JOURNAL OF THEORETICAL
AND APPLIED MECHANICS
2. 36, 1998

ON APPLICATION OF THE BOUNDARY ELEMENT
METHODS FOR ANALYSIS OF SHAKEDOWN PROBLEMS

Wirrorp Cecor

Faculty of Cowil Engineering, Crocow lniversity of Technology

c-matl: pleccot@eyf-kr.edw.pl

The paper aims at prescntation of the numerical model of shakedown
analysis based on the direct and indirect versions of the boundary ele-
ment method. Comparison of numerical results with those obtained by
the finite element and finite difference methods proved the efficiency and
reliability of the boundary elements. A posteriori error esgimate and ad-
aptive raeshing are discussed and proposed as further improvement of
the BEM shakedown analysis.
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1. Introduction

The Boundary Element Method (BEM) like other general numerical me-
thods: e.g.. the finite element or the finite difference methods may be applied
to solution of nonelastic problems, Banerjee and Butterfield (1979). (1981).
Maier and Polizotto (1983). Maier et al. (1987). In spite of the boundary. also
some volume integrals are present in this case. Nevertheless, this complication
uasually only slightly impairs the efficiency of the boundary methods.

The BEM approach is applied to analysis of the residual stresses and strains
in railroad rails. Railroad rails are subject to repeated loading which frequently
exceeds their elastic limit. As a result of plastic deformation, residual stresses
and strains are present in the body and affect mechanical behavior of the rail.
The objective is an analysis allowing one to estimate the stress, strain and
displacement fields in the residual steady-state of the body, whenever such a
state can be reached for the repeated loading, approximated here by cyclic one.
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2. Formulation of the problem

The final shakedown state is considered as infinitesimal, nonelastic de-
formation developed quasistatically. The problem may be mathematically
formulated in many equivalent ways. Let us recall here a sequence of such
formulations resulting in the boundary integral equations. The purpose of
such a presentation is to show the way of derivation of the boundary formu-
lation for nonelastic bodies and to compare it with some other, better known
mathematical models.

2.1. Local formulation

A system of partial differential equations can be derived after making use of
the principle of conservation of momentum and some experimentally justified
assumptions like short range of the intermolecular forces, validity of Hook’s law
for the elastic part of the strain, linear formula for the total strain. Excluding
body forces, for the sake of simplicity, the displacement field of an elastic-
plastic body (2 with nonelastic strain ¢€*, is the solution to the following

boundary value problem
Find u € C*( ) such that

pug gy (f+ Mg g = 2pe, . in 02
u; =0 on 0f2p (2.1)
Oiin; = g on 02y

where we have used

— momentum eqnations in the form

05, =0 (2.2)
— linear geometric equations
&5 = %(uz‘,] + uj;) in {2 (2.3)
— Hook’s law for the elastic part of the strain
0i; = Ejri(er —€y) in {2 (2.4)

and where 2 C IR" is the material domain, N =1,2,3,i,5=1,..., N, A1
are the Lame elastic constants, E(\, ) is the elastic module tensor, o is the
Cauchy stress tensor, € is the total strain tensor, d2p,df2y are the parts of
the boundary with the Dirichlet and the Neuman type boundary conditions,
respectively, n; are the components of unit vector, normal to the boundary.
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2.2. Variational formulation

Multiplying the equilibrium equation (2.1); by a test function, integrating
it over {2 and making use of the divergence theorem one obtains the weak
statement, equivalent in a sense to Eq (2.1) and known as the principle of
virtual work.

Find u € H}(f2) such that

/Uz’,jE-ijlclUk‘l df) = /Ui,jEijklfz[ + / vig; dS Yoe Hé {2.5)
n n (

92N

where H} is the Sobolev space of functions satisfying the Dirichlet type
boundary conditions. Note that due to the symmetry of E the identities
Vi Bk = €i5(v)ogj(u) and v ey, = oij(v)ejj hold.

Since, the bilinear functional in the variational formulation (2.5) is symme-
tric, it is possible to formulate the problem as the minimization of a functional
(total potential energy). However, this formulation will not be used in further
transformations, so it is not discussed here.

