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The aim of the paper is twofold. Firstly, it is the application of equations
of the refined macro-dynamics of microperiodic plates to calculation of
the resonance frequencies of Kirchhoff or Hencky-Reissner periodic plates
and comparing the obtained results. Secondly, some from the above re-
sults will be compared to those obtained from the known approximation
methods and hence we shall prove that the proposed refined models lead
to the physically correct results. The presented modelling approach to
the linear-elastic plates, having microperiodic structure in planes parallel
to the midplane, is based on the assumptions given by Baron and Woz-
niak (1995) (for the Hencky-Reissner plate theory) and Jedrysiak and
Wozniak (1995) (for the Kirchhoff plate theory), and describes the effect
of the microstructure length dimensions on the plate macro-behaviour.
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1. Introduction

The first aim of this paper is to use the general equations formulated by
Baron and Wozniak (1995) and Jedrysiak and WoZniak (1995) to detect the
effect of the microstructure size on the dynamic plate behaviour in the case
of resonance frequencies of plate bands subjected to periodically distributed
inertial loadings and to compare obtained results.

'The paper was presented at the Second Polish-Ukrainian Conference ” Current Problems
of Mechanics of Nonhomogeneous Media”, Warsaw 1997
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The second aim is to show that the presented refined models (based on
the Hencky-Reissner or the Kirchhoff assumptions) lead to the physically cor-
rect results. For this purpose we shall compare the obtained results to those
obtained using the Ritz method.

In these problems we shall distinguish a small repeated element of a plate,
called the periodicity unit cell. We assume that the size of the unit cell is
sufficiently small compared to the minimum characteristic length dimension
of the plate midplane. Moreover, because our considerations related to every
periodicity cell will be also based on the Hencky-Reissner or the Kirchhoff the-
ory, the periodicity cell will be assumed to have a form of a medium thickness
or a thin plate.

Solving problems in such composite periodic plates meets analytical diffi-
culties. Thus, some simplified models were proposed in which a periodic plate
is represented by a certain homogeneous plate structure with a constant effec-
tive stiffness and an averaged mass density. These models were presented by
Caillerie (1984), Kohn and Vogelius (1984), Lewinski (1992) and others. Ho-
wever, the aforementioned models, called effective stiffness plate theories, were
restricted to the static problems only and hence they are not able to describe
problems of the plate vibrations. In order to investigate non-stationary pro-
blems within the framework of macromechanics certain models (for instance,
those based on the concept of the continuum with the extra local degrees of
freedom) were proposed. Short wave propagation problems were investigated
by Bakhvalov and Panasenko (1984), Maewal (1986) and some refined models
describing long wave problems for the microperiodic bodies were presented by
Wozniak and Wozniak (1997a,b). These models take into account the effect of
the microstructure size on dynamic macrobehaviour of a body. Refined mo-
dels describing this effect for periodic structures were presented by Baron and
Wozniak (1995), Jedrysiak and Wozniak (1995), Michalak et al. (1995) and
others.

In this paper, we deal with study the problem of free vibrations of the plate
band with periodically distributed loadings. As a tool we apply the refined
modelling approach, which takes into account the microstructure scale effect
on the dynamic plate response. These approaches to the linear-elastic periodic
plates were presented by Baron and Wozniak (1995), for medium thickness pla-
tes (the Hencky-Reissner assumptions) and by Jedrysiak and WozZniak (1995),
for thin elastic plates (the Kirchhoff assumptions). Using these approaches we
obtain the plate theories, which are called "refined” or ”structural”. Within the
framework of these theories we can investigate dynamic processes in periodic
plates, where the size of the periodicity unit cell cannot be neglected. More-
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over, every periodicity cell has to be treated within the framework of 2D-plate
theories. The effect of the microstructure size on the body macrobehaviour is
called the length-scale effect.

2. Preliminaries

Throughout the paper subscripts alpha, g, ... (1,7,...) run over 1,2 (over
1,2,3), indices A, B,... runover 1,...,N and indices a,b,... run over 1,...,7n.
Summation convention holds for all the aforementioned indices.

