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A compaction theory is applied to description of stress wave propagation
through saturated sands, including such associated phenomena as pore
pressure generation and liquefaction. Numerical examples show that li-
quefaction is possible during either loading or unloading, depending on
the magnitude of applied stress and mechanical properties of saturated
sand. It is shown that the stress wave propagates without change of sha-
pes but produces regrouping of the intrinsic stresses in matrix and fluid,
l.e. generating excess pore pressure and reducing mean effective pres-
sure, which leads to liquefaction. Those effects are caused by permanent
porosity changes due to rearrangement of the granular structure of the
sand, and pore water compressibility.
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1. Introduction

Mechanics of fluid-saturated granular materials has attracted attention in
various branches of science and engineering being of particular importance in
geophysics and civil engineering. Geophysicists are mostly interested in the
propagation of stress waves through geologic media, including saturated soils
and porous rocks, in order to investigate the structure of the Earth or to di-
scover oil deposits. Prediction of the dynamic behaviour of saturated soils is
of importance in many engineering problems including those related to ear-
thquakes and soil-structure interactions. Relatively little attention has been
paid to the mechanics of fluid-saturated granular materials by marine engine-
ers investigating the behaviour of seabeds under various loading conditions,
including water waves action and underwater explosions.

A major interest in marine engineering is to investigate the influence of
the seabed on the propagation of water waves. The most simple approach is
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based on the assumption that a seabed can be modelled as a porous and rigid
(non-deformable) material. The flow of pore water is assumed to obey some
empirical law (usually Darcy’s law), which relates the fluid velocity to the
pore pressure gradient by the coefficient of permeability. Such an approach is
called filtration theory. The filtration theory has been applied to analysis of
the influence of a permeable seabed on water waves propagation and sediment
motion, see Hunt (1959), Liu (1973), Martin (1970), Massel (1976), Putnam
(1949), Reid and Kajiura (1957). The permeable seabed and boundary con-
ditions at the water-seabed interface allow for a more realistic formulation of
the hydrodynamical problem. However, the pore pressures determined in the
above approaches are independent of the seabed porosity and permeability.

Moshagen and Tgrum (1975) take into account the pore fluid compressi-
bility, which leads to a diffusion equation for pore pressures, and displays the
importance of fluid compressibility on pore pressure distribution in the upper
layers of the seabed. Moshagen and T@rum retain the assumption of seabed
rigidity, which is criticised by Prevost et al. (1975). As an alternative they
propose a model of a deformable seabed with pore fluid trapped in the po-
res (undrained conditions). The behaviour of such a material can be analysed
using standard elasticity solutions, which show that the pore pressure changes
occur not only in the vicinity of a mudline but also at substantial depths in the
seabed. These papers display how solution to the same problem of pore pres-
sure changes in a seabed due to the action of water waves yields substantially
different results when using the different approaches. It is not always possible
to settle experimentally which theoretical model describes better the real se-
abed behaviour. Mallard and Dalrymple (1977) point out that laboratory and
field investigations can lead to extremely different conclusions.

The approach of Madsen (1978) and Yamamoto et al. (1978) takes into
account the deformability of both solid skeleton and pore fluid in the analysis
of seabed behaviour due to water waves. They make use of the more general
theory of Biot (1956), who was the first to propose a rational approach to the
mechanics of fluid-saturated porous solids. Foda (1989) shows an example of
further developments, taking into account viscous properties of the boundary
layer at the bed-water interface in the damping of water waves propagating
over a soft bed.

The above papers dealing with the propagation of water waves over a
seabed display difficulties in establishing proper boundary conditions at the
water-seabed interface for the hydrodynamic problem. The main question of
how the seabed behaves under real loading conditions is far from understood.
The most general approach discussed is based on Biot’s theory assuming a
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compressible fluid and elastic skeleton. Those assumptions limit possible ap-
plications, particularly under extreme loading conditions, such as those during
severe storms, earthquakes or underwater explosions. In these cases pheno-
mena such as permanent pore pressure generation and soil liquefaction occur.

