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Transmission of elasto-electric longitudinal barmonic waves in porous
long bones filled with physiological fluid is investigated. The complete
set of equations of the problem is obtained on the basis of the Biot theory
of elastic waves in fluid-saturated porous media and the linear equations
of electrokinetics, by means of quantities analogous to those in the theory
of electrical transmission lines. Experimental findings from the biome-
chanical literature, supporting applicability of the proposed description,
are presented. The electric signal associated with the propagation of lon-
gitudinal elastic waves in a wet long bone shaft can potentially be used
for monitoring these waves during their application in e.g. bone porosity
measurements.
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1. Introduction

Porous elastic dielectric solid filled with a viscous ionic fluid is a natural
biomechanical (or bioelectromechanical) model of human cortical bone filled
with physiological fluid (cf Carter and Hayes, 1978; Martin, 1984; Salzstein
et al., 1987; Natali and Meroi, 1989; Uklejewski, 1994). This cortical bone
tissue forms tuboidal shafts of long bones in the human and mamrnalian ske-
letons. The volume porosity of the human cortical bone ranges from 0.05 to
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0.30, the typical porosity value for normal human cortical bone is ~ 0.15 (cf
Martin, 1984).

In the range of mechanical loads occuring during normal physical activity
of individuals, cortical bone tissue behaves like a linear poroelastic material
(cf e.g. Natali and Meroi, 1989).

The two populations of bone cells: osteoblasts and osteoclasts maintain the
dynamical equilibrium between the two processes which proceed continuously
in bone tissue, i.e. the new bone formation process (carried by the osteoblasts)
and the bone resorption (carried by the osteoclasts). Both these two kinds of
bone tissue cells are electro-sensitive, i.e. they can modify their cell metabolism
(cf Basset, 1982; Zichner, 1984) and even migrate (in opposite directions) in
response to a constant or pulsating one-directional electric field — as it was
prooved in a spectacular way by Ferrier et al. (1986).
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Fig. 1. Schematic diagram of the bone remodelling process (after Hart et al., 1984,
modified)

Mechanical strains of porous bone filled with physiological fluid can gene-
rate electrical potentials (SGPs — Strain Generated Potentials) which in turn
can stimulate the bone tissue cells to adaptive response of the tissue (Fig.1).
In the mechano-adaptive response of bone (e.g. of a long bone) one can di-
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stinguish two remodelling processes: the external remodelling process, i.e. the
adaptive changes of cross-section geometry of a bone {e.g. of a long bone shaft),
and the internal remodelling, i.e. the adaptive changes of mechanical proper-
ties of cortical bone tissue (due to adaptive changes of porosity and internal
architecture of cortical bone tissue of a long bone shaft wall).

As it was shown by the autor (cf Uklejewski, 1993, 1994) piezoelectricity
is the initial, whereas streaming potential - the direct generating mechanism
of the strain generated potentials (SGPs) in porous cortical bone filled with
physiological fluid. The initial piezoelectric polarization of collagenous osteonic
lamellae (due to the initial stresses induced in these lamellae during the cortical
bone tissue growth (cf Ascenzi and Benvenuti, 1977; Fung, 1988) is an origin
of the bound surface electric charge on pore walls of the adult cortical bore
matrix and — therefore — of the electrokinetic potential Zeta of this cortical
bone i.e., when filled with physiological ionic fluid.

During small linear elastic deformations of wet cortical bone the piezoelec-
tric polarization of osteonic lamellae varies very small from its initial value
(cf Uklejewski, 1993, 1994) thus, the generation of the electromechanical po-
tentials SGPs can be effectively described by means of the linear equations of
classical electrokinetics in dielectric porous media filled with ionic fluid (such
a description has been used by Salzstein et al. (1987), but without explanation
of its theoretical background).

These few introductory remarks underline the role of the elasto-electric
potentials (SGPs) in bone biomechanics and the importance of the problem
of adequate, possibly simple and effective, mathematical description of the
generation of those potentials in long bones during their periodical loading.

2. Long bone shaft as a transmission line

In Fig.2 the longitudinal and transversal sections of a long bone shaft has
been shown schematically. We note the interesting properties of long bone
shafts, resulting from the existence of the remodelling (adaptive) processes
which proceed in living bones according to its mechanical strain history.

