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The effect of a sequence of application of the two methodes, i.e. approxi-
mation by constraints and nonstandard homogenisation has been studied
in the paper. The author has also tried to find out wheather the results
yielded by the homogenisation with respect to successive co-ordinates,
1.e. successive sides of the representative element, are the same as those
obtained from the spatial homogenisation, i.e. performed over the whole
3D representative element simultaneously.
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1. Introduction

Two methods of modelling usually employed when dealing with the ela-
sticity problems are presented in the paper. When applying the first method
one obtains the models resulting from approximation by constraints, while in
the second approach nonstandard homogenisation is used.

In a model due to approximation by constraints the strain and stress state
is subject to the constraints determined by certain functions depending on
co-ordinates of the points which belong to the reference configuration of the
body, (cf Wozniak, 1973, 1988). These models are dealt with in theories of
shells, plates, bars, etc. In the present contribution we confine ourselves to 2D
models of plates, (cf Nagdérko, 1989).

A model of nonhomogeneous (anisotropic, in general) body due to non-
standard homogenisation emerges from application of the nonstandard ana-
lysis approach to approximate description of nonhomogeneity, (cf Wozniak,
1986, 1995).

When solving a variety of mechanical problems one has to use both the
aforementioned ways of modelling simultaneously. Therefore, in the present
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contribution we study the effect of changing the application sequence of these
methods on basic relations of the model. We also try to find out whether the
results obtained after applying the step-wise homogenisation, i.e. with respect
to successive co-ordinates (successive sides of the representative element) are
different from those resulting from the spatial homogenisation, i.e. applied to
the whole representative element simultaneously.

Generally, it turns out that having the some weight functions one cannot
replace the spatial homogenisation with the step-wise one made with respect
to co-ordinates. If that homogenisation is possible for each co-ordinate also the
3D homogenisation is possible. The sequence of using the modelling methods,
i.e. approximation by constraints and nonstandard analysis approach is also
of crucial importance and may affect the results. The conditions under which
this sequence does not matter are given in the work.

2. Approximation by constraints

Consider nounhomogeneous anisotropic elastic bodies, the reference con-

figuration of which we denote as 2, 2 C R? while » = (v;) repre-
sent the displacements being of adequate regularity, where vy : 2 — R!,
k = 1,2,3. The space of vector functions v is denoted by V. The body
forces b = (bg), by : 2 — R and the surface ones p = (pi) are acting

upon the body, pr : 12 — R! where 012 is a part of the boundary of
the body 0142 C 9d2. Elastic properties of the body are represented by the
scalar functions Bgimn @ 2 — R, k,l,m,n = 1,2, 3 satisfying the conditions
Bitmn = Bikmn = Biinm = Bmnti. Let s = (sg) represent stresses in the
body and have the following form

1
s = (Skl) = (EBklmn(vm,n + vn,m)) (2.1)

Since S represents the space of vector functions s, therefore, Eq (2.1) defines
the operator M1 :V — §.
Local static relations of the theory of elasticity have the form

: — _ _ .0 9
divs+6=0 salnn—p 1)320— 0} (2.2)

where
n  — outward normal unit vector to the boundary 0,2

u® - given displacement on the remaining part of the boundary 8,(2.
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Egs (2.2);, define the operator M? : S — F, where F represents the
space of pairs (b, p) of body and surface forces, respectively. The static model
under consideration of the theory of linear elasticity may be represented by

the following scheme
M?

vy Mg M
Within the framework of this model, most frequently, the following problem
can be solved:
for a given element f = (b,p) € F find the element u € V satisfying the
condition {2.2)3 and o € S so thal

MYu)=0¢ and M*o)=f (2.3)

The set of static relations of the theory of linear elasticity given above
is usually. for various reasons, simplified. A 2D model of a plate may be
presented as an example of such simplification.

Let the body under consideration have the reference configuration
2 = I x (=h/2,h/2). In this case, the approzimation by consirainis
is a very convenient method for construction of a 2D model.

In mechanics there are many accepted meanings of the term “constraints”.
Here, we consider the constraints as a limitation imposed on the set of all
displacements or stresses bounding it to the proper subset.

In the present contribution we define the constraints using the space Y
of the functions defined on {1 in the way ensuring that they are the genera-
lised co-ordinates for V. Assume that the operator A! : Y — V such that
0 #£ ANY) Cc V,and AYY)# V is defined on Y. This operator defines
the disp;acement constraints. In a similar way we create the space of func-
tions t € T, which are defined on /I in the may ensuring that the operator
A%?:T — 5 establishes the stress constraints (Fig.1).
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Fig. 1.

When introducing independently the displacement and stress constraints
(it should be noted here, that strain constraints are not required when dealing
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with linear elasticity problems since they can be easily redefined in the form
of displacement constraints) the following cases can be considered:

e only the displacement constraints are imposed on the body, i.e. the
operator A!, is given;

e only the stress constraints hold, i.e. the operator A? is specified;

e both the constraints are imposed, i.e. the two operators A! and A? are
specified.