Soil liquefaction is designated as the process of transforming an initially
solid material into a fluid in regard to the flow behaviour. Liquefaction is
preceded by progressive pore pressure build-up. The increasing pore pressure
changes the distribution of total pressure between the constituents of the sa-
turated material reducing the so-called effective stresses. This means that the
contact forces between grains decrease, so the material, on the macroscopic
scale, becomes weaker. In the extreme case of liquefaction, these contact forces
vanish and the material behaves macroscopically as a liquid.

The importance of liquefaction has been recognised by geotechnical en-
gineers. Extensive reviews of the subject are provided by Zienkiewicz et al.
(1978), Finn (1982), Ishihara and Towhata (1982), Martin and Seed (1982).
A common approach accepted in geotechnical engineering is that the dynamic
loads, within the range of low frequencies, can be simulated by quasi-static
cyclic loadings. This very simplified assumption has allowed for the analysis of
many problems of practical importance. However, there is still a wide range of
problems which cannot be analysed using such simple approaches. An impor-
tant example is blast-induced liquefaction, cf Studer and Kok (1980), Charlie
et al. (1980). Although major efforts have been devoted to this problem, lit-
tle progress has been made in understanding the phenomenon, see Rawlings
(1987). In the opinion of Fragaszy and Voss (1982), there was no generally
accepted theory to explain the blast-induced liquefaction mechanism, or to
predict the occurrence and effects of blast-induced liquefaction.

There are several civilian and military aspects related to blast-induced soil
liquefaction. For example, explosive and surface impacting loads have been
used to induce a liquefaction condition when subsequent resolidification incre-
ases the density of loose granular deposits and fills. Blast-induced liquefaction
may cause dams, dykes, embankments or natural slopes to fail by inducing
sufficient excess pore water pressures which reduce the soil strength and al-
low gravity to fail the slopes. Liquefaction may also produce flotation, sinking
or differential movements of structures, Charlie et al. (1980). For safety pre-
cautions in the design of military constructions and for the protection of, for
example, dikes and storm surge barriers, an understanding of liquefaction due
to explosions is of considerable importance.

Blast-induced liquefaction is also of importance in geophysics and geology.
Charlie et al. (1980) mention laboratory and field air blast loading tests on wet
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sands, and tests performed in Canada in 1971, when a 500-ton explosive was
detonated at a site which consisted of ancient glacial lake sediments composed
of alternating layers of sands, silts and clays. Liquefaction induced subma-
rine slides are among the major threats to the security of seafloor structures,
man-made reservoirs and seafloor networks, and create also a very important
mechanism for transporting sediment from the deltaic to the offshore prodelta
environment. At present we know very little about the behaviour of the soil
mags during its transport downslope. Numerical models presently employed
to simulate such sediment transport, as the turbulent flow and the viscous
debris flow models, differ widely in their predictions. Consequently, we cannot
predict with any certainty the forces exerted by a submarine sediment avalan-
che on structures anchored onto the seafloor. The liquefaction front of marine
sediments is a key element in understanding how a sediment failure develops,
cf Syvitski and Schafer (1990).

The mechanics of soil liquefaction touches two, traditionally distinct disci-
plines; namely, the mechanics of solids and fluid mechanics. In soil mechanics
it is usually sufficient to recognise that under certain loading conditions a
saturated soil is going to liquefy. The question of what happens after liquefac-
tion, when the material behaves as a fluid, has not been answered. On the
other hand, fluid mechanics has already recognised a need for more realistic
formulations of such problems as those noted in the earlier discussion of the
propagation of water waves, but attempts have been limited to very simple
models of the seabed leading conclusions not always satisfactory. There is,
therefore, a need for a more general approach to the problems involving soil
liquefaction.