=
—

Fig. 1. Sample plate with a microperiodic structure

By 0Oz1x9z3 we denote the orthogonal cartesian coordinate system in the
physical space. Setting z = (z,z92) and 2z = z3, the undeformed considered
plate (Fig.1) occupies the region 2 := {(z,2) : —d(z)/2 < z < d(z)/2,z € IT}
where IT is the region of midplane and d(z) is the plate thickness at a point
z € Il. By A:=(0,l;)x(0,l2) we describe the periodicity unit cell on 0z;z2
plane, where [), o are length dimensions. The microstructure parameter [,
defined by [ := 4/I? + 1%, describing the size of the microstructure, satisfies
two conditions. First, it is sufficiently small compared to the minimum cha-
racteristic length dimension Ly of IT (I « Ljy). Second, it is sufficiently
large compared to the maximum plate thickness d. We assume that d is a
A-periodic function of £ and all material and inertial properties of the plate
are also A-periodic functions of # and even functions of z. For an arbitrary
integrable A-periodic function f we denote by

(f) = iA/f(z) da da = dzdzs (2.1)
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its averaged (constant) value. We also define ¢ as the time coordinate. More-
over, let wu;, e;;, s;; stand for displacements, strains and stresses, respectively,
pt, p~ be loadings (in the z3-axis direction) on the top and bottom planes
of the plate, respectively, and b be the constant body force (in the zj-axis
direction). By p = p(z,2) and a5k = aijr(Z, z) we denote a mass density
and a tensor of elasticity of the plate material and assume that z = const are
material symmetry planes; at the same time p(-) and a;;%(-) are assumed to
be even functions of z and A-periodic functions of z.

3. Fundamental relations

3.1. Hencky-Reissner plate theory relations

Using the known denotations the above medium thickness plate theory is
described by:
— strain-displacement equations

— stress-strain relations (for the plane stress condition s33 = 0)
Saf = Cafiy6E~5 Sa3 = 204383€43 (3.2)

._ -1
where Cogys 1= GaBys — Caf330533(@3333)
— kinematic constrains

ue(Z, 2,t) = 204(z,t) uz(Z, z,t) = uz(z,t) (3.3)

where wug, 8, are deflections of the midplane and rotations, respectively
— equation of motion (in the weak form)

d d

2 2
/ /m’liﬁui dzda +/ /(sagﬁeag + 28a30€43) dzda =
brg m_ 4

IR

(3.4)

d

3
d+P—5U3( d) da+b//p5u;; dzda
7 -3

e

Z/QWM
I7

which holds for every admissible virtual displacement Ju, where du; _— 0.
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Using the known modelling procedures from Egs (3.1) + (3.4) for micro-
periodic plates, we will obtain differential equations of the medium thickness
plate theory with highly oscillating A-periodic functions.

3.2. Kirchhoff plate theory relations

The above thin plate theory is described by:
— strain-displacement equations

€ij = U j) (3.5)
— stress-strain relations (for the plane stress condition s33 = 0)
S8 = Cafy5€ys (3.6)
— kinematic constrains
Ue(Z,2,t) = —2w o(z, 1) us(z, 2,t) = w(z,t) (3.7)

where w(z,t) are displacemerts of points of the midplane
— equation of motion (in the weak form) — in the form (3.4).

For microperiodic plates Eqs (3.5) + (3.7) and (3.4) lead to the governing
equations of the thin plate with highly oscillating coefficients.

3.3. Introductory concepts of the modelling approach

In order to formulate the modelling hypotheses, we will introduce two
concepts.

The first of them is the microshape function system. This is a set of suf-
ficiently smooth functions h(z), which are linearly independent, A-periodic
and such that (|])/(|8h|) € O(1), @ =1, ...,n hold for every h € {h,Byh,...}.
The choice of microshape functions depends on a form of micromotions rele-
vant in the problem under consideration; they will be obtained by using an
approximate solution to a local vibration problem formulated on the unit cell.