As it was shown by Lazenby (1986): ”... internal and external remodelling
do not proceed independently. Net bone loss occurs where it can be most
afforded without precipitously compromissing strength”. — It means that the
cross-section geometry of a long bone is strictly connected with the distribution
of bone porosity in the cross-section region, and both these parameters, i.e.

19 — Mechanika Teoretyczna
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Fig. 2. Long bone shaft as a hollow (tubular) conduit; the product S;(1 — f;)
(where: S, — area of cross-section z, f; — porosity of an element S;Az:
0 € z € L) has practically the same value along the shaft (it is due to the bone
adaptive remodelling process)

the cross-section geometry and the porosity distribution in the cross-section
region are remodelled under the influence of bone bending loads.

Because every element S;Az of a long bone shaft (where: S; — cross-
section area at the distance z; 0 < z < L, L - long bone shaft length)
transfers in the axial direction of bone the same compression loads — it can
be assumed, in a healty long bone, that the compression strength of every
element S;Az of long bone shaft has the same value. Thus, we can assume
that the value of the product: S;(1— f;) (where f, — the mean bone porosity
in element S,Az) is the same along the bone shaft length

VIIJL,Z'Q E< OaL> SIl(l_flj):SIz(l_flz) (21)

If, moreover, for a given long bone the cross-section area of its shaft varies
very small along the shaft length as it occurs usually (cf Gies and Carter, 1982;
Piekarski, 1981), then also the following approximate equality holds

Vo, 29 €<0,L > Sz, fz1 & Sy fa, (2.2)

i.e. the mean bone porosity f, in the bone shaft element S5,Az is approzi-
mately the same along the length of long bone shaft.

The properties (2.1), (2.2) allow us to introduce in a natural way the
mechanical and the electrical parameters per unit length of the long bone
shaft, and to treate the long bone shaft as a mechano-electric transmission
line with macroparameters distributed practically uniformly along the line
length.
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3. Elasto-electric longitudinal harmonic waves in a wet porous
long bone shaft viewed as a transmission line

In works by Uklejewski (1993), (1994) the autor has presented a continuumn
theory of generation of electromechanical potentials (SGPs) in wet cortical
bone, which combines the Biot theory of poroelasticity with the differential
equations of classical electrokinetics. Now this theory will be adapted to a wet
long bone shaft viewed as a transmission line.

Before that, however, the reasons for applicability of the Biot’s theory of
poroelasticity to the description of wet cortical bone (and a long bone shaft)
mechanics will be presented.

The continuum approach to the problem of the electromechanical poten-
tials (SGPs) generation in porous cortical bone filled with physiological fluid
was used earlier by Salzstein et al. (1987). The theory of Salzstein et al. combi-
nes the classical electrokinetics with a theory of poroelasticity ~ formulated in
terms of the modern mixture theory (cf Bowen, 1976) which has been applied
earlier by Mow et al. (1980) to the description of poroelastic behaviour of ar-
ticular cartilage. Some quantitative disagreements between the values of the
electromechanical potentials SGPs of wet cortical bone obtained on the basis
of the Salzstein et al. (1987) theory and the measurement resuts (cf Salzstein
and Pollack, 1987; Scott and Korostoff, 1990) are mainly due to the assump-
tion (in the Salzstein et al. theory) that the material of both the fluid and the
solid bone phases is incompressible. Chandler (1981) showed that: ”Models as-
suming an incompressible frame of porous medium are grossly inadequate in
describing the temporal features of quasi-static flow. {...] all the physics neces-
sary to explain transient fluid pressures (and streaming potentials) resulting
from quasi-static low are contained in Biot’s wave theory”. The theory of pro-
pagation of elastic waves in fluid saturated porous media with a compressible
solid frame was formulated by Biot (1956) and then verified experimentally
(cf Plona, 1980; Johnson et al., 1982); this theory is by now classical (cf mo-
nographs: Bourbie et al.; 1987; Allard, 1993). Also on the basis of the modern
mixture theory approach one can show that the linear equations of the semi-
phenomenological Biot’s theory are well formulated (cf Kubik, 1982; Katsube
and Carrol, 1987; Ehlers and Kubik, 1994).