In this paper a simple description of a uni-axial, blast-induced liquefaction
of saturated sand is presented. A starting point for the analysis presented is
the compaction theory of saturated granular materials proposed by Morland
and Sawicki (1983), (1985). The compaction theory allows determining of pore
pressure generation due to a permanent rearrangement of the soil’s granular
structure. The shear response of saturated sand is defined by a non-linear hypo-
elastic relation which takes into account the degradation of material properties
during pore pressure generation. The model incorporates basic features of the
behaviour of saturated sands subjected to dynamic loads. Sawicki and Mor-
land (1985) applied the model to shear propagation through a saturated layer
induced by a cyclic horizontal acceleration of its base. Numerical solutions
obtained, prior to liquefaction, were in qualitative agreement with empirical
data, but the model does not apply after liquefaction.

First, the compaction theory is outlined and the governing equations for
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uni-axial displacement are derived. Then, an analysis of wave propagation is
presented using the method of characteristics. The theoretical results are il-
lustrated by numerical examples describing the response to surface loading in
which the stress monotonically increases to a maximum value and then de-
creases back to zero. Such a pulse simulates a blast loading, see Charlie et al.
(1980). The results are discussed for various soil parameters, and demonstrate
that a simplified theory is valid. The results obtained also support some heu-
ristical suggestions of Charlie et al. (1980) regarding the possible mechanism
of blast-induced liquefaction, that is the permanent volume reduction during
loading leads to the generation of excess pore pressure and liquefaction.

2. Compaction model

The compaction @ is defined as an irreversible infinitesimal porosity change
due to the rearrangement of granular structure

ng—mn
DA+ (2.1)
ng
where
ng — initial porosity
N — porosity
A - reversible, infinitesimal, porosity decrease.

The total volumetric change of the saturated sand follows from the porosity
changes if an assumption of solid grain incompressibility is accepted, thus

E:no—n:noA-l—nOQS:ed-l—e'p (2.2)

where ¢ is measured positive in compression. The reversible (elastic) porosity
changes are given by
A= ap® — bp' (2.3)

ps and p; denote partial pressures in the solid and fluid phases, respectively

]_—’no
o= K b
no no

_1—710

@ — K,f] (2.4)

K is the skeleton compressibility and &« is the pore fluid compressibility, see
Morland (1978). It is more convenient, instead of using partial pressures, to
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introduce the pore pressure u. Now p° = p —pf and pf = ngu, where p is
the total mean pressure, so Eq (2.3) takes the form

A=ap-— [a—(l—ng)nf]u:ap—ﬁu (2.5)
Similar relations hold between pressure and dilatation increments
de = de® + de® (2.6)

where
de® = ngadp — noBdu de? = nodd (2.7)

The compaction is governed by the evolutionary law

d®
- = DlK exp(—Dgé) (28)
dé
where
K — certain invariant of the strain tensor €
D,,D, - coefficients which have to be determined experimentally for
a given sand
¢ - monotonic increasing loading parameter.

Morland and Sawicki (1983) defined K as the second invariant of devia-
toric reversible strain

1 N 1
K= -tré €=¢" — - trefl (2.9)
2 3
The loading parameter is defined as accumulated deviatoric elastic strain, the

increment of which is always positive

1
dé = (§tr(d22)‘ (2.10)
A reversible shear response of the sand is described by the hypoelastic
deviatoric relation
do A€

i (p & (2.11)

where ¢ = o0 — %( tro)l is the stress deviator, and G is a generalised shear
modulus. For small strains it is convenient to use the following form of the
function G

G = Gy + Gy (2.12)
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where G and G are coeflicients which have to be determined experimentally
for a given sand. p' is a mean effective pressure defined as

p=p—u (2.13)

The shape of the function G, expressed by Eq (2.12), is consistent with va-
rious experimental data, see Das (1983). The quantity o denotes a residual
shear modulus at zero effective pressure. Note that Eq (2.12) describes the
degradation of shearing resistance of saturated sand during pore pressure ge-
neration.

3. Incremental relations for uni-axial deformation

Uni-axial deformation of sand is of great importance. First, one-dimen-
sional models of sand behaviour are still very useful in geotechnical practice,
since they can serve as a good approximation of the real ground behaviour and
allow for simple solutions of basic problems. As an example the one-dimen-
sional consolidation model of Terzaghi is still applied to estimate soil settle-
ment. Secondly, one-dimensional consolidometers are available in a standard
geotechnical laboratory to test theory and predictions.