The second from these concepts is the macrofunction. Every macrofunc-
tion F together with all its derivatives, satisfies, what will be called a long
wave approximation, the conditions: (fF)(z) = (f)(z)F(z), for an arbitrary
function f, and (94(hF)) 2 (9,hF) for an arbitrary microshape function A.
The set of the above macrofunctions will be denoted by LWA(A), where LWA
stands for a ”long wave approximation”.
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3.4. Modelling hypotheses

The formulation of the refined 2D-theory for the microperiodic thin plates
will be based on the following hypotheses.

e Macrodisplacement Assumption (A1l). This hypothesis is based on the
assumption that

U € LWA(4)  E(U) = (Eu)

where u is a displacement field defined on the plate midplane, U is called
a macrodisplacement field, and E is the known differential operator such
that Ew is the corresponding strain field.

e Internal Variable Assumption (A2). This hypothesis is related to the
micromotions v := u — U and states that for an arbitrary A-periodic
function f we have (fv) = (fh4V4)and VA € LWA(A), A=1,.. N.
Fields V4 are called internal variables.

3.5. Governing equations of the refined Hencky-Reissner model

Let us introduce the following denotations

d d
2 2
,u::/pdz j:z/szdz
4 8
(3.8)
d d
2 2
dopys = /ZQCaﬂvé dz Caff = /aasﬂs dz
4 _d
2 2
where
U — mean mass density
j — plate rotational inertia density
dopys,Cap — were defined in Section 2 and 3.1.

After some transformations we obtain the following equations of refined
theory for the Hencky-Reissner plates with U, O, T4, 2;‘ as the basic
unknowns:

— equations of motion
Mop,p— Qa — (1) — (1) F8 = 0
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Qaa — (W)U = (urBYTB +p + (u)b =0

e (3.9)
M? + R® + (jROROE + (jh%)O4 = 0
QA + (urdrBYTB + (ur®)U =0
— constitutive equations
Mg = (dapys)O(y5) + (dapysh’ P8
Qa = (cap)(Op + Up) + (caph”) U§ + (capr J)T®
M&l = (dapyshi5) Oy .0) + (daﬁvéh?ﬁh%)wg (3.10)

Rf, = (caph®)(Op + Uyg) + (caph®h* )0} + (caprigh®)T®
Q4 = (Caﬂ7'fx>(@ﬁ +Upg) + (cagrf!h“)!pg + (CaﬁTiT,%TB

The underlined terms in the above equations depend on the microstructure
size.

3.6. Governing equations of the refined Kirchhoff model

The macromodelling procedure based on Eqs (3.5) + (3.7) and (3.4) yields
the following system of differential equations with constant coefficients for W
and V4 as the basic unknowns:

— equations of motion

Mapap + (W = G)W aa + (ug®) VP - (ig2)VE =p+ b(#)(B )
= 11

MA + (ug YW + (ug?gP WP + (o)W + (1ghgB)VB =0

— constitutive equations

Maﬁ = (daﬂ75>W,76 + (daﬂ'yég,'B;5>VB
(3.12)

MA = <da575g?75gzﬁ>VB + <daﬁvdgg5>w,aﬁ

The underlined terms represent the length-scale effect on the plate behaviour.
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3.7. TImportant remark

It has to be emphasized that the above equations can be applied to the
vibration and wave propagations analysis only accepting the long wave appro-
ximation assumption (LWA). The obtained theories make it possible to derive
only averaged values of displacements and are not able to describe the plate
behaviour inside every periodicity cell.

4. Applications of the refined Hencky-Reissner model

Let us consider a homogeneous, isotropic, periodic plate band with the
constant thickness d, mass density p, Young modulus F and Poisson ra-
tio v, simply supported on the opposite edges z; = 0 and z, = L, and
periodically distributed concentrated masses along the axis z, (Fig.2) The
cell of periodicity is now one dimensional (A, := (0,{), Fig.3). The wave
number will be denoted by k = 2p/L and z = z,. Our considerations are
related to resonance frequencies and the effect of body forces b and loadings
p will be neglected.