The Biot’s consolidation theory (which can be treated as the quasi-static
limit of his wave theory (cf Chandler and Johnson, 1981) has been used by
Nowinski and Davies (1970, 1971) for the description of the poroelastic beha-
viour of bone elements and for the interpretation of some findings resulting
from the Sedlin (1965) investigations on the rheological properties of cortical
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bone. The Biot’s theory has been used also in the problems of ultrasonic wave
propagation in cortical and cancellous bone {cf Williams, 1992).

3.1. Equations of the Biot theory for a long bone shaft transmission line
under a longitudinal harmonic load

We consider a porous long bone shaft filled with physiological fluid and
assume that at z = 0 on the cross-section of the shaft acts a longitudinal
harmonic load P(t) with the pulsation w

P(t) = Pysinwt = Im(POeiwt) (3.1)

The cortical bone of long bone shaft wall can be treated in these conditions
as an isotropic material — it was experimentally proved by Huiskes (1982), who
wrote: "1t can be concluded from these results that when assuming cortical
bone material to exhibit linear elastic, homogeneous and transversely isotropic
behaviour an excellent agreement between theoretical and experimental results
can be obtained, although some local inaccuraties due to inhomogenity should
be expected. [...| However, when torsion is not considered and only the most
significant longitudinal stress components are of interest, a good approximation
can be obtained from assuming the cortical bone to be isotropic”.

The deformation of the porous cortical bone of a long bone shaft wall is
described by the following one-dimensional dynamical state equations of Biot’s
theory:

— constitutive equations

o] = (2N ‘*-A)QILﬂ + Qan
61’1 6(1}1
(3.2)
_ 6’&11 an
= 6.’131 + R 6(1,'1
— equations of motion
6011 i 6211.)1 62W1 6w1 6W1 .
b, ~ Pt g T he g (G~ ) =
621[)1 8 Bwl BWL
- S e ) (- )
ot ot ot ot (3.3)
do 62W1 622111 6W1 awl
82W1 0 6W1 6w1
= g (g o~ 5 )
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where o) i1s the normal component of the stress tensor of the solid frame in
the z direction, ¢ is the fluid stress, w; (Ow,/dt = w}) is the component
of the vector of the solid frame displacement (velocity of displacement) in the
z direction, W, (0W,/0t = W) is the component of the vector of the fluid
displacement (velocity of displacement) in the « direction, b is the coefficient
of permeability of porous medium, N, A4, (), R are the Biot-Willis elastic
coefficients, and pi, p2, p, are the inertial coeflicients.

Because the system under discussion is linear and stationary (i.e. its para-
meters values not change in time), and the mechanical load at the cross-section
z = 0 is a harmonic function of time, thus the ather quantities vary also sinu-
soidally, i.e.

o11(z,t) = Im[au(:c)ej‘“t} wi(z,t) = Im [w’[(z)ej“’t}
(3.4)

o(z,t) =Im [U(x)ej‘“t] Wiz, t) = Im[Wf(z)ej“"t]

where the quantities o) (z), o(x), wi(z), W (z) are the complex ampli-
tude functions of the stresses in the solid frame of porous bone, fuid stresses,
velocity of displacement of solid frame and velocity of fluid displacement, re-
spectively; w is the pulsation and j = v/~1 is the imaginary unit.

In Fig.3 we present schematically - on the basis of the electromechanical
analogy given in Appendix - an element dz of a bone transmission line, i.e.
of a wet long bone shaft during propagation of longitudinal harmonic elastic
waves.

The transmission line 1 corresponds to the solid frame of wet long bone
shaft, whereas the transmission line 2 corresponds to the fluid phase of wet
long bone shaft.