Let us consider a uni-axial deformation of saturated sand in the =z direc-
tion. The lateral deformation is zero. The sand is subjected to an initial stress
state described by a longitudinal stress o and a lateral stress ¢, measured
positive in compression. The initial value of pore pressure is assumed to be
zero, so the initial effective stresses are respectively ¢,> = ¢? and 6.0 = o?.
Drainage of pore water is prevented (undrained conditions). The case when
the vertical stress increases from its initial value ¢9 to its maximum value
o™ and then decreases back to ¢2, is considered. During the loading both
reversible and irreversible porosity changes are allowed, which is different from
the commonly adopted assumption that under undrained conditions the total
porosity change can be neglected as a first approximation, see Morland and
Sawicki (1983). The total volumetric change is therefore the result of the pore
fluid compression. In turn, the intrinsic volume change of the pore water is
related to the porosity change by

f=T0""_ ° (3.1)
D) g

Also
el =kju (3.2)
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so that
€ = MoK fu or de = ngk sdu (3.3)

From Eqs (2.2) and (3.2) it follows that

1
4 — _ + @ 4
u a-{-’I’L()K,f (ap ) (3 )

The two equations describing the shear and compaction (Egs (2.8) and (2.11))
are

1
de = ﬁ(daz —dog) (3.5)
and D )
1
e = ﬁ(e;l) exp(—Da®)det = Cdec! (3.6)

where €% denotes the z component of the elastic strain tensor €*. The total
volumetric deformation is equal to the vertical deformation, so de = de, and
de = de€', de® = de?. Eqs (2.6) and (2.7) then become

de, = ngadp — nofBdu + ngd® = deﬁl + degs (3.7)

using
1
dp = g(daz + 2doy) (3.8)
Eq (3.3) becomes
de, = nokpdu (3.9)

The four equations (3.5)+(3.7) and (3.9) describe the deformation of saturated
sand under a given vertical stress o, in one-dimensional compaction in the
case of loading (do, > 0). The various associated relations are

B,
dé;l: mdaz:BdO'Z d@ZCBdO'Z
doy = (AL + A2CB)do, de, = B(1 4+ ngC)do, (3.10)
1
du = Mdgz
nokf

where
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1—a+fi 2Gny B

A =——"L Ay = ———<“f?@

1+ 20+ = I+2a+ =

f Kf
8
3 o

B, = @ 2 By = % (3.11)

26(1+20+ 2) 1420+ 2

2
a = -Gnya

3

The function C is defined in Eq (3.6). The system of equations (3.10) is non-
linear, so for a given longitudinal stress history, up to the point corresponding
to liquefaction, a solution must be determined numerically.

The simple liquefaction condition cormmonly adopted is that the effective
pressure is zero, Morland and Sawicki (1983)

liquefaction: p' =0 (3.12)

after which the macroscopic response of saturated sand dramatically changes.
The shearing resistance of the solid grains-pore fluid mixture is very small,
since G = Gy = 0, so this mixture can be treated macroscopically as a fluid.
There is no established constitutive law for such a mixture (the concentration
of suspended grains is greater than 60%). Some authors, cf e.g. Foda (1989),
proposed a viscoelastic model for a boundary layer at the bed-water interface,
which perhaps might be appropriate for cohesive suspensions (clayey soils), but
not necessarily for liquefied sands. An elementary post-liquefaction law would
be to assure that the mixture behaves like an elastic fluid, the compressibility
of which is given by

Km = NoKf (3.13)

Eq (3.13) follows from a simple estimation of the mixture compressibility:
km = noks + (1 — ng)k,, where £, is the compressibility of solid grains.
Usually ks = k¢/30, so Eq (3.13) is a good approximation, c¢f Lambe and
Whitman (1969). This ignores the viscous shear response however.