A |

T —T X=X
| 5

Fig. 3. Cell of periodicity A; = (0,!) and the microshape functions g, h, 7
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Because the unit cell is defined in the form given in Fig.3, we assume only
two microshape functions h = h'(z), r = r'(z), where each of them has
a form I[sin(27wz/l)] obtained by an approximate solution to the eigenvalue
periodic problem on the unit cell. We can show that some terms in Egs (3.10)
are neglected: (dinh)) = {c1171) = (c11h) = (e11hr,)) = 0. Denoting

B = (d1111) BY = (dy11) (h1)?) B

C = (enn) C = (e11(r)?) C = (11 h?) (4.1)
m = (p) m' = (ur) m't = (ur?) '
J = (5) J' = (jh) JU = (5n%)

and defining T =T', © = 9y, ¥ = ¢! from Egs (3.9) and (3.10) we obtain
the governing system of equations for macrodeflections U, macrorotations ©
and internal variables T, ¥

BO, —CO+U,)-JO-J'¥ =0
C@1+Un)—mU—-m'T=0

(B 4+ CMYw + JUN + J'E =0
CUT + T + m'U =0

where the underlined terms describe the effect of the microstructure length
parameter [.
Solution to Eqgs (4.2) can be assumed in the form

U(z,t) = Ay sin(kz) cos(wt) T(z,t) = Ay cos(kz) cos(wt)
(4.3)

O(z,t) = Ap cos(kz) cos(wt) ¥ (z,t) = Ap sin(kz)cos(wt)

where Ay, Ar, Ag, Ay are constant vibration amplitudes and w is a vi-
bration frequency. Substituting the right-hand sides of these above formulae
into Eqs (4.2) we obtain the system of four linear algebraic equations formu-
lae for amplitudes Ay, Ar, Ap, Ag. This system of equations has nontrivial
solutions provided that its determinant is equal to zero. In this way we obtain
the characteristic equation of frequencies, from which the values of resonance
frequencies A can be calculated. Denoting

D = [k*CJ + m(k*B + O)]* — 4k*BCJIm



1010 E.BARON, J.JEDRYSIAK

we arrive at the following formulae for the macro-resonance frequencies Ay, Ary

k2CJ +m(k*B +C) ¥ VD

)t = 12 4.4
(Ar,11) — +0(l%) (4.4)
and for the micro-resonance frequencies Arrr, Ary
CYm + k2Cm~ Y (m!)?
()2 = SRR )T o
mm (m!)
(4.5)
B 4 CYJ + (k2B + C)J 1 (J')?
(Arv)* = ( M+ V() + 0%

JJ — (J1)?

where D > 0, mm!! — (m!)? > 0, JJN — (JH? > 0.
We can observe that the macro-resonance frequencies described by Egs
(4.4) are independent of a choice of microshape function forms.

5. Applications of the refined Kirchhoff model

Using assumptions and denotations given in Section 4 the refined Kirch-
hoff model will be investigated. We will confine ourselves only to one form
of micromotions for the cell A, given in Fig.3 and assume one microshape
function g = g*(z) in the form [2sin(27z/l). Therefore we have (jg,) = 0.
Because the plate thickness d is a constant value we obtain (d;1119,11) = 0.
Denoting

Mt = (mg) m' = (ugg)
(56.1)

JH = ((g.1)?) D = (d1111(g,11)%)

defining V = V!, and using notations (4.1) we obtain from Egs (3.11) and
(3.12) the governing system of equations for macrodeflections W and internal
variables V in the form

BW 1111 + mw — JW,U + @iV =0
(5.2)

AW + DV +m vV + JUV =0

where the underlined terms respect the effect of the microstructure length
parameter [.
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Solution to Eqs (5.2) can be assumed in the form
W(z,t) = Aw sin(kz) cos(wt) V(z,t) = Ay sin(kz) cos(wt) (5.3)

where Aw, Ay are constant vibration amplitudes and w is a vibration frequ-
ency. Substituting the right-hand sides of the above formulae into Eqs (5.2) we
obtain the system of two linear algebraic equations for amplitudes Aw, Ay.
This system of equations has nontrivial solutions provided that its determinant
is equal to zero. In this way we obtain the characteristic equation for frequ-
encies, from which the values of resonance frequencies w can be calculated.
Denoting

G = [B(m' + J'HE? — D(m + JE?))? + 4BD ()2 k? B>0

we arrive at the following formulae for lower w; and higher wy resonance
frequencies

_ Bi(mM + JN) + D(m + Jk?) F /B

((.UL,Q)Q — 2[(m n JkQ)(m“ T J“) _ (T/le)Q] (54)

In Section 6 the obtained results for the plate band with periodically di-
stributed loadings will be presented.