The constitutive relations in complex form for a wet long bone shaft
under longitudinal harmonic load one can obtain on the basis of the scheme
given in Fig.3 applying formally the second Kirchhoff’s law to the elementary
circuits formed by the element 1 - 1’ of the line 1 and ”the earth”, and by the
element 2 — 2’ of the line 2 and "the earth”. We have

dw;(f”) = Z1"So\\(z) — Zo(z)
¥ (3.5)
——d”;;(x) = —Z7Soy(z) — ZFo(x)

The equations (3.5) are isomorphic with the Biot’s constitutive relations
for a poroelastic material filled with fluid (cf Appendix and Egs (3.2) in which
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dx
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Fig. 3. The formal analog scheme of an element dz of a shaft of wet long bone
during propagation of longitudinal harmonic elastic waves, on the basis of the Biot
theory and the electro-mechanical analogy presented in Appendix. ZT*, Z7*, Z7} -
the mechanical impedances (Y™, YJ®, Y% — the admitances) per unit length of a
bone shaft of cross-section area §; w*, W* — velocities of displacements of the solid

and the fluid phase; oy, 0 — stresses in the solid and the fluid phase of wet porous
cortical bone of the shaft

(3.4) are introduced). The mechanical impedances Z7*, ZJ*, Z7; per unit

length should be determined experimentally, or they may be calculated if the
Biot-Willis poroelastic coefficients for cortical bone and the geometry of long
bone shaft are known.

The equations of elastodynamics in complex form for a wet long
bone shaft under longitudinal harmonic load can be obtained by applying
formally the first Kirchhoff’s law to the nodal points of the circuit element
given in Fig.3; we have

%[5011 ()] =Y wi(z) + Y3 [wi(z) — W (z)]
(3.6)

d x LA+ *
1Sa(0)] = V"W (o) + YW (5) - wi(@)

The equations (3.6) are isomorphic with the Biot’s equations of motion for
a poroelastic material filled with fluid (cf Appendix and Egs (3.3) in which
(3.4) are introduced). The mechanical admitances Y™, Y;®, Y7 per unit
length of wet long bone shaft play similar role as the inertial coefficients p),
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P2, Pe 1t Biot’s equations of motion for porous cortical bone filled with phy-
siological fluid (long bone shaft wall material). The admitances Y™, Y,* Y=
should be determined experimentally, or they may be calculated if the material
coefficients for cortical bone and the geometry of long bone shaft are known.

Equations (3.5) and (3.6) can be written in the matrix forin, and we obtain
then the following homogeneous state equatuion

wi(z) 0 0z -Zj wy (%)
d | Wiz) | _| O 0 -zi3 z7 W (z) (3.7)
dz | Soyni(z) Y™ =Y7E 0 0 So1)(z) '
So(z) YR Y™ 0 0 So(x)
where
Y\t = Y+ Y, =Y+ Y (3.8)

We can say that the equations (3.5) and (3.6) or the state equation (3.7)
are the Biot’s equations for a wet long bone shaft transmission line under
longitudinal harmonic load.

3.2. Solution of mechanic state equation for long bone shaft transmission
line
Equation (3.7) can be written in the form
dS(z)
dx

where S(z) = [w(z), W (), So1,(z), So(z)] is the state vector, and A is
the matrix of the system.
The solution of equation (3.9) is given by

= AS(z) (3.9)

S(z) = eA25(0) (3.10)

where €A% is the mechanic transmission matrix of a wet long bone shaft, and
S(0) is the state vector on the input of the system, representing the boundary
conditions for the cross-section of long bone shaft at =z = 0.

The matrix €A% can be determined by using the Cayley-Hamilton theorem
(cf Ogata, 1967) and as the result one obtains (cf Uklejewski, 1994)

Az [ sinh(7y, z) sinh(ysz) ]A3 N cosh(y,z) — cosh(ww)AQ N

v =73 mOi-v3) v —~2 (311)
[vf sinh(y,z) 73 Sinh(mw)] A 4 Yicosh(13) — 73 cosh(yiz),
Yo(vi —8) (v —3) -
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As it wiil be seen in the following the quantities <, v» appearing in Eq
(3.11) are the propagation constants (i.e. they have a constant value for a
given pulsation w) of the two kinds of longitudinal elastic waves propagating
along the shaft of wet long bone: +, is the propagation constant for the Biot’s
slow wave, and -y, is the propagation constant for the longitudinal fast wave

nm=yP+K Y2 = \/ﬂ (3.12)

where
_ P 4P
K = /(aP) + @ P=70
(3.13)
P - P f
AP =" Q' =QiQ:
and
P = ZMY,™ 4 20y Q) = —Z0Y,™ - Z"Y[}
(3.14)
Py = Z5Y,™ + ZYE Qr = —Z0Y\™ - Z7Y ]