Unloading (do, < 0) is governed by Eqs (3.10) with the additional as-
sumption that no compaction takes place (C = 0). The respective increments
are given by the following equations

B
nokf

do, = A do, de¢! = Bydo, du = do, (3.14)

where the functions A, and B, are defined by Eqs (3.11), 3.
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4. Equations of motion

The case of undrained conditions is considered, so there is no relative
motion of the solid skeleton and pore fluid and there is a single common
velocity field

v =v/ =9 (4.1)

where v© denotes the particle velocity of the respective constituent (o = s
for solid skeleton, « = f for pore fluid), and w» is the common velocity.
Assumption (4.1) means that the drag force between the constituents prevents
relative motion. In the case of rapid loading, such as during explosions, there
is little time for relative motion, so the undrained assumption is realistic and
pore pressure is not dissipated. When compressional waves propagate through
fluid-saturated elastic porous media with the assumption (4.1) accepted, the
two wave fronts coalesce into a single front, Garg et al. (1973).

The linear momentum balance equations for the two constituents, in the
uni-axial case, are

oy 00 opf  fov
—‘87 —Poa 8—2 —Poa (4.2)

where pf(a = s, f) denotes the partial density of the respective constituent,
o3 is the partial stress in the solid phase, Morland and Sawicki (1983). Addition
of Eqs (4.2) gives the equation of motion for the mixture:

B Oo, Ov

- p— 4.3
0z ot (4:3)
since
0, =0+ pf (4.4)
and
p=p}+nb (4.5)
The compressive strain ¢, is related to the longitudinal displacement U by
ou
-7 4.6
hence
Oe, v 47)
ot 0z )

It is convenient to present Eqgs (4.3) and (4.7) in non-dimensional form
by introducing typical units; namely, stress unit Sy = 10% N/m?, strain unit
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Ey = 1073, modulus unit 108 N/m?, and compressibility unit 108 m?/N.
Let H denote a characteristic distance and %o a characteristic time. The non-
dimensional longitudinal co-ordinate is then Z = z/H, the non-dimensional
time is T = t/tp, the non-dimensional stress is ¢ = 0,/Sp, and the non-
dimensional strain is € = ¢,/Fp. It is also convenient to introduce a se-
parate particle velocity unit Vp, so the non-dimensional particle velocity is
V = vH/Vp and tg will be chosen to define the ratio of characteristic distance
and time, H/ty, as the magnitude of the wave velocity, which in general is
much larger than the particle velocity. Eqs (4.3) and (4.7) take the following
non-dimensional form

do v ov Je
ﬁ+a15T-—0 6_Z+‘BL%_O (48)
where VH B
PYo 0
= = 4.9
T Sote b toVo (4.9)
Eliminating the non-dimensional strain € from Eq (4.8), gives
do av v o
where «) is defined in Eq (4.9)
az = BA(1 +1oC) (4.11)

B and (5, are defined by Eqgs (3.10), and (4.9), and C'is defined in Eq (3.6).
Egs (3.10) are already expressed in non-dimensional form.
The system of equations (4.10) is hyperbolic, with characteristics given by

dz 1
= =4 = 12
o = ¢ =\ o (4.12)
The following relations hold along the characteristics
dz
do+ndV =0 along T = ¢
(4.13)
dz
do —ndV = 1 — =
o —nd 0 along IT ¢
where
(&3]
=,/ 4.14
Vo (4.14)

Following Morland (1959) it can be shown that the values of o and V are
constant along the respective positive characteristics, hence the characteri-
stics (4.12) are straight lines, for a pulse propagating into a uniform region
throughout which there is a common stress-strain (o — €) relation.
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5. Numerical examples and discussion

The following physical parameters have been adopted: initial porosity
ng = 0.375, density of sand grains (quartz) p; = 2600 Ns?/m?, density
of pore water py, = 1000 Ns?/m?, H = 100 m, ¢y = 0.2724s, Vp = 0.1676 m/s.
The density of the mixture, from Eq (4.5), is

p = ngpy + (1 — ng)ps = 2000 Ns?/m? (5.1)

The following initial stress state is assumed: ¢ = 0.5 and 0% = 0.3.