2.3. Reciprocal formulation

The left-hand side of Eq (2.5) can be transformed again by the divergence
theorem. If the test functions are not forced to satisfy the Dirichlet boundary
conditions one obtains the Betti reciprocal theorem:

Find w € H?(12) such that

/okl,g(‘v)uk df + / te(v)ug ds = /okl,l(u)vk ds2 +
1 an 1 (26)

+ / tp(u)vg ds/e,’;,okl,l(v) ds2 Yoce HQ(Q)
a 12

2.4. Generalized Somigliana identity

Similarly, as for the purely elastic problem. This identity can be obtained
by substituting the fundamental solution (U,;) for the test function. Uy,
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is the displacement corresponding to a uuit force i.e. satisfying the equation
Ui+ (14 Mua, i = —04. where 6, is the Dirac distribution. Since the
fundamental solution is a singular function. one has to subtract a ball with
the point of singularity from the {2 domain and performm some limit analvsis.
Then the generalization of the Somigliana identity for nonelastic bodies is
obtained in the form

K, = /([,7&‘1.1,_1- —Tou;) ds + /2;1,5;B07-_/ df? (2.7)
a0 2,
where
1.0 for interior points o
K = - , . (2.8)
0.5 for smooth boundary points

U. T. B denote the fundamental solution and its derivatives, respectively. The
last term in Eq (2.7) may be transformed by the divergence theorem giving
the following formula

K, = / (Uaily — Torwi) ds + / bl dD + / U, ds (2.9)
20 2, a1,

where 7 =2uey m,. b7 = 2pe7; ;. The b” [unction is called the modified body
force and the difference t —1* is called the modified surface traction. Bauerjee
and Butterfield (1981). Eq (2.9) lias been chiosen for the numerical application.
since singularity of the kernels ol'integrals appearing in this equation is snialler
than in I2q (2.7). The elastic-plastic deformation is now represented by the
integral equation.

Find u € Ly(d82x5) and t € Lo(d2p) such that

Rily = /((’L”t, — Toiug) ds + / bl d) + / UL ds on 02 (2.10)

a0 2, 492,

2.5. Indirect integral formula

I5q (2.9) is a general formula for the solution to the problem considered.
Any Tunction of this form satisfies identically Eq (2.1);. One can obtain ano-
ther formula with the same property bv replacing the first term of Eq (2.10)
with a suitable integral over a curve - which does not necessary coincide with
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the boundary. It rather surrounds the (2 domain. in order to avoid some of
the singularities. In such a case one obtains the following indirect formula for
the displacement

"y = / Uior ds + / ViU d + / 1000 ds (2.11)
5 2, 492,

and the corresponding integral equation for the unknown function ¢ in the
following form.
Find ¢ € Ly(7) such that

Uy = / Usipi + /b?lr},i d? + / U, ds on 0f2 (2.12)
2, a1,

The local formulation (2.1) is the basis for the local finite difference me-
thod. The weak statement (2.5) is used nainly in the finite element method
as well as in the so called meshless methods (e.g. the global finite difference
method). The integral formulations (2.10), (2.12) are used in the boundary
element methods. If the function ¢ in the indirect version is assumed as a set
of concentrated loads one obtains a finite sum instead of the integral over +.
Similiar formula is used in the T-complete function method, Zielifiski (1988).
The difference is that instead of the fundamental solutions. other. nonsingular
functious satisfying the differential equation are used as the basis functions.

The nonelastic strain field in the above, equivalent formulations
(2.1) = (2.12) of the elastic-plastic deformation, was treated as a parame-
ter. For evaluation of this field an additional criterion is necessary. Generally.
there are two kinds of such criteria. The first ones are constitutive equations,
either with an explicit yield hypothesis (c¢f Banerjee and Butterfield, 1979,
1981; Maier and Novati, 1987; Maijer and Polizotto, 1983) or with the inter-
nal state variables (see Bodner, 1985). All these models involve incremental
analysis of the whole (in our case cyclic) loading history. This would be very
time-consuming, especially for 3D bodies. Fortunately, it is also possible to
estimate the final shakedown state on the basis of some simplified models. One
of the best known is the Melan theorem (Martin, 1975), which allows one to
answer the question whether a body shakes down under a given cyclic loading,
and which also gives, as a byproduct, the residual stress field corresponding
to the extreme loading for which the shakedown takes place. However, this
is not enough for our purposes and we use other approaches which allow for
estimation of the residual state for any magnitude of the cyclic loading. Let
us briefly discuss two of thein.