As it is known (cf Chandler and Johnson, 1981) in the limit of zero fre-
quency the Biot slow wave equatuion describes a quasi-static flow in fluid-
saturated porous media; in those conditions the inertial forces (associated
with the inertial coefficients p, pa, p, in equations of motion (3.3)) can be
neglected in relation to the viscous drag forces. Substituting formally in the
above presented equations of motion

pr=0 pa =10 po =0 (3.15)
we have then also (Fig.3; cf Uklejewski, 1994)
Y =0 Y =0 Y =G (3.16)

where: G - a real value, then: ~y = 0 (because P = K, Eq (3.12)) - i.e. in
the limit of zero frequency the longitudinal fast wave will not propagate.
The propagation constants -y, v are the complex quantities

Ve = o + Bk o >0 =1,2 (3.17)

The real parts «f of the quantities -y are the measures of the attenuation
of the moving waves, whereas the imaginary parts [ are associated with the
phase velocities vy and with the wavelength Ag by the formulas

w 2m

Vg
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which provides a physical interpretation of the propagation constants -yg.

Interpretating on the basis of the scheme given in Fig.3 the propagation
of two kinds of longitudinal elastic waves in a porous transmission line, one
can say that the Biot’s slow wave propagates along the two-conduit line com-
posed of the conduits 1 and 2 (where 2 acts as a return conduit), whereas
the longitudinal fast wave propagates parallely (”in phase”) along the both
“earth-return circuits” 1 and 2.

On the basis of Egs (3.9) and (3.11) one obtains the following complex
function describing fluid velocity W (z) — wi(z), i.e.

(K-AP-Q)W[(0) — (K+AP—-Qs)wi(z)

Wi(z) ~ wi(z)= cosh(yiz)+

2K
(K- AP~ QL)AEI;Y(JK + AP — Q) A} sinh(y,z) +
(3.19)
LK+ AP+ QL)WF(U)QE{(K — AP QW) (i) +
+(K + AP + QL)AEIEW(QK — AP+ Qo)A sinh(vez)
where
Z™801,(0) — Z1So(0) = AY Z3'50(0) - Z735011(0) = Ay (3.20)

If one express the hyperbolic functions in terms of exponential functions,
then in Eq (3.19) the incident waves and the reflected waves can be isolated.
The incident waves are associated with the term e~ 7%, whereas the reflected
waves — with the term e7*.

3.3. Electric potentials associated with propagation of harmonic longitu-
dinal elastic waves in wet long bone shafts

During the propagation of harmonic longitudinal elastic waves in a wet
long bone shaft the oscillatory flow of ionic physiological fluid in cortical bone
pores occur. This flow — described by the fluid relative velocity W (z)—w7(z)
(Eq (3.19)) — produces the electrokinetic streaming currents and streaming
potentials.

In Fig.4 the electric scheme of an element dx of wet long bone shaft under
harmonic longitudinal mechanical load, placed in the air over a conducting
layer, is presented.

In Fig.4 EY,.(z) represents the electromotive force of voltage sources of
mechanical (deformation) origin, distributed along the wet long bone shaft. It



830 R.UKLEJEWSKI

EY (x)dx

1(x) Z.dx

[(x+dx)

dx.

Fig. 4. The electric scheme of an element dx of wet long bone shaft under harmonic
longitudinal mechanical load, U(z) — electric voltage associated with propagation of
longitudinal elastic waves in wet long bone shaft, EY,. — electromotive force of
voltage sources of mechanical origin, per unit length; Z.(= R + jwL) — electric
impedance of bone transmission line per unit length, Y. (= G + jwC) — electric
admitance of bone transmission line per unit length

will be seen in the following that the electromotive force EY, (z) depends on
the relative velocity W (z) — wi(z) of ionic fluid in bone pores.
We define EY, as
EY. = Z.S8Jq, (3.21)

where Jg — the streaming current density produced by the mechanical de-
formation of wet bone shaft porous wall, S - the cross-section area of long
bone shaft, and Z.(= R + jwL) is the electric impedance per unit length of
wet long bone shaft.