The first example illustrates the influence of soil parameters such as coeffi-
cients describing compaction D) and Dsj, shear modulus G; (residual shear
modulus Gy = 0), skeleton compressibility a, and pore fluid compressibility
kf, on the onset of liquefaction.

NN
/ // // liquefaction
| [ _~ front
1]
I //- /11/ / i
[
Pl
/ / // // / //
Al e
T]iq T

O—qu — - ‘

o

Fig. 1. Loading prior to liquefaction — positive characteristics. Medium dense sand:
Dy =5D,=02,G, =1,a=175 k5 =0.05

Fig.1 presents positive characteristics in the 7, Z plane during loading
prior to liquefaction, for a medium dense saturated sand. The stress at Z = 0
increases linearly with time, so the initial pulse (during loading) is given by

o(Z=0)=pT (5.2)

where the coefficient p; describes the rate of stress increase. According to
Valliapan and Ang (1988) a precise description of the pressure-time history



UNI-AXIAL LIQUEFACTION WAVE IN SATURATED SANDS 693

for blast loading in sand is difficult to obtain. The duration of an explosion
is less than 20 milliseconds, Cole (1965). The maximum pore pressure caused
by an explosion in sand does not exceed 108 N/m? (omax = 103 in our units)
according to Ricker (1977). Nowacki and Raniecki (1987) suggest that the
maximum peak stress during explosions is in the range of 107 +10% N/m?. For
example, p; = 5 x 10 corresponds to the peak stress omax = 10° (108 N/m?)
which develops in a rise time of 2 x 107%s. The characteristics presented in
Fig.1 were computed numerically from Eqs (3.10}, (5.11} and (4.12).

The positive characteristics shown in Fig.l are almost parallel to each
other. The slope of the initial characteristic is 4.5054 which corresponds to
the angle ¢ = 77.485°. During loading the angle ¢ slightly increases, reaching
its maximum value of 77.4957° for o = 15.9. Further loading causes a decre-
ase of ¢, again very slowly. Just prior to liquefaction ¢y, = 77.3017°. Stress
increments travel with speeds defined by the slopes of associated characteri-
stics, with the initial stress increment speed defined by the slope of the first
characteristic. The physical velocity of stress propagation is

c= ci—{ = 367.107¢ (5.3)
0

so the initial speed is ¢ = 1654 m/s. The maximum velocity corresponding to
o =15.91is ¢ = 1655 m/s, and the velocity prior to liquefaction is 1629 m/s. In
practice this means that the stress pulse propagates essentially with a uniform
speed and without any change of shape. During pore pressure generation (in
region II) the velocity of propagation decreases only slightly, the difference
being approximately 1.5%. Paterson (1956) reports that the velocity of wave
propagation in water-filled sands is in the range 1650 + 1690 (£30) m/s.
The velocity of compressive wave propagation in saturated sand can be
estimated by Eq (4.12). Assuming that 1+ n¢C =1 and a + noks = a, then

1

¢ VearBinoks

A typical water compressibility is x; = 0.05 (x1078m?2/N), so for the assumed
data ( = 4.4483, which corresponds to a real velocity of 1633 m/s. This brief
analysis shows that the water compressibility governs the speed of stress wave
propagation through the saturated sand. The influence of other soil parameters
is much smaller, and can be neglected in the first approximation.

The influence of various soil parameters on the onset of liquefaction is
presented in Table 1. The above conclusion that water compressibility is the
main factor governing the speed of wave propagation is fully supported by the

1%

(5.4)

Il — Mechanika Teoretyczna
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numerical analysis of the full system of equations. Further inspection reveals
that there are two main parameters which influence the value of the stress oy;,
corresponding to the onset of liquefaction, namely the water compressibility
ks and the compaction coefficient D;. The influence of other parameters
like D, G and @ is much smaller. As already mentioned, a typical water
compressibility is xy = 0.05. The value 0.1 may be appropriate to a mixture
of water and air. Adopting s = 0.05 = const, there remains one significant
parameter governing the stress level corresponding to liquefaction, namely D;.
The coefficient D, is small for dense sands (D; < 3) and increases with the
susceptibility of sand to compaction. Values D; > 10 correspond to loose
sands.

