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A description of solute migration through porous media is presented. It
is assumed that transport of contaminants may be considered as an effect
of the two processes: advection and dispersion. The advective transport
is attributed to an average motion of the solution through the porous
skeleton. The dispersive transport results from molecular diffusion and
mechanical mixing. In the paper the Fickian as well as Non-Fickian di-
spersion is considered.
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1. Introduction

For the past few decades substantial research into contaminant migration
in geologic deposits has been conducted. The greatest challenge the scientists
dealing with hydrology and related disciplines of environmental mechanics are
being confronted at present is to develop the ability to predict, at a reasona-
ble degree of certainly, the spatial and temporal distribution of ground-water
contaminants that might result from people activities. Therefore, the research
efforts are directed toward studies the development of an improved under-
standing of the processes of solute migration through porous media are of
great importance. These studies comprise a proper theoretical description of
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solute migration through geologic materials, laboratory and field observations
of transport processes, and incorporation of the theoretical descriptions into
predictive mathematical models for predicting the future spatial distribution
of contaminants in ground-water systems. When considering the transport of
contaminants we usually deal with the media composed of solid porous skeleton
and an immiscible fluid penetrating pores. Such a porous skeleton and a pore
fluid constitute phases of separated (individual) material volumes. Moreover,
each phase can be considered as consisting of several components continuously
distributed (at the molecular level) within the volume of that phase. Transport
of contaminants may be controlled by several mechanisms: advection, diffusion
and sorption of chemicals and mechanical deformation of the porous skeleton.
Adequate approach to modeling of the above coupled phenomena consists in
the description based on the theory of multiphase-multicomponent media (see
e.g. Bedford and Drumbheller, 1983) formulated on the macroscopic scale which
is most important for almost all engineering applications. In the first part of
the paper main features of description of the solute transport are discussed.
Most of this part is based on the results given by Gillham and Cherry (1982),
Bear (1972) and Hassanizadeh (1995).

2. Description of the solute transport

A description of the solute transport processes most widely used is the
macroscopic (average) approach (Bear, 1972; Bear and Bachmat [2]). The pa-
rameters assumed in this approach have deterministic physical representations
and comparison of the model performance with experimental results can pro-
vide an improved understanding of the transport processes.

On the pore scale of description, solute transport results from physical
and chemical processes occurring within the pores and at the solid-solution
interfaces. Equations valid on the pore scale are acceptable for describing the
migration process on this scale, however, solutions to these equations are not
available due to very complex boundary conditions and because of the our
inability to measure the respective transport parameters on the pore scale.
Therefore, in the statistical approach a procedure of spatial averaging is used
to replace the pore-scale of description with the macroscopic scale where the
quantities defined at a point represent the average of micro-effects in the vi-
cinity of the point (called the Representative Elementary Volume (REV), see
Fig.1). A description of the spatial averaging procedure has been developed
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by several researchers (e.g. Bear, 1972; Hassanizadeh, 1995; Hassanizadeh and
Gray, 1979; Nigmatulin, 1979; Whitaker, 1969).

L% wa% - micro quantities

solid (B5w*) , B°=p*(1-f)

hase
phases { o () Bf=pl],

Fig. 1. Volume averaging procedure

The fundamental macroscopic equation governing the spreading of solutes
in a porous medium can be derived by considering the mass conservation
equation of a movable pore-fluid phase treated as a multi-component mixture.
We briefly recall the basic steps of derivation of such an equation using the
volume averaging nomenclature.

Let us consider a porous medium composed of non-deformable porous ske-
leton (of homogeneous and isotropic pore structure) saturated with a multi-
component fluid (solution). The fluid phase consists of N miscible components
which may, in general, interact chemically with each other (on the molecular
level). If {2 represents the REV volume being a sum of the solid skeleton
volume §2¢ and the fluid volume 27, i.e.

N=02+07 (2.1)

one can define the macroscopic mass concentration of species which is the mass
of species  per unit volume of the solution

cB:M—ﬂ B=1,.