In the last case, however, it may sometimes turn out that when introducing
independently the stress and displacement constraints. i.e. formulating sepa-
rately the operators A' and A? one obtains contradictory results, what means
that the sets of admissible displacements and stresses may be the disjoint ones.

Having the constraints introduced into the model one should construct the
relationsof a simplified model, i.e. the relations between displacements, strains
and stresses defined only on the surface II and generalised forces defined also
only on /1 and 01I. To this end we search for the generalised forces space G
and the operators H: F— Gand N:YV — G,or N': YV —-T N2:T — G,
(Fig.1). Having these operators we can reformulate the problem represented
by Eq (2.3) as follows

for a given element f = (b,p) € F find yo €Y or yo € Y and to € T
thus that

N(yo) = H(f) (2.4)

or
N'(yo) = to N2(to) = H(f) (2.5)

The model represented by Eqs (2.4) and (2.5) is obtained due to approximation
by constraints. Solution to the problem represented by Eq (2.4.) or (2.5) is the
exact one in this model. This solution determines the elements Al(yy) € V
and AZ%(tp) € S. These are the approximated solutions to the problem (2.3)
obtained basing on an approximated model, which in general, differ from the
sought after solutions u, ¢ to the problem (2.3).

An attempt at assessement of differences between the exact solutions u, ¢
to the problem (2.3) and the approximated ones A!(yp), A%(to) involves a lot
of complicated problems and was undertaken many times (cf Nagdrko, 1983).
It can de proved that:
when an approximated model is constructed basing on the virtual
work principle the approximated results obtained minimise the error
measured in energetic norm, (cf Nagdrko, 1983).
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Coming back to the plate model, assume the operator A! in the following
form
vk(21,72,23) = w21, 32) + 2awi(21,32) + 2fwi(er, z2)  (26)

Fach element of the space Y consists of certain nine adequately regular func-
tions (w®, w},w?) defined on II. The constraints (2.6) represent the well-
known Kirchhoff hypothesis

wl(a1,22) = (0,0, w(w1,22))
wher,22) = (—wo (21, 22), ~waa (21, 02),0) (2.7)

U}%(l‘],.@?) -~ (07 0>0)

When applying the Kirchhoff hypothesis the plate deflection w(zy,z2) is the
only element of the space Y.

Most simplest stress constraints usually introduced for plates have the
form o33 = 0. Assuming a modified form of the constraints (2.7) and the
stress constraints o33 = 0, by virtue of the virtual work principle, we obtain
the well-known local relations for anisotropic nonhomogeneous plates

(Daﬂ'yéwa'yé )aaﬂ = b (11‘3 + D+ + p- (28)

\w]:—

Wi

where Dggys, @,8,7,6 = 1,2 are the elasticity moduli of the plate, while
py and p_ represent the loads acting upon the upper and bottom surfaces,
respectively, of the plate, i.e. I X {%} and [T X {%} The boundary
conditions for displacements have the form of deflections specified on 9II.

The model of anisotropic nonhomogeneous plate given above is based on
some simplifications which change material properties of the body. Thus,
instead of the material functions Byymn one should employ the elastic moduli
Dypys such that

Dapys = Bapys — B_a' ﬁ_BSBW‘(SSS (2.9)

Bj3333

In the boundary-value problems, in which By, are oscillating, step-
wise functions, the functions represented by Eqs (2.9) are also oscillating and
discontinuous. It is very inconvenient when one has be solve Eq (2.4), even
applying a numerical approach. This problem appears e.g. when dealing with
the periodic composites of a great number of periodicity cells. This case is

considered below.
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3. Nonstandard homogenisation

There are many problems to be dealt with in mechanics which can be
simplified by means of neglecting some quantities in respect of the other ones.
It can be done in certain reference scales. We consider the macro scale as that
applicable to the quantities which cannot be neglected, while the micro refers
to the negligible ones.

For example:

e in the macro scale the body configuration may be represented by the area
determined by straight lines (the boundary is composed of segments),
while in the micro scale each side of these segments may be a strongly
irregular curve

e in the macro scale the displacement of the body may be represented by
a linear function, while when turning to the micro scale it niay oscillate
about the linear function
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e in the micro level the body may be assumed as a homogeneous one, while
when going down to the micro level it may reveal some inclusions of a
different material and therefore should be regarded as a nonliomogeneous
one.

Application of both these scales, with the description constructed in many
different ways is quite widespread in mechanics. A survey can be found in Wo-
zniak (1993). It should be also noted that the term “macrofunction” emerges
from the necessity for description of the body in both macro and micro scales.