6. Comparison of results obtained by the refined
Hencky-Reissner and Kirchhoff models

In order to compare the applications of the structural model based on
the Kirchhoff assumptions with those of the refined model for the Hencky-
Reissner assumptions free vibrations of the plate band assumed in Section 4
(Fig.2) will be investigated. This plate is loaded periodically along the z-axis
by the system of concentrated masses M, having the inertial moment I about
the z-axis per unit length of this band. The cell of periodicity is given in Fig.3.

For the sake of simplicity of calculations we define the reduced loading
mass densities py = M(Id)~t, pr = 12I17'd=3. The resonance frequencies
A and w are calculated under the assumption that the microshape functions
have the form:

— for the Hencky-Reissner relations h = r = [sin(27rz/l)
— for the Kirchhoff relations g = % sin(27wz/l)
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Y-

Fig. 4. Diagrams of resonance vibration freauvencies

which are presented in Fig.3. The form of assumed microshape functions de-
pends on the form of the micromotions, which we want to investigate, and of
the unit cell A, form.

In Fig.4. we show the diagrams representing the interrelation between
the dimensionless resonance vibration frequencies and the dimensionless wave
number ¢ (¢ = kl, where k = 27 /L is the wave number, ! is the micro-
structure parameter, L is the span of the plate along the z-axis). These
dimensionless frequencies are obtained from Eqs (4.4), (4.5), (5.4) and the
relations

2 2
(Arromv)? = lfp()\l,ll,lll,lv)z (21 9)% = %(m,zf (6.1)
where p is the constant value of the plate mass density and F is the Young
modulus.
Diagrams are made for the following values of parameters: v = (.25,

pm/p=pr/p="1or py/p=pr/p=5.

7. Verification of the presented models by using the Ritz method

7.1. Refined (structural) models

For certain verification of the presented modelling approach free vibra-
tions of special microperiodic plates will be investigated. It will be shown that
when assuming only one microshape function it is sufficient to consider the
micromotion of the plate described by this function.

Let us assume the plate band simply supported on the opposite edges
(z = 0and z = L), made of an isotropic homogeneous material and having the
[-periodic thickness d, with periodically distributed concentrated masses M.
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A sample plate is showed in Fig.5. Moreover, we assume the periodicity unit
cell in the form shown in Fig.6, and the thickness d as

o f & el

dy if ze {0’ (41;57)1] U ((144-6)1’ (/;—1-1631) : [(3-:6)1,1]

where: [ is the microstructure parameter, ¢ is a real number from the range
[0,1]. The concentrated masses M will be applied at the two points of the unit
cell Ay on the z-axis at z = 1/4 and z = 31/4. Hence, we will investigate
the micromotions described by the microshape functions

(7.1)

h(z) = r(x) = lsin(2nrz /1) g(z) = I*sin(2mz /1) (7.2)

The averaged density per unit area of each mass M will be denoted by
m = pH, where H is an | -periodic function. For the purpose of investigation
of free vibrations we will assume that the tractions p on upper and lower
boundaries of the plate and the body force b are equal to zero.

7.1.1. Hencky-Reissner model

Below, using the governing equations of the refined Hencky-Reissner model
(3.9), (3.10) the plate will be analysed. Describing micromotions by the mi-
croshape functions in the form (7.2), yields m! = J! = 0. In this way Eqgs
(4.2) have the form

BO, -CO+U,)-JO=0

C(@yl + U}U) - mU =0

(B +CMyw + JUG =0

C'U'T + T =0

We can observe that the two above equations (7.3); o for describe macro-
motions of the plate band. Eqs (7.3)34 are independent and each of them
describes independent micromotions. The last two of Eqs (7.3) are interesting
for us, because those depend on the microstructure parameter /. Hence, we
will examine only these equations.