7 N (2.2)

"2
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and this definition is based on the fact that the luid components are miscible
and they all are distributed over the same volume 2. Then, the total mass
of fluid phase in 2 per its volume £2f is

Mt > MPB
o2 &8 - 8
T 7 —Eﬂc (2.3)

and pf is called the effective fluid (solution) density, while its partial density
18

B
where f, is the volume porosity defined as
nf
fo = - (2.5)

In a considered solution the various chemical species (3 are moving at different
mass average velocities v? in the stationary coordinate system. For each
chemically active species the macroscopic mass continuity equation has the
form

Af,c?
ot

where the reaction term ¢? represents the rate of creation of the component
mass [ from chemical reactions and should satisfy the following equation

> fgf =0 (2.7)
B

+ V- (fo®?) = fo¢° g=1,..N (2.6)

In practical problems of contaminant transport in porous media one is
interested in the mean motion of fluid phase (solution) and the diffusive motion
of N —1 components with respect to the mean motion. Thus, using the local
mass average solution velocity

1
vl = Z PP (2.8)
f'l)pf ,B

and the diffusive velocity for the B component
w =P o/ (2.9)
Eq (2.6) may be replaced by the continuity equation for the solution

3(fsp")

5% TV (fopPo!) =0 (2.10)
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and the continuity equation for the N —1 [ components

*O(fuc? . .
N 1Y Guay+ V5 = s (2.11)

where
Joaw = focPv! (2.12)

represents the mean mass flux of the species [ and
3% = f,PuP (2.13)
is the diffusive-dispersive mass flux of the species [ that should satisfy the

condition
i =0
B

Eq (2.11) allows one to consider the solute transport as the net effect of the
two processes: advection and dispersion.

To discuss characteristic features of these processes we confine our consi-
derations to the two-component chemically inert solution; i.e., water (w) and
a contaminant (c) soluble in water. In this case, ¢ =0,c¢' =¥, ? = ¢ =,
and c is the solute concentration.

Advective transport is attributed to the mean motion of the solution thro-
ugh the porous skeleton and the advective solute flux reads

jadv = f,,cvf

that represents the mass of solute crossing a unit area of porous medium
perpendicular to the mean flow direction. The dispersive mass flux

j:fvcu

results from the two processes, i.e., molecular diffusion and mechanical mixing.
Diffusion is the effect of the thermal motion of molecules resulting in a net
flux j, of solute directed towards the low-concentration zone. It is usually
assumed that the diffusion flux in a porous medium has the Fickian form

Ja=—fvDggradc (2.14)

where j, represents the mass of solute per unit area of porous medium per
unit time and Dy is the effective molecular diffusion coefficient. The coefficient
D, is generally smaller than the diffusion coefficient in free solution D,, due
to the tortuous diffusion path-way within a porous medium and the presence
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of the solution — solid interface, (see Bear, 1972; Perkins and Johnston, 1963).
These coefficients are related by the equation

Dy = Dot (2.15)

where 7 is the tortuosity (in general can be a second order tensor). The me-
chanical mixing component of the dispersive flux results from relative velocity
variations within the porous medium being produced by the following three
microscopic mechanisms (Gillham and Cherry, 1982), Fig.2:

e The pore velocity distribution associated with the flow of viscous fluid
through a pore

e Variations in velocity as a result of different pore geometry

e Fluctuations in the stream lines with respect to the mean flow direction.

_ _~ _different pore
T v geomelry effect

fluctuations in

the stream lines
with respect to the
mean flow direction

mean flow
direction

Fig. 2. Microscopic mechanism of mechanical mixing

On the macroscopic scale, the mechanical mixing component of the solute
flux is commonly represented by the concentration gradient

jm = _f'qu gradc (2.16)

where D, is the coefficient of mechanical dispersion.
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The total dispersive flux of the solute is
§=Ga+jm=—foDgradc (2.17)
where D is the coeflicient of dispersion defined as
D=D,+D,, (2.18)

Substituting the advective and dispersive flux components into the mass con-
servation eguation (2.11) yield

d(fuc)
ot

which is fairly general and valid for the systems with variable porosity f,
and variable coefficient of the dispersion [J. When the fluid is assumed to be
incompressible and the porous medium is rigid and homogeneous, (the porosity
fo = const) the above equation takes on the form

=V - (fuDVe) = V - (fyev) (2.19)

dc
i
This is the advective-dispersion equation for solute transport describing the

concentration profiles in a binary diffusing system moving through a rigid
porous medium.

V-(Dgradc) — v’ - grade (2.20)

3. Discussion
There are several limitation imposed on the analysis presented above le-
ading to the advective-dispersion equation (2.20):
e Contaminant are soluble in water and chemically inert

e The coefficients of molecular diffusion and mechanical mixing are ad-
ditive

e The fluid is incompressible and its physical properties are independent
of solute concentration.

