain the matrix elernents

of the set of the equations for the Timoshenko model. It is possible to prove
that the set can be reduced to one equation of the form

202 2 2,2 2 2,2
(a; —p°) — - — - Ap° =0 5.7
aj(a; — p°) — p(aj p)EMG p (5.7)
where
detK
Ra = o K=lks] ms=12..M (58
> detKy,
m=1
Matrices K, are formed by substituting the unit vector 1 =[1,1,..., iI.]T into

the mth column of matrix K. In this way we have obtained the Timoshenko
type equation possessing only two branches of frequencies. With regard to
a beam of a narrow, rectangular cross-section, we have RKjs = 5/6 for each
M, in the case when %, =0, (m = 1,2,...,M). A similar situation arises
with a circular cross-section beam. This means that the vibration frequencies
do not depend on m, the number of the warping functions x,, existing in

13 — Mechanika Teoretyczna
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longitudinal displacement (2.1). Hence, for free cross-sectional warping, there
is no need to expand the longitudinal displacement into a series.
It should be pointed out that by inserting 7, = 0 and &mn = 0 into Eqs
(56.4), we also arrive at the equations in the form of Eq (5.7), in which
Ry = Mdet K_ (5.9)
ST detK,,
m=1

where K = [(kmn — Kmkn] and K, is obtained from K by substituting vector
E=[1—-ky...,1 — k]! for the mth column. Putting a; = 0 into Eqgs (5.2)
and (5.4), after some transformations, we have the algebraic equation

M
(s—1)detA+s > RmdetAy, =0 (5.10)

m=1

for the determination of the roots s = Ep?/G\? for the thickness shear mode
on the assumption that 7, = 0. If 7,, # 0, the equation is more complicated.
In the above equation

A= [k.s — serg krs = kg — Kirky rs=1,2,...,M (511)

Matrices A,, are derived from the matrix A by substitution vector k =
[1 — K1y 1 — kpg] T for the mth column of the matrix. For M = 2 this
equation can be written in the form

1
asB—(a+ﬁ+E)82+(5+;)S—1=0 (5.12)
where
o= ?1%% 8=ak E'E e = trEK™!
% =14+8'K g E = [&/s] K =[] (5.13)
E=[1-r;,1—koT 1,5=1,2

For example, in the case of a beam of a circular cross-section, Eq (5.12) will
be
5% — 66s? + 4805 — 360 = 0 (5.14)

For a beam of a narrow, rectangular cross-section we have

5° — 7052 + 5255 — 385 =0 (5.15)
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Table 3 presents values of the parameter s for M = 1,2 and 3.

Table 3. Shear thickness vibration parameter s of a simply supported

bearn

M Circle Rectangular
0.847933 0.822925
1 | 14.152067 14.177075
0.847490 0.822467
2 7.348721 7.602121
57.803789 61.575411
0.847489 0.822467
3 7.111097 7.405316
20.738504 22.980809
161.302909 | 178.791407

For a beam of narrow, rectangular cross-section, Leung (1990) gave the
value s = 0.8225. Let us investigate what influence the assumption (3.16) has
upon the values of parameter s. It will be easy to observe this in the simplest
case when M = 1. Then Eq (5.10) can be written as

1
e’ —(F+2)s+1=0 (5.16)
K

However, on assumption (3.16) it is

(e+ ,1:)5—1:0 (5.17)
K

For example, in the case of a beam with circular cross-section (€ = 1/12,

K = 6/7) from Eq (5.17) s; = 0.8479, while from Eq (5.18) s; = 0.8. The

assumption (3.16) results, in this situation, in a decrease in the value of the

thickness shear mode parameter.

6. Wave dispersion in the beam

Making use of Eqs (3.8), (3.9) and (3.11), let us analyze the phase velocity
variation of the wave propagation in the beam. Attention will be concentrated
on the cases of simple shearing, pure shearing and the general case of wave
propagation.
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6.1. Simple shearing (w = 0)

In this situation Eqgs (3.8) for the transverse force and the shearing mo-
ments, after taking into account the appropriate relations given by Egs (3.9)
and (3.11), can be expressed in the following form

M 8’)’
Tu+ » Rma—g‘ =0
m=1 (6]_)
o X oG By 0%
. [} — — _ - By —— =
o€ mX::l EmnTYm — A E mX::l kmn ¢ AR 572 0
for n=1,2,..., M, where B =1 — K, kmn = kmn — Kmkn and
., 08 E&
-0 Gor?
The solution to the problem is sought in the form
. /2nL /2nL
u = iU exp [1(7)(5 - C'r)] Ym = Lm exp [1(7) (& — CT)] (6.2)

where ¢ = cp/cg, cg =/ E/o; ¢, — phase velocity, A — wavelength.
Then the nondimensional phase velocity ¢ can be determined from a type
(5.2) equation, where