Table 1. Influence of saturated sand parameters on the onset of liqu-
efaction

no | Dy [ Do |G| a | k5 | Ginitiar [°] | 0uq | Suig [°] |

1] 5 02 I |1.75][0.05] 77486 | 323.4 [ 77.302
220 [0.2] 1 | 175 | 0.05| 77.486 | 158.1 | 77.283
32002 1 |1.75| 0.1 | 72776 | 79.6 | 72.239
4 5 |02] 1 |175] 01 | 72776 | 163.3 | 72.288
5] 5 02| 1 | 1 | 01 | 72.899 | 147.2 | 72.229
6| 5 0205|175 |005| 77441 | 321.6 | 77.302
7120 [01] 1 [1.75 [0.05 | 77486 | 146.2 | 77.276

820 [ 03] 1 |1.75 | 0.05| 77.486 | 174.7 | 77.294
940 [02] 1 [1.75 [0.05 | 77.486 |119.0 | 77.277
10|10 [02] 1 |[1.75 [ 0.05 | 77.486 | 218.8 | 77.292
11| 802 1 | 175|005 | 77.486 | 245.9 | 77.295
12 3 (02| 1 [1.75 | 0.05| 77486 | 475.2 | 77.313
13] 5 02| 1 | 05 005 77641 |270.0 | 77.227

14] 502 1 [ 02 ]005] 77.949 | 25838 | 77.070 |

Fig.2 illustrates the history of pore pressure w and the mean effective
pressure p, prior to liquefaction, for the data from Fig.1. The pore pressure
increases nearly linearly from its initial zero value. The mean effective pressure
first increases from its initial value of 0.367 to its maximum value of 0.881
corresponding to ¢ = 93, and then decreases back to zero at the onset of
liquefaction which corresponds to oy, = 323.4.

Note that along each positive characteristic, presented in Fig.1, the stress
o is constant, so from Fig.2 the pore pressure u and the effective pressure p’
on each of the characteristics can be determined.
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Fig. 2. History of pore pressure u and mean effective pressure p' prior to
liquefaction. Data from Fig.1
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Fig. 3. Characteristic diagram for triangular loading-unloading stress pulses. Data
from Fig.1. See also curves 1 in Fig.4
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The results presented in Fig.2 can be compared with the results computed
for a purely elastic mixture (no compaction; C = 0). For the same loading
the character of the pore pressure changes is similar but with values a little
smaller. For example, the stress ¢ = 200 produces a pore pressure u = 192.4
in the case of an elastic mixture against u = 197.1 in the case of compacting
sand. The main difference is displayed by values of the effective pressure p’. In
the case of an elastic mixture the effective pressure steadily increases from its
initial value of 0.367 to 3.68 for ¢ = 323, whilst in the compacting material
p' = 0 for o = 323.4. For o = 200, p’ = 2.43 and 0.584, respectively.
This is caused by the irreversible porosity changes in the saturated sand which
produce additional (excess) pore pressure changes leading to the decrease of an
effective pressure and subsequent liquefaction. Such effects cannot be described
within the framework of elastic mixtures theories such as the Biot theory.

Fig.3 presents a characteristic diagram for a triangular loading-unloading
stress pulse, which approximates the stress history caused by a weak explo-
sion, Charlie et al. (1980). The peak stress is ¢ = 100 (107" N/m?), and the
rise time is 7. Material properties are those presented in Fig.1. Liquefaction
of such a material during loading occurs at o = 323.4. A stress pulse travels
without change of shape, and each characteristic carries particular information
about the saturated sand behaviour, i.e, the stress o is constant along each
characteristic. Respective changes of pore pressure are shown in Fig.4 (curves
marked 1). During the loading, pore pressure increases from its initial zero
value to its maximum value of 97.85 corresponding to ¢ = 100. The effective
pressure also increases to (.881 at ¢ = 93, then slowly starts to decrease
back to 0.877 at o = 100. Unloading is elastic, and no pore pressure is ge-
nerated. During unloading the effective pressure linearly decreases to zero at
¢ = 16, which corresponds to liquefaction. This interesting phenomenon, na-
mely liquefaction during unloading, was observed experimentally by Fragaszy
and Voss (1982), but for different loading conditions since their experiments
were performed in triaxial apparatus. Liquefaction is produced by the excess
pore pressure (Fig.4b) generated during loading.