The effects of advection and dispersion for one-dimensional solute trans-
port are shown schematically in Fig.3. It is seen that a plane profile of solute

8 — Mechanika Teoretyczna
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advective-dispersive transport
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Fig. 3. Scheme of the advective and dispersive solute transport processes

front due to advection alone is strongly influenced by the dispersion pheno-
mena and as the transport process goes on the profile becomes more dispersed.

The applicability of the advection-dispersion model is usually verified from
the column experiment by one-dimensional miscible-displacement measure-
ment. In such an experiment a column (of soil) is initially saturated with
water. Water is displaced with a solution of concentration c¢,.

1 - Advection dispersion
equation for saturated media

2-Typical experimental
behaviour in saturated media

T T S SV U U T B |

P U |
1.6 20 24 2.6 2.8 3.0
Pore volume

Fig. 4. Typical deviations from the breaktrough curve saturated porous media
predicted by the advective-dispersion solute transport model

The concentration history of the column effluent is generally represented
by the breakthrough curve graph of dimensionless concentration (c,/c) versus
dimensionless time represented by the number of pore volumes, see Fig.4.
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4. The effect of mean velocity on dispersion coefficients.
Experimental observations

A rigorous analysis of Eq (2.20) shows (for homogeneous media) the di-
spersive coeflicient to be the second order tensor (Bear, 1972; Hassanizadeh,
1996). This tensor is considered to be the following function of mean fow

velocity
’Uf ® lvf
D::(Da4—awaD|+(aL-—aT)—EﬁT— (4.1)

where a7 and «j, are the transversal and longitudinal dispersivities [Sch],
respectively, | is the unit tensor. Its principal values are

DL:Dd+aL|vf| DT:Dd+aT|vf

and represent the longitudinal and transverse dispersion coefficients, respecti-
vely.

Laboratory experiments have provided aconsiderable amount of informa-
tion on the nature of the dispersion process, such as the influence of velo-
city on the components of dispersion tensor (see Perkins and Johnston, 1963;
Rose, 1973). Empirical results have proved that the dispersion coefficients are
strongly dependent on the solution velocity v/ as well as on the geometrical
properties of the pore/grain structure represented by a characteristic length,
generally taken to be the mean grain diameter d. The empirical formulae for
the longitudinal and transverse dispersion coeflicients expressed in terms of
the molecular diffusion coefficient D, and the Peclet number Pe defined as
v!d/D,, are suggested in the following form (cf Perkins and Johnston, 1963)

Dy Dy vld

— ==+ 1.75 4.2

D, b, "', (42
the corresponding 1D equation is

ocC ¢ Oc

Dy —pf =

ot~ lox? U Bz
and 5 5 Iy

T d v

— = — +0.55 4.3

D, b, *¥D, (43)
the corresponding 2D equation is

2 52
0C _p e S o

ot oz?
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Fig. 5. Graphs of the dimensionless dispersion coefficient versus the Peclect number,
Va/D,. (a) D1 /D, versus Pe, (b) Dr/D, versus Pe (after Perkins and
Johnston, 1963)

Eqgs (4.2) and (4.3) suggest that, in general, at low Peclet numbers the
dispersion coefficient has a constant value being equal to the value of effec-
tive diffusion coeflicient of the tracer in the porous medium. In such a case
molecular diffusion controls the dispersion process. At a high solution velo-
city (large Peclet number) the mechanical mixing processes predominate. At
intermediate values of Pe (of different range for Dy and D) both diffusion
and mechanical mixing play a significant role in the dispersion process. The
graphs of dimensionless dispersion coefficients Dy/D, and Dr/D, versus
the Peclet number are shown in Fig.5. Eqgs (4.2) and (4.3) suggest the more
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general relationship between the dispersion coefficients and v/
Dp = Do+ apvf[™ Dr = D, + ar|vf[? (4.4)

where m and m are empirical constants and for practical purposes when the
mechanical mixing is a dominant dispersive process {Bear, 1972)

11

m=n=1
then
Dy = aL|'vf| Dy = aT|'vf| (4.5)

5. Description of the Non-Fickian dispersion from the equation
of motion for a solute

The advection-dispersion equation (2.19) with the dispersion tensor (4.1)
has been shown to give satisfactory results for homogeneous permeable media.
In the case of small scale or large scale heterogeneities in the permeable matrix
the deviations occur from the so-called Fickian dispersion behaviour. This
problem was discussed by Scheidegger (1958), Tompson (1988), Strack (1992)
and recently by Hassanizadeh (1996).