The streaming current density Jg can be determined from the linear
equations of classical electrokinetics, which are here presented in the vector
form

W —w = —A“Vp— AmVV
(3.22)

J = —A21Vp - AQQVV

where W™ — w* is the vector of relative velocity of ionic fluid in bone pores,
p — the fluid pressure, V - the electric potential, J — the vector of the electric
current density, A,; — the hydraulic permeability of porous bone, A,y — the
electric conductivity, A;» — the electrokinetic coefficient of electroosmosis,
Ag; — the electrokinetic coefficient of streaming current.

The phenomenological linear equations of classical electrokinetics in porous
media (given e.g. in Katchalsky and Curran, 1965; Grodzinsky, 1983) can be
derived on the basis of the microscopic flow equations and the homogenization
method (cf Galka et al., 1994).
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Equations (3.22) contain the description of four electrokinetic phenomena:
the streaming potential (when J = 0), the streaming current (when VV = 0),
the electroosmosis (when Vp = 0), and the electroosmotic pressure (when
W*—w*=0).

Substituting VV = 0 in Eqs (3.22) we obtain the following formula for
the streaming current density vector Jgy

Jotr = — Ay Vp = Ay AT (W™ — w”) (3.23)

The relative velocity W* —w* of ionic fluid in bone pores for the considered
1D problem of wet long bone shaft under harmonic longitudinal load is given
by Eq (3.19).

On the basis of the scheme from Fig.4 and the Kirchhoff’s laws we can
write the following non-homogeneous electric state equation

d [ U(z) ] _ [ 0 -2z } [ U(z) EL, (z) ] (3.9

dz | I(z) -Y. 0 I(z) 0 ’
where: I(z) is the complex amplitude function of the electric current in wet
long bone shaft under harmonic longitudinal load (I = JS, where J — the
current density, S — the cross-section area) and U(z) is the complex amplitude
function of the electric voltage associated with the propagation of harmonic
longitudinal waves along a wet long bone shaft.

The Eqgs (3.7) and (3.24) together with Egs (3.21), (3.23) and (3.19) con-

stitute the complete set of equations for elasto-electric longitudinal harmonic
waves in porous long bones filled with physiological Huid.

+

3.8.1.  Solution of the electric state equation
Equation (3.24) can be written as

dS(z)
dz

= BS(z) + E(z) (3.25)

where: S(z) = [U(z),I(z)]" is the electric state vector, B is the matrics of
the system, and E = [EY, (z),0]" is the vector of the electromotive forces of
mechanical origin.

The solution of the non-homogeneous state equation (3.25) have the form
(cf e.g. Ogata, 1967)

S(z) = eB25(0) + / B9 B(¢) dui (3.26)
0
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where B is the electric transmission matrix of a wet long bone shaft, and
S(0) is the state vector on the input of the system representing the electric
boundary conditions for the cross-section of long bone shaft at = = 0.
The matrix B can be determined by using the Cayley-Hamilton theorem
(cf e.g. Ogata, 1967) and as result one obtains
B, €% —e T¥ eYeT | oYl

= B | 3.27
e e + 5 (3.27)

where -y, is the propagation constant of the electric current and voltage waves
propagating along wet long bone shaft, given by the formula

Ye = V ZeYe Re(’)’e) >0 (328)

In the solution (3.26) of the state eqution (3.24) appear only the expo-
nential functions e*7%® and the products of the exponential functions (such
as: etNTed%T gnd  et72TeE%T) with the corresponding coefficients, thus,
integrating in (3.26) is easy.

4. Conclusions

The propagation of longitudinal harmonic elasto-electric waves in porous
long bone shafts filled with a physiological ionic fluid has been investigated.
The theoretical description of the problem is proposed in form which combi-
nes the Biot theory of elastic waves in fluid-saturated porous solids and the
linear equations of classical electrokinetics, and which uses the quantities and
schemes analogous to those in the theory of electrical transmission lines. Expe-
rimental findings from the biomechanical literature, supporting the proposed
theoretical model, are presented. The complete set of equations of the problem
is giveu (Eqgs (3.7), (3.24) together with Eqs (3.21), (3.23) and (3.19)), and the
solutions of the mechanical (homogeneous)state equation (3.7) and the electri-
cal (non-homogeneous) state equation (3.24) are obtained in the same way: by
using the Cayley-Hamilton theorem and the transmission matrix method. The
electric voltage U(z) associated with the propagation of longitudinal elastic
waves in wet long bone shafts can — theoretically — be used to monitor these
waves, and it is possible because the porous cortical bone (long bone shaft
wall material) filled with a physiological ionic Huid acts as a mechano-electric
transducer.
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A. Appendix