z=[U T,y ....y]" (6.3)
The non-zero elements of matrices A and B are
aj; =1 a1,14m = Rm Ql14m,l4n = EmnR2 + %Emn (6 4)
by = g bm+1,1 = —Km b1+m,1+n = Em’nR2
where m,n=1,2,...,M, R =2nr/A, 7 = +/J/A.
For M =1 we have the equation
N EN_o 179 G | o) _ -
LR —{e(1+5)}2 +E]c +<E+ER)_O (6.5)

where £ = e1/k;1, 1/R = 1 + &3/ky1. For very long waves (R = 0) the
nondimensional phase velocity ¢ = +/KG/E, i.e., it is approximately equal
to the Rayleigh wave propagation velocity. In the case of very short waves
(R = o0) the first branch of the phase velocity has a horizontal asymptote
¢ = +/G/E, while with regard to the second phase velocity its horizontal
asymptote is ¢ = 1. Neglecting the effect of the constrained warping of the
beam cross-sectional (€ = 0), from Eq (6.5) we have ¢ = /ckG/E.
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6.2. Pure shearing (u = 0)

In this case Eqgs (3.8) related to the bending moment and shearing moments
can be presented as

M G G IM
Ow + 2; D Ym — /\QE’W - /\2E’ Z (1 = Km)Ym =0
m=] m=1
i G
M Ow + Z EmnOYm — /\2E~(1 — Kp)w + (6.6)
=1
oM
_’\2E mZ::l(kmn — Kp — Km + 1)’7771, =0
Assuming that
./2mL (2nL
w= Qexp[l(—A—)(f ~ CT)] Ym = I'm exp [1(7)(5 - (,7')] (6.7)

it is possible to determine the non-dimensional phase velocity from the equ-
ation in the form of (5.2), where

EZ[Q,Fl,FQ...,FM] (68)

The non-zero elements of matrics A and B are given in the formulae

E E
ay, = 1+ —R2 Qi1 4m = Qi4m,1 = (1 - Km) + T}m~R2
G G
E
Ql4m,l+n = (kmn —~ Km — Kp + 1) + EmnaR
(6.9)
FE FE
by = 5R2 bl i4m = biym,1 = 77m5H2
E o
bitm,14n :EmnER m,n=12,....M
Hence, for M =1 we arrive at the equation
~EN2 4 2 ~, WWE 2 _
6<5)R(l—c)+(e+§)aR(1—c)+1—0 (6.10)
where \ \
~ _ELL—M 1 (1—&y —m)
— =142 6.11
¢ ki — K% K + ki1 — "3% ( )
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In this way, we obtain the two branches of phase velocities for pure shearing

Ci12 = \/

14 o

26E

with the horizontal asymptote ¢ = 1.
Hence, in the case of unconstrained cross-sectional warping (&= 0), there
is only one branch

C =

e+ )=y

kG 1

1+

E R?

—~

£

+%)2—4E}i

R2

(6.12)

(6.13)

This equation approximates fairly well the phase velocities of the first branch
of solutions of Eq (5.2), where we are dealing with pure shearing, taking into
account the constrained cross-sectional warping.

Table 4. Nondimensional phase velocity

a circular cross-section beam (for v = 0.29)

¢ of the wave propagation in

a/A

| M=5 01 | 02 | 04 : 06 | 08 | 10
0.576961 | 0.578536 | 0.583356 | 0.588484 0.592904\ 0.596499
5.354921 | 2.816647 | 1.656574 | 1.334152 | 1.200327 | 1.132713
Simple | 8512862 | 4.344444 | 2.339812 | 1.729841 | 1.456966 | 1.311390
shear | 11.870360 | 5.998431 | 3.122469 | 2.211727 | 1.786345 | 1.550332
18.385678 | 9.233860 | 4.608058 | 3.220127 | 2.504612 | 2.092109
52.937090 | 26.482838 | 13.269966 | 8.878270 | 6.691765 | 5.387227
2.080441 | 1.353536 | 1.099097 | 1.045204 | 1.025672 | 1.016505
5.376499 | 2.824302 | 1.656554 | 1.332361 | 1.198350 | 1.130958
Pure | 8518402  4.346354 = 2.339380 | 1.728544 | 1.455395 | 1.309821
shear | 11.872065 | 5.999319 | 3.122172 | 2.210878 | 1.785214 | 1.549088
18.387665 | 9.234531 | 4.697780 | 3.219327 | 2.503455 | 2.090709
52.937883 | 26.483105 | 13.269842 | 8.877908 | 6.691202 | 5.386484
0.268045 | 0.407562 | 0.513494 | 0.551526 | 0.570162 | 0.581107
2.140447 | 1411818 | 1130606 | 1.062727 | 1.036479 | 1.023746
General | 5.379068 | 2.828883 | 1.662798 | 1.338202 | 1.203182 | 1.134815
shear | 8519031 | 4.347556 | 2.341408 | 1.730926 | 1.457783 | 1.312033
11.873257 | 5.999887 | 3.123210 | 2.212232 | 1.786730 | 1.550643
18.387888 | 9.234967 | 4.698616 | 3.220503 | 2.504898 | 2.092341
52.937988 | 26.483287 | 13.270191 | 8.878416 | 6.691878 | 5.387315

6.3.