-
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The Orkisz model (see Orkisz. 1992; Orkisz and Cecot, 1997) can be for-
mulated in the following way. Find &* such that realize

Jo(e7) = inf J.(€7) 2.13)
ecV. (
where
J.(e") = %/f(e*)E_Lf(c”) 40 (2.14]
Q
V.= {e* o flof + F(€) = c’] < oy in Q} (2.15)

where [ is a yield function (e.q. the Mises one), oy is the yield limit.
¢ is the hardening parameter. The above approach is formulated including
modification which has been proposed recently by Orkisz and Cecot (1997)
and which extends validity of the method on materials with hardening.

The BEM approach has been used (more details are discussed in the next
section) for evolution of the relation

o= Fle) (2.16)

It expresses the residual stresses o in terms of nonelastic strains &*. If this
relation is known it can be introduced to the functional (2.14). Then the
constrained minimization results in estimation of the plastic strain. The di-
splacements can now he computed from Eq (2.9), and the strains and stresses
from similar formulas. However, only the residual stresses obtained in such a
way are unique. I5q (2.16) is not bijective, therefore the kinematic quantities
are estimated with accuracy to some nonzero fields, since two fields of nonela-
stic strains which differ by a field of strains resulting from the displacements
satisfying homogenous boundary conditions give the same tesidual stresses.

To prove that let us consider a compatible strain field E?J with the following
property
1 . 1~
e =gl ) in (2.17)
where o
uw =0 on 9Np .
: . 2.1
o?j(uo)nj =0 on dn n,j=1,....N (2.18)

The u® function may be such that its support is a ball centered at an interior
point A, and with such a radius length p that the ball is contained in the 2
domain. One of the possible formulas for such a function is the following C*
class spline

(2.19)

o ) 1=6d>+8d*-3d" for d<1
10 for d>1
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where d = r/p, »is the distance from the center point A, i=1.2,3.

One can easily verifv that the feld Y is the solution to the problem
discussed here. if the nonelastic strain €% is assumed to be equal to this
particular strain field €. Note that the stresses resulting [rom such a solution
are identically equal to zero (Eq (2.4) for e* = €Y and & = €Y). This proves
nonuniqueness of the plastic strains obtained from the approach (2.13). We
have not encountered any problems during the numerical analysis with this
lack of uniqueness of the nonelastic strain because the &V strain has to be a
nonlinear function. while in our numerical approach the nonelastic strain is
approximated by linear functions.

Another approach which can be used for the direct estimation of nonelastic
strain and, consequently, the residual stress field resulting from the cvclic
loading is the Zarka model (Zarka, 1980). One of the main steps of this
method is evolution of the same, as previously. relation (2.16). According to
the literature there is no problem with nonuniqueness of plastic strains in this
approach. Since, BEM was not used together with the Zarka approch, the
details of this algorithm will not be discussed here.

3. Algorithm of the BEM application to estimation of the
residual stresses in railroad rails

The direct BEM (cf Cecot, 1989; Cecot and Orkisz, 1992, 1993) has been
applied to approximation of residual deformation of railroad rails. In order
to reduce this 3D problem to a 2D one we have assumed that the nonelastic
strain field, which develops during the material yielding, proceding the steady
shakedown state, is a Tunction of only two transverse coordinates and does not
change along the rail axis (the crossties which support rails have been replaced
with a continuous foundation). Moreover, we simulated the contact with the
wheels by an arbitrary distributed pressure and we approximated the service
loading by a cyclic and quasistatic one. First, the elastic—perfectly plastic
model of material was assumed (¢ = 0in Eq (2.15)). Nevertheless, reasonable
numerical results have been obtained.

Our 2D problem is not a typical one, since it is neither the plane strain nor
the plane stress state. All components of the displacement field are assumed to
be non-zero and depend, like the nonelastic strain, only on the two-transverse
coordinates (wy.2p). Therefore. we obtain fully populated strain and stress
tensors, also dependent only on the two coordinates. Such a deformation is
governed by three local equations of equilibrium, i.e. Eq (2.1) for 4,5 = 1,2
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{plane strain) and additionally the third equation in the form
Uz i1+ Uz = —2833 (3.1)

Analogically, despite the two integral equations (2.10) or (2.12) like for the
plane strain case. the following third equation exists

Ky = /(Z/(t,- —Tu,)ds+ / XU d2 + / U ds on 912 (3.2)
. 4 .

a0 » 982,
or ) .
ta = /ug ds + / bid A2 + / U ds (3.3)
¢ _O,, (-);Qp

where U = L/p. and L is the fundamental solution to the Laplace equation.
General algorithm being used for solution to the shakedown problems by
the direct BIEM approach may be stated as {ollows.