In references Uklejewski and Krakowski (1982), Malecki and Uklejewski
(1991) it has been shown that the system of two coupled electrical trans-
mission lines shown in Fig.5 is the electrical analog of a one-dimensionsional
dynamical problem of the Biot’s theory for fluid-saturated porous media (see
the Confrontation of analogical equations). The following notations for the
electrical quantities are used: +¢,(J;) — current (current density) in line 1;
19(J2) — current (current density) in line 2; S — cross-section area of line 1
(line 2); ¥, ¥y — magnetic flux associated with line 1 (line 2); u,, u9 — line vol-
tage of line 1 (line 2); u = O0W/dt — relationship between voltage and maguetic
flux; L), Ly - selfinductance of line 1 (line 2) per unit length; A, — mutual
inductance between lines 1 and 2 per unit length; C,C9 — capacitance of
line 1 (line 2) per unit length; ;Cy, — capacitance between lines 1 and 2 per
unit length; G,, — conductance between lines 1 and 2 per unit length.

i ) - Ax ) -

b % Z

uy(x,1) %C; Ax o u(x+Axr)

han g i (x+Ax0)
[-M, Ax G Ax Co
A

ir(x,0) \ i»(x+Axa)

us(x+Axr)

Fig. 5. The electric analogon for one-dimensional dynamic problem of Biot’s
mechanics of poroelastic materials filled with fluid: an element Az of two electric
coupled transmission lines
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A.1. Confrontation of analogical equations

A.1.1. Biot’s equations for 1D dynamical state of strain of porous medium

— Constitutive equations

ow
gy = (2N +A)% +Q‘1
0z, oz, (A1)
- (9’11)1 8W1
g = Qa—l'l + Rgal'l
8’11)1 B 1 o1y — Q o
8z, M +2N """ R(M +2N) (Ala)
la
ow, Q L 2N+ A
oz, R(M+2N)’"" T R(M 1 2N)°
~— Equations of motion
80’11 . 82’101 0 8’101 8W1
gz, "' on g (5 = ) a2)
oo 82W1 0 BWL aw]
oo, = o () (o~ )
A.2. Equations of the electric coupled transmission lines (Fig.5)
e La 0(-) Me  0(-t)
WS = L, ME 6 T LiL,- M? da
€ [ (A 3)
, M,  9(-%) L, (=",)
= JoS =
h=hS=pr T MZ oz | L, - M? Oz
o(—v
(az D _ L\(J1S) — Mg(J2S)
(A.3a)
o(-¥
(Bz 2 —Me(J1S) + La(J2S)
o1 _ ., 0*(=) I\ (O(-¥1)  O(-"y)
5 = O gz (GG (T -5 n4)

8y . 6(—) Oy 0(—)  O(—)
5 = Oz (Gt ) (T - T
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Podluzne harmoniczne fale sprezysto-elektryczne w porowatych kosciach
dlugich wypelnionych piynem fizjologicznym

Streszczenie

Przedmiotem pracy jest zagadnienie transmisji sprezysto-elektrycznych podtuz-
nych fal harmonicznych w porowatych kodciach dlugich wypelnionych plynem fizjo-
logicznym. Zbiorczy uklad réwnan zagadnienia wyprowadzono na podstawie Biotow-
skiej teorii propagacji fal sprezystych w odrodkach porowatych nasyconych cieczy oraz
liniowych réwnai elektrokinetyki, stosujac opis za pomocy wielkodel analogicznych do
stosowanych w teorii elektrycznych linii przesytowych. Uzasadniono przydatnosé za-
proponowanego modelu teoretycznego przywolujac z literatury wyniki badan ekspe-
rymentalnych dotyczace bioelektromechaniki koéci. Sygnal elektryczny towarzyszacy
propagacji podtuznych fal sprezystych w trzonie kosci diugiej nasyconej ptynem fi-
zjologicznym mdéglby, przypuszczalnie, zostaé¢ uzyty celem monitorowania tych fal
w zastosowaniu ich np. do pomiaru porowatoéci kodci.
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