The general case of wave propagation

Eqs (3.14) shall be used to describe this case. Their solutions are sought
in the form of Eqs (6.2) and (6.7). Then, the nondimensional phase velocities
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can be calculated from Eq (5.2) with the vector z defined by Eq (5.3). The
elements of matrices A and B in the case under consideration, are expressed
by the following formulae

an =R ajp = —1 a1,24m = —EKm
aiym, =0 a = R? a224m = G24m,2 = TIm_R2
b = gR bii4m =0 24m,2+4n = Emn R’ + kmn%
by =R byy = R? b2,24m = baym,2 = nmR?
vb_2+m,1 =EmR b2+m,2+n = EmnR2 Fm=1—fm
km = kmin — fmbn m,n=12,..., M
(6.14)
Hence, for M =1 we have the equation in the form (Janecki, 1998)
E o[ E 4 E 1y
e -5 - (1+ 5+ o) +1] +
G G G R (6.15)
1 E 4 E Ly,
+ﬁ[ﬁc — (1+jﬁ—é+ﬁ)c +1] =0
2.0 f ——-simple shear
cplep | ——-pure shear

\general case

1.5] e L
N
| ‘ \

/

—~—
‘ —— = T \\~
1.0— — ———m
| 1 ‘,
|
0,5_—,'—"*_i—‘;—‘t;,—;,[;,i,,,,,,_,,
| | |
I
]
0 0.2 0.4 0.6 0.8 a/A 1.0

Fig. 1. Phase velocity branches for elastic waves in a circular cross-section beam
with the effect of constrained warping

The shear coefficients K and & are given by Eq (6.11). Table 4 presents
the calculation results of the nondimensional phase velocities ¢, related to
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the simple and pure shearing, and in a general case with regard to a beam
of circular cross-section and radius equal to a, as well the assumption that
Nm = 0. Some identical data can be obtained when #,, # 0. The calculation
results given in Tables 4 are also presented in Fig.1. On their basis it is evident
that:

e An increase in the number M of the expansion components in the series
of longitudinal displacement, in the case of a constrained cross-sectional
warping of the beam, results in

— appearance of additional branches of wave propagation phase velo-
cities associated with shearing;
— calculation accuracy improvement of the phase velocities.

e The values of the phase velocities of their corresponding solution bran-
ches (of the wave propagation equation for simple and pure shearing),
and with respect to the general case, are close to each other. In the latter
case the phase velocities have the highest magnitudes.

7. Final remarks

The paper presents a one-dimensional technical theory of beams, enabling
the determination of an arbitrary finite number of free vibration frequency
branches and phase velocity branches of wave propagation. Obtaining an arbi-
trary number of solution branches has made it possible to expand the longitu-
dinal displacement into a finite series, and to take into account the constrained
cross-sectional warping caused by shearing. The assumed model presents some
progress in the construction of one-dimensional technical theories of the beam.
Making use of the beam model, described above, in the calculations of the wave
propagation it was possible to prove that in the case of very short wavelengths,
the phase velocities of branches related to shearing attain the velocities of lon-
gitudinal waves, and not the distortion velocities, as in the Pochhammer-Chree
theory. Hence, there arises a need to construct a more improved beam theory,
that would be consistent with the solution properties of the exact theory.
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Wielomodowa teoria belki ze skrepowang deplanacja przekrojéw
poprzecznych

Streszczenie

W pracy przedstawiono uogélniony model zgiecia belek, o jednospéjnych przekro-
jach poprzecznych, uwzgledniajac wplyw skrepowanego $cinania. Pole przemieszczen
wzdluznych przedstawiono w postaci skonczonej sumy funkeji potegowych, spetniaja-
cych odpowiednie warunki brzegowe na powierzchni swobodnej belki. Odstapiono od
zalozenia funkcyjnego zwiazku pomiedzy katem zgiecia, katami $cinania i spadkiem
odksztalconej centroidy belki. Uwzgledniono wplyw nieréwnomiernego i skrepowa-
nego $cinania, wprowadzajac samozréwnowazone sity §cinania.

Na przykladach elementarnych zadad zbadano wplyw przyjmowanych zalozer na
czestodcl drgan wlasnych i predkosci fazowe propagacji fal. Przyjety model umozliwia
otrzymanie skonczonej, dowolnej ilodci galezi czestosci drgan wlasnych belki swobod-
nie podpartej i skoficzonej liczby modéw predkosci fazowych. Obliczono dokladniejsze
wartosci liczbowe parametru ”shear thickness modes”.
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