3.1. Discretization

The boundary of the computational domain is subdivided into isoparame-
tric finite elements (linear. quadratic and cubic shape functions were used).
Additionally the plastic zone is subdivided into triangular linear elements to
approximate nonelastic strain (six components at each node). However. this
interior degrees of freedom have different character than the boundary ones.
These are treated as parameters. and BEM is used to evaluate the residual
displacements and stresses as [unctions of this interior nonelastic strain field.
The real plastic zone is not known a priort and the computational plastic zoue
is assumed to be such that it contains the real one.

In order to improve the efficiency and accuracy of the method the whole
domain is divided into a few subregions. Therefore, one obtains some additio-
nal degrees of freedom along the intersubdomain boundaries and it is necessary
to satisfy the continuity condition (for displacement and traction). However,
the condition nuniber of the resulting svstemn of algebraic equations is snialler.

3.2. Solution to the integral equations

The integral equations (2.10) can be solved nwmerically either using the
collocation method or the Galerkin approach, i.e. by multiplying the integral
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equation by a trest function and integrating it along the boundary. The Ca-
lerkin approach requires an additional integration but results in a syinmetric
svstem of the linear. algebraic equations. On the other hand. the collocation
method can be easily applied to the integral equations. since thev do uot re-
quire any differentiation of the unknown functions. f{t is also faster than the
Galerkin method. but results in the nonsvmumetric svstem of linear equations.
The collocation method is used here. however, the Galerkin approach is worth
to be investigated. Both methods give svstems of linear algebraic equations
of the following type

Az = B¢ (3.4)

where A, B are known matrices. different [or the collocation and the Galerkin
approximations, € is the vector of discrete values of the nonelatic strain ten-
sor and z is the vector of nodal values of the boundary unknown functions.
Computation of sorie entries of the matrices A, B requires evaluation of sin-
gular integrals. It is done either analvtically or using the rigid body wnotion
approach (see Burczynski. 1995) or the polar transformation proposed by Li
et al. (L985). A special attention is also required while the almost singular
integrals are being computed. Refineent and enrichinent of the Gauss inte-
gration schenie is used in this case but it was done in an acbitvary rather than
in an avtomatic way. The adaptive integration was studied and applied by
Karafiat (1998).

From the linear system of equations {3..1) the following relation is obtained

z = D¢ (3.5)

where D = A™'B.

3.3. Error estimation and adaptation

After the numerical solution, i.e. Eq (3.5), is obtained, an answer to the
question what the approximation error is and how it can be effectively mini-
mized is very welcome. A posteriori error estimation techniques for the finite
element method were already developed (cf Ainsworth and Oden, 1993; Babu-
ska et al., 1994; Demkowicz et al., 1991). These provide approximation of the
error on each finite element which is the basis for an adaptive meshing proce-
dure designed to minimize the error. Gradient recovery and residual analysis
are two main types of the error estimates. Fach of them has many versions.
One of the most robust and mathematically sound is the equilibrated implicit
residnal one, Ainsworth and Oden (1993). Similar techniques can be applied
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when using the BEM approach (cf Demkowicz et al., 1989.1991) where also the
residuum of integral equation can be used to measure the numerical solution
error.

In the nonelastic problems an additional estimate of the error is necessary
for nonelastic strain tensor. This field, approximated by triangular elements,
is the input data for the BEM analysis. The standard interpolation error
estimation based on the Taylor series (Becker et al., 1981) seems to be useful
here. Let 5;‘/" be a linear interpolant of nonelastic strain. suppose that <7, has
bounded the second derivatives and let ¢;; = ¢}, — f,j‘]h be the interpolation
error function. Following the method proposed by Becker et al. (1981) for 1D
problem. the error estimate for an arbitrary triangle A assumes the form

eis]lse < C'h? (3.6)

C being a constant independent of the element size h but proportional to
nmaximum of the second derivatives of the plastic strain, i.e to dQsj‘J-\ where

h) (3.7)

2
dif = +}—_xm+02J

@UZ ot f ot f
02 d20y

and  hy, h, are distances from the closest node of traingle in the z and y
directions, respectively. The general conclusion from the above analysis is
that. wherever the second derivatives of nonelastic strain are high, the interior
mesh should be refined or enriched there.