Commonly, two kinds of deviations from the Fickian behaviour are con-
sidered. The first kind regards dependence of the dispersive tensor on flow
velocity. This deviation, however, is often considered not to be important in
practical situations. A more serious shortcoming is that the values of longi-
tudinal and transversal dispersivities often increase with the distance (and/or
time) approaching some asymptotic values (Matheron and De Marsily, 1980;
Dagan, 1989). In this case the linear relationship between the dispersive mass
flux j and the solute concentration gradient no longer holds. Here, a generali-
zed relationship for the Non-Fickian dispersion flux is shown, which is derived
from the equation of motion for a solute (Hassanizadeh, 1996).

We consider a porous medium saturated with water containing a reac-
ting solute. For both the components water (w) and solute (I) we have the
equations of mass balance

w
HI) 49 (™) = fuevg”
ot
3(f vcl)
ot

(5.1)

+ V- (fucv!) = fictd
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the equations of momentum balance

W g W
__B(fvactv )iy (foc®v” @ ™) =V -0 + fuc¥g + foc® (r¥ + g¥v™)

(5.2)
A(fyctvt
(fgt D LV (ot ©0) = V0! + fudg + fod(rt + ')
respectively, where

cﬁ,aﬂ - mass concentration and the stress tensor of the [ com-
ponent

g — gravity vector

g7 — rate of exchange of mass of the [ component with other
components and the solid phase

8 — force exerted on the § component by all other components

and the solid phase.

Combining Eqs (5.1) and (5.2) we obtain the equation of relative momen-
tum balance for the solute in the following form

013(’”1 — %)

T fod (@ - Vvl — v Vp?) =

fo
(5.3)
)

=(V.ol - cc—wV oY) + foc(rt — 1)

We focus our attention on the case when the solute concentration is low,
so that the fluid phase density will not be affected by changes in the solute
concentration. Then, one can write

l
%<<1 = plxpv (5.4)
and the relation

plvf = ot + v (5.5)

yields
vl =¥ (5.6)

l

Also, the relative solute velocity ', and the dispersive mass flux j, we can

defined as

ut =t —pf gl v

(5.7)
j= fvclul = fvcl(vl - vw)
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Basing on these definitions and assumptions, Eq (5.3) may be rearranged to
obtain the following equation of motion for the solute

i®Jj
fud

l l

=V (a —cc—a )+ foc(rt -7 )+a’”-V(cc—w)+jgl

%

5 )+J(V vf) =

+uf-Vj+j-va+v-(
(5.8)

From the constitutive analysis (Hassanizadeh, 1986), one can suggest

R A
(5.9)
!

fve (T -r) = [fvcl(:ui - Ai)] - fvclvl‘i —o¥- V(cc_w) + fvcl'ri

where p! and Al stand for the relative chemical potential and the relative
Helmholtz free energy of the solute, respectively (both relative to the pure
water component), and 7} is the nonequilibrium component of the resisting
force, which is the dissipative force.

After the substitution of Egs (5.9) into Eq (5.8) the right-hand side (RH S)

of Eq (5.8) takes form
RHS = —fycpl + fuc't! + jg' (5.10)

Since the nonzero resisting force 7 appears ouly if the solute moves with
respect to the pure water component and the solid phase, with the use of Eqgs
(6.7) we find

v—vf 2 =

—J
fuc (5.11)

v v = o)+ (0 -9 =

1,
fclj+uf
v

where v° is the velocity of the solid phase and u/ is the relative fluid phase
velocity with respect to solid, and the following constitutive relation for 74

may be proposed
Ti :Ti(f‘lhpf)clujauf) (512)

As a first order approximation, we assume that 7¢ depends on j linearly

7t = —R(fy, pft,uf) -5 (5.13)
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where R is the resistivity tensor which still could be a nonlinear function
of u/.

After substitution of Eq (5.13) into Eq (5.10) and applying to Eq (5.8) we
obtain the governing relationship for the dispersion mass flux j

[f,,c‘R + Vol (Vof)l - gll]j -
(5.14)

= fuc aﬂ*Vclg'; v/vj - V(inf) +§(V -vf)
that together with the conservation of mass of solute and the known flow
velocity field, forms a determinate set of equations to solve for the solute
concentration. Eq (5.14) represents balance of forces and is a fundamental
relationship for describing the dynamics of solute dispersion in a porous me-
dium. This equation, however, is too general and for practical problems some
simplified forms are needed.