Solutions to Eqs (7.3)3 4 satisfying the boundary conditions for the simply
supported plate band will be assumed in the form (k is a wave number)

V(x,t) = Ay sin(kz) cos(wt) T(z,t) = Arsin(kz) cos(wt)  (7.4)
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Substituting the right-hand sides of Eqs (7.4) into Eqs (7.3)34 we obtain two
independent linear algebraic equations for amplitudes Ay, Ar. After some
transformations we obtain the following formulae for the micro-resonance fre-
quencies Ajpp, Ay

Cll

11 ~11
(s = o + O) (2= B 2D

Vi + 0% (7.5)

After calculations of coefficients the above formulae can be written in the form

4m*E{(d; — da)[me — sin(me)] + wda}
pl2{(d) — d2)[me + sin(me)| + ndy + 47w H }(1 + v)

Arn)? =
(7.6)
) = Am* B {(d} — d})[me — sin(me)] + nd}}

v pl2{(d} — d3)[me + sin(me)] + wd3 }(1 + v)

1272 E{(dy — dy)[re — sin(me)| + mda}
pl2{(d} — d3)[me + sin(me)] + md3 }(1 + v)

+

where FE, p, v are the Young modulus, the mass density and the Poisson ratio,
respectively, d is the plate thickness, H = M/lp is the function describing
concentrated masses and 1 is the microstructure length-parameter.

7.1.2. Refined Kirchhoff model

Now, using the governing equations of the refined Kirchhoff model (3.11),
(3.12) the plate band will be analysed. Describing micromotions by the mi-
croshape function in the form (7.2); we obtain that m! =0, (jg,) = 0 and
moreover Dj; = 0 (although the plate thickness is not a constant). In this
way Eqgs (5.2) have the form

BW 1111 +mW — JW,H =0
(7.7)

DV +mM v+ J1'v =0

Above we have the system of two independent differential equations — the
first for the macrodeflections W and the second for the internal variable V.
The second of these equations is interesting for us, because it depends on the
microstructure parameter [. Hence, we will investigate only this equation.
Solutions to Eq (7.7)9 satisfying boundary conditions for the simply sup-
ported plate band will be assumed in the form (5.3)2. Substituting the right-
hand side of (5.3)9 into Eq (7.7)2 we obtain a linear algebraic equation for the
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amplitude Ay. After some transformations we obtain the following formula
for the higher resonance frequency

D

1\2 _
(wy)® = mil 4 i

(7.8)

depending on the microstructure of the plate, only.
After some calculations the higher resonance frequency can be written as

4miE
(wh)? = m{(d? — d3)[re + sin(me)] + wd%} .
{312[(d1 — dy) (e + sin(me)) + wdo + 4w H] + (7.9)

T+l ~ dd)(me + sin(re)) + 3]}

where E, p, v are the Young modulus, the mass density and the Poisson ratio,
respectively, d is the plate thickness, H = M/lp is the function describing
concentrated masses and [ is the microstructure length-parameter.

As can be seen the higher resonance frequency depends only on the micro-
structure parameter [ and is independent of the wave number k.

7.2. Ritz method

In this section we will investigate the plate band simply supported on the
opposite edges (z = 0 and z = [) and made of an isotropic homogeneous
material, with the [-periodic thickness d and two masses M located as in
Fig.6. The Ritz method will be used to analyse the resonance frequencies of
this plate band. Calculations will be made within the framework of Hencky-
Reissner and Kirchhoff theories. The formulae for the potential £ and the
kinetic energy K of this plate band can be written

[y

1
5//aijkleijek[ dzda 5// 2 dzda (7.10)
_d T _d
2 2
7.2.1.  Hencky-Reissner assumptions (Egs (3.1) + (3.3))
Assuming displacements: uy = zA;sin(2mrz/l) cos(wt), uy = 0,
ug = Agsin(2wz/l)cos(wt), we can write the formulae for the maximal po-

tential and the kinetic energy
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+ ﬁ{%fﬁl?[(dl — dp)(me + sin(me)) + wdy] +