The broken line 1’ corresponds to the behaviour of a purely elastic mixture
(the same data as in the case 1 except that D, is zero — no compaction). In this
case the effective pressure increases linearly to a value of 1.403, and during
unloading decreases to its initial value following the loading path in reverse.
Note that the unloading line in case 1 is parallel to the line 1'.
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Fig. 4. (a) Pore pressure and effective pressure changes during loading and
unloading; 1 — medium dense sand, 2 — dense sand. Broken lines illustrate the
behaviour of purely elastic sand. (b) Excess pore pressures due to compaction

The diagrams marked 2 in Fig.4 correspond to a dense sand with small
compaction susceptibility (D; = 2, Dy = 0.1, G = 2, ¢ = 1; k5 = 0.05,
ng = 0.375). Additionally, a larger initial stress state was assumed (o) = 1,
0% = 0.7). A similar stress pulse does not produce liquefaction in this case, but
it is seen that after unloading (the longitudinal stress o returns to zero) the
effective pressure is lower than its initial value shown by the decrease Ap’ in
Fig.4a, which means that a residual excess pore pressure has remained in the
saturated sand. This example supports field observations that dense sands are
much less susceptible to blast-induced liquefaction than medium dense and
loose ones, Rawlings (1987).

An alternative interpretation of the results presented in Fig.3 and Fig.4
is shown in Fig.5. The effective pressure p’ and pore pressure wu pulses are
carried along positive characteristics, without any change of form. Note that
at the onset of liquefaction the pore pressure u = 16.
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Fig. 5. Alternative interpretation of the results presented in Fig.3 and Fig.4
6. Conclusions

It has been shown that compaction theory can be applied to description of
stress wave propagation through saturated sands, including such phenomena
as assoclated pore pressure generation and liquefaction. One of the main conc-
lusions which follow from a detailed analysis of the uni-axial wave propagation
problem is that the shape of the stress wave propagates without change. This
conclusion simplifies the analysis essentially.

The compaction theory differs essentially from the theories of saturated
granular materials based on the Biot type approach, since it includes a descrip-
tion of permanent volume changes due to the re-arrangement of the granular
structure.

Numerical examples show that liquefaction is possible during either lo-
ading or unloading, depending on the magnitude of applied stress and on the
mechanical properties of the saturated sand. The liquefaction susceptibility
of saturated sand depends mainly on two parameters; namely, the pore wa-
ter compressibility ky and the coefficient D, appearing in the compaction
law. Numerical results support an observation that it is easier to liquefy loose
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sands than the dense ones. The results obtained also support some heuristic
suggestions of Charlie et al. (1980) regarding the possible mechanism of blast-
induced liquefaction, that is, the permanent volume reduction during loading
leads to the generation of excess pore pressure and subsequent liquefaction.
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Jednowymiarowa fala uptynnienia w nawodnionych piaskach

Streszczenie

Przedstawiono zastosowanie teorii zageszczania do opisu propagacji jednowymia-
rowej fali uplynnienia w nawodnionych piaskach. Wykazano, ze uptynnienie jest moz-
liwe zaréwno podczas procesu obcigzenia jak i odcigzenia w zaleznoéci od wielkosci
naprezen oraz od wla$ciwosci mechanicznych materiatlu. Pokazano, ze fala globalnego
naprezenia propaguje sie bez zmiany ksztaltu. Procesowi twmu towarzyszy przegru-
powanie naprezen parcjalnych w skladnikach mieszaniny, tj. generowane jest cisnienie
porowe, ktéremu towarzyszy redukcja naprezefi efektywnych w szkielecie gruntowym.
Zjawisko to prowadzi do uplynnienia nawodnionego gruntu.
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