3.4. Minimization

Eq (3.5) can be used together with discrete form of Eq (2.10) to obtain
the following relation

o(z)=Flz)e (3.8)

which expresses the stress tensor at any point 2z in terms of the nodal values
of the nonelastic strain. Eq (3.8) is substituted into the functional (2.14)
resulting in the following function

(") = ()" Ge* (3.9)

Minimization of the last function in the bounded domain (2.15), gives the
nodal values of the nonelastic strain tensor. The minimization is done by a
package of optimization routines. Now, the residual displacement, strain and
stress fields can also be computed.
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4. Numerical results

Solution to the benchmark cylinder problem as well as to a real engineering
one, i.e. a railroad rail subject to service condition load are discussed in this
sectiom.

A thick walled cylinder under cyelic internal pressure was solved as a plane
strain problem. The main objective of this test was validation of the propo-
sed algorithim and the computer code. The advantage of the axisymmetry
was not taken into account a prior:, however only a sector of the cross sec-
tion was analyzed with about 100 scalar degrees of {freedom. The numerical
solution differed from the analytical one by less than 2% in L., norm for
residual stresses.

The following parameters were assumued for the analysis of residual states m
a railroad rail £ =207 GPa. v = 0.3, 0, = 480 MPa. P = 147 kN (maximum
of the assumed cyclic load). The vertical force P, modeling contact, was
distributed biparabolically on a 1.9ecmx1.2cm patch at the rail head top

surface.

Fig. 1. BEM discretization of the railroad rail cross-section

The boundary element discretization, with about 340 scalar degrees of fre-
edom is shown in Fig.1l and the corresponding result in Fig.2. BEM was one
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Mg, 2. Longitudinal residual stress 1n the rail head computed using the BEM
g g | 8
approach

of the methods. which were used for discretization of the problem of residual
stress estimation. Opposite to FEM and the FDM, it required incorporation
of kinematic quantities to the formulation (the selfequilibrated stresses are
expressed 1n terms of the vonelatic strain). Later on such approach hecome
one of the key points of generalization of the model onto a material with ki-
newatic hardening and had also to be applied in both the I'EM and I'DM
discretizations. Extreme values of the residual stress components are com-
pared with those obtained by FEM (after Holowidski and Orkisz, 1992) and
the FDM (after Orkisz and Pazdanowski. 1995) in Table [. I'or much smaller
number of degrees of freedom BEM gave results similar to the other methods.

Table 1. Comparison between extreme residual stress components obtai-
ned by different numerical methods fov the rail

Stress Method (number of degrees of freedom)
Component | BEM (2S~l_)LJ:‘LIL\{I (3200) | DM (3000)
Oy | N —211 —205 —221

max 117 125 156
Oyy | min —125 -94 —108
max 54 52 T
0. | min —200 —171 —160
max 49 48 66
Tyy | Min —74 -063 —83 ‘
B max 57 62 62 J




ON aPPLICATION OF BEM FOR ANALYSIS... 399
5. Final remarks

An application of the BIEM approach to the analysis of residual stresses
in railroad rails was the main objective of this work. This method has been
used first to find a solution to the benchmark problem, i.e. a thick walled
cvlinder subject to cyclic internal pressure. The results obtained using BEM
were compared with the analytical ones showing a good agreement.

The method was also successfully applied to the preliminary analvsis of
residual states in railroad rails and validated their engineering value. The
BEM approach proved to be an efficient method of analysis of residual stresses.
The following conclusions have been drawa:

o o few degrees of freedom were enougl to obtain reasonable results.
o the BEM algorithm is more complicated than the FEM or FDM ones,

o the efficiency of the metliod is befter for small plastic zones (such a
situation exists in real rail problems).

Some further research work should he undertaken on the shakedown ana-
lvsis by BEM. Error estimation and adaptation are the most important tasks,
since they would increase efficiency of the solution and reliabilitv of the results.
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Zastosowanie metod elementéw brzegowych do rozwiazywania zagadnien
typu "shakedown”

Streszczente

W ar tyl\ule opisano model numeryczny sluzacy do rozwiazywania zagadnien do-
stosowania sie cial sprezysto-plastycznych do obciazen cyklicznych. Zastosowano
posrednia | bezposwdma wersje metody elementow buegowych Wyniki obliczen nu-
merycznych poréwnano z otrzymanymi przy pomocy metod elementow 1 roznic skoii-
czonych. lch zgodnosé potwierdza skutecznosé i poprawnosé 7astosowanego podejscia.
Jako dalsze usprawnienie algorytmu zaproponowano wlaczenie do algorytmu oszaco-
wanla ¢ posterior: bledu obliczen oraz adaptacje siatki.
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