+ w?A3(d) — dy)(me — sin(me)) + de}—}

pwl 2] .
Koz = o {12A [(d3 — d3)(me + sin(me)) + nd3] +

+  A3[(di — dy)(me + sin(me)) + mdy + 47rH]—}

The condition of the Ritz method takes the form

d(gmaz - K:ma:v) —0 d(gmaf. B K:maz)
dA, B dA,

=90

After some transformations we arrive at the formula for resonance frequencies

4 B{(d\ — dp)[me — sin(me)] + mda}

< 5
(Arrr)”™ = pl2{(d, — da)[me + sin(me)] + wdy + 4nH }(1 + v) (7.1)
S A’ E L {(d? — d3)[re — sin(me)] + md3)
O™ = U@ ~ &) me + sm{re)] + 73} (1 + )
N 122 E{(d) — d2)[me — sin(me)] + 7d2}

pl?{(d3 — d3)[re + sin(me)] + md3 }(1 + v)

We can observe that the above formulae are identical as the higher micro-
resonance frequencies (7.6).
7.2.2. Kirchhoff assumptions (Egs (3.5) and (3.6))

Assuming displacements w = Asin(27z/l) cos(wt), we can write the formulae
for the maximal potential and the kinetic energy

mSE .
pw?
Ko = A24—7rl{ 12((dy — dp) (e + sin(me)) + mda + 4nH] +

2
+ ?[(d? — d%)(’;rg — sin(me)) + Wd%]}
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The condition of the Ritz method takes the form

d(gma.z - K:ma.z)
dA

=0

After some transformations we arrive at the formula for resonance frequencies

’7T4 .
s = pp‘(ll—_Eﬂ—){(d? — d3)[me + sin(ne)) + wdg} :
{312[(d1 — dy)(me + sin(me)) + wdy + AnH] + (7.12)

+ w?((d} — d) (e +sin(re)) + ndf])}

which is identical as the higher frequency (7.9) obtained within the framework
of the refined Kirchhoff model.

Summarizing, we can confirm that the above results (7.6) and (7.9) obta-
ined within the framework of the refined models of microperiodic plates are
physically correct.

8. Conclusions

We have presented the example, which illustrates applications of refined
plate theories to investigations of free vibrations of a microperiodic plate band
loaded periodically by the system of concentrated masses. Our considerations
are carried out within the framework of the medium thickness plate theory (the
Hencky-Reissner assumptions) and the thin plate theory (the Kirchhoff plate
theory assumptions). Using the refined plate theories we can investigate the
effect of the microstructure length parameter [ on the plate macrobehaviour.

Analysing the results obtained for the refined Hencky-Reissner and Kirch-
hoff models, respectively, we can formulate the following conclusions:

e Applying the refined plate theories we can get additional higher reso-
nance frequencies: for the Hencky-Reissner assumptions — two micro-
resonance frequencies, for the Kirchhoff assumptions — one resonance
frequency

e The effect of the microstructure parameter [ on the dynamic plate be-
haviour should be considered for high frequencies of loadings
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e It can be observed from the diagrams shown in Fig.4. that in the case of

lower frequencies and the case of higher frequencies we have lower values
of them for the Kirchhoff model.

The comparison for the special case of the plate band between the results
obtained for the refined models and the Ritz method leads to the conclusion
that we can restrict to one microshape function and these results are physically
correct.

10.
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O drganiach plyt z periodycznym rozkladem obcigzenia inercyjnego

Streszczenie

Cel pracy jest podwdjny. Pierwszym celem jest zastosowanie strukturalnej ma-
krodynamiki plyt mikroperiodycznych do badania czestosci drgan wtasnych cienkich
plyt Kirchhoffa i plyt $redniej gruboéci Hencky’ego-Reissnera oraz poréwnanie otrzy-
manych wynikéw. Drugi cel to poréwnanie wynikéw otrzymanych wg modeli struk-
turalnych dla pewnych szczegélnych przypadkéw z wynikami uzyskanymi znanymi
przyblizonymi metodami oraz pokazanie poprawnosci stosowanych modeli. Zaloze-
nia przedstawionych sposob6éw modelowania liniowo-sprezystych plyt o strukturze
mikroperiodycznej w plaszczyznach réwnoleglych do plaszczyzny $rodkowej plyty zo-
staly przedstawione w pracach Barona i WoZniaka (1995) oraz Jedrysiaka i Wozniaka
(1995). Podejscie to pozwala uwzglednié¢ wplyw wielkosci mikrostruktury na dynamike
plyt (tzw. efekt skali).
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