Casel. Fickian dispersion

The simplest equation of dispersion may be obtained by neglecting all
the terms of dynamic type and the mass exchange term. In such a case the
resulting equation 1s

f,Rf = — fudd "*vc (5.15)
which can be transformed to the Fician form
j = f,DVe (5.16)
where D is the dispersion tensor given by
1 opt
D=——2R! 5.17
7, d (5:17)

that may be a function of the fluid phase relative velocity u.

Case 2. The effect of mass exchange

Eq (5.14) shows that the dispersive mass flux may be affected by the mass
exchange process. Neglecting all the inertial terms in Eq (5.14) we obtain

(focR - JM——n‘“v‘ (5.18)
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Next, by virtue of Eq (5.17) Eq (5.18) may be rewritten in the form of Fickian
dispersion equation
j= '—vancvcl (519)

where

D,. = (I-¢'A)"'D (5.20)

is the dispersion coefficient for a non-conservative solute and A is the disper-
sion parameter defined by

1

A=7.d

R = (Z’g*)‘lo (5.21)

Eq (5.20) indicates that, as compared with conservative solutes, the di-
spersion tensor for a non-conservative solute may be smaller or larger at a

given time, depending on whether the solute mass is created or removed, re-
spectively.

6. Concluding remarks

e Application of the advection-dispersion model with the Fickian disper-
sion flux to description of the solute transport in porous media requires
solution of the dispersion equation (in general nonlinear)

d(fue) _ f
ot - V(vaVC— va‘U )

in which the fluid phase mean velocity must be prescribed. The mean
velocity distribution can be determined from the solution of the flow
equation (Darcy low) (Scheidegger, 1963)

k
folt

where k is the permeability, u is the fluid viscosity and p/ stands for
the (fluid) pore pressure.

v/ = ——(Vp/ - plg)

In general, the two coupled equations: advection-dispersion equation and
flow equation need to be solved. If ¥/ = const the problem becomes the
uncoupled one.
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e The above analysis of contaminant migration shows that in formulation

of the fundamental equation governing the spreading of solutes in a fully
saturated porous medium the only exploited balance equation is the
equation of mass conservation and dispersion flux of solutes in extended
Fick’s law diffusion. The applied multiphase approach, even in such a
limited range (to derive continuity equation and Darcy flow law) allows
one to expose the role of material characterstics of particular phases of
a porous medium. The porous (rigid) solid phase is described by the
pore structure parameters; porosity f, and the permeability % from
Darcy’s law and the tortuosity parameter relating the effective diffusion
coefficient D, and the diffusion coefficient D, in a free solution. The
fluid phase is characterized by the mean flow velocity v/ (satysfying
Darcy’s law) and the viscosity u. Moreover the fluid phase is treated
as a miscible mixture of water and contaminants soluble in water being
described by the solute concentration.

An extended phase characteristics is needed in the case of nonhomoge-
neous permeable deposits when the dispersion parameters are functions
of a scale and thus various pore structure characteristics and flow con-
ditions corresponding to each scale must be defined.

An extension of the advective-dispersive model is necessary if contami-
nants are immiscible in water, the porous material is not fully saturated,
or deformations of the skeleton are significant. Then, the model should
include the equations of motion for additional phases and/or a defor-
mable skeleton. The theory of multiphase media is a suitable tool for
writing such equations having in mind that motions of immiscible pha-
ses are kinematically independent. The extended characteristics of the
internal structure of the medium will enter through volume fractions and
relative permeabilities of the phases.
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Wielofazowy opis cial jako podstawa modelowania w mechanice
$rodowiska. Opis transportu substancji w odrodku porowatym

Streszczenie

Przedmiotem pracy jest opis migracji substancji (rozpuszczalne] w cleczy wypel-
niajacej pory) przez oérodki porowate. Zaklada sie, ze wypadkowy transport zanie-
czyszczen jest zlozeniem dwdch proceséw: adwekcji i dyspersji. Transport adwekcyjny
zwigzany jest ze Srednim (makroskopowym) przeplywem roztworu przez porowaty
szkielet, natomiast efekty dyspersyjne sa nastepstwem molekularnej dyfuzji i mecha-
nicznego mieszania.

W pracy przeanalizowano dyspersje opisana liniowym prawem Ficka wigZzacym
strumierd transportowanej masy z koncentracjg substancji, a takze dyspersje gdy li-
niowe prawo nie obowigzuje.
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