Now, we apply the nonstandard analysis approach, (¢ Robinson, 1966).
When describing the body in the macro scale we use classic real numbers from
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the R space, while when using the micro scale one should apply the infini-
tensimal numbers, i.e. those of modules smaller than each number » € R,.
The infinitensimal numbers belong, therefore, to the completely new number
space, the so-called extension. which we denote by *R.

This approach we use to obtain a model of the periodically nonhomoge-
neous body with the representative element of a verv small size in the macro
scale.

1t should be emphasised that having the representative element of a definite
size, even a very small one, the body can be described and investigated using
certain relations of the linear theory of elasticity. These relations can assume
the following global form:

for a given element f = (b.p) € F find the element u € V satisfying
condition {2.2)3 such that

YoeV /(Bklm.n WUkl Umoon _bmvm) dv = / Pm Um da (31)
n a0

As it was mentioned above this description is practically useless since the
material functions are periodic and step-wise in a very small domain.

This difficulty can be overcome using the homogenisation approach, in
which the number of periodicity cells is of crucial importance. Which means
that if the composite is composed of a sufficiently high number of periodicity
cells, the exact number does not matter, i.e. il might be twice, three, or n
times higher with no visible effect on a solution to the problem. Therefore a
difference between solutions to the problem with nm cells and with 72 cells,
respectively, should be negligibly small, they should approximate each other.
The above reasoning can be formulated in a more formal way.

Let Bum, represent material functions of the composite, in which the
representative element size has been reduced n times (the present size is
[/n). If the representative configuration of the composite (2 and the forces
(b.p) remain unchanged the current problem differs from that represented by
Eq (3.1) only in the form of material functions, i.e. one should put Biimn
into Eq (3.1). Denote by % the solution to this problem, which usually differs
from the solution wu to the problem (3.1). We require, however, that this
difference be negligibly small, i.e. that

Up(21,22,23) — wp(1, 02, v3) = Up(ry, v2,23) (3.2)

where the functions wg(x),w,23) take negligibly small values for every
x € (2. Ifitis true for every n then when considering the representative
element of the infinitensimal characteristic dimension ! = ¢, the functions 7y
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take the infinitensimal values (denoted by uf), while the functions u, become
*uy, defined on *2 and taking the values from *R, where *{2 C *R is the set of
all yp = x4 + g, (x) € 2 and ¢, assumes an arbitrary infinitensimal value,
k=1,2,3, thus

ﬂk($17$25$3) = *uk‘(l’lal'zal‘?)) + 1’1i($1,$2,l’3) (33)

The space of the functions defined by Eq (3.3) we denote by V. Assume that
the representative element is infinitesimal (a point in the macro description).
Let this element, in the micro description, be a cube of the dimensions ¢, €,
¢3, composed of n elastic and homogeneous elements.

The problem (3.1) can be reformulated as follows:

for a given element f = (b,p) € F find the element & € V satisfying
condition (3.2) such that

Vi e 7 /(Ekzmnak,zam,n—*bmam)dv: / D da (3.4)
*2 *91 02

where *by, "p;. are the functions defined on *f2 and taking the values from *R.
The functions Bjym,, have now the infinitesimal period, thus
~ « _ _ ry T2 T3
Brimn(2) = "Bumn(7)  where 7= (2,22 22)
€1 &2 &3
One of the disadvantages this approach suffers from consists in the fact
that the material functions become multifunctions in the macro description,
taking n values, e.g. for a two-component coniposite we have

The displacements v appearing in Eq (3.4) are arbitrary functions from V.
These functions may be subject to the constraints in the micro scale (micro
constraints), i.e. the infinitensimal component wu§ may assume a certain
required form. For example, we can take

up = hi'q} (3.5)
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where ¢ are the sought after functions defined on R and taking the values
from R, being, therefore, the standard ones (they are usually called microlocal
parameters, see Wozniak (1987), while h{ are given infinitensimal functions
obtained from the standard functions formulated for the representative ele-
ment of definite dimensions by means of replacing those dimensions with the
infinitensimal ones. These functions are constructed in a way similar to that
followed when constructing weight functions in the finite element method. The
functions hA{ should satisfy the following condition

/h@ dv=0 (3.6)
A

The space of functions ¢* = (¢f) we denote by Q.
After applying the constraints (3.5) the variational principle for a homo-
genised periodically nonhomogeneous body takes the following form

VoeV Wt €Q [ Bl ue v £ e v +
2
(3.7)
+77(Ak‘3161§§vm n +"7(4ktjfm),nqﬁ7‘i + by ) dv = / pruk da
o
where Bf}  represent material properties of the Ath component and
AsALA ,
A 16223 Aa 1 / he d °
- = = — v
7 €1€2€3 (n(k)l 818283&‘ (k)! )
(3.8)

1 o
Aab _ a b
(k) (m)in = (515253 /h’(k)lh’(-m)n d”)
AA

where (-)° is the standard part of (-), Robinson (1966), and &£ are the
dimensions of the Ath component, while A4 denotes the area covered by the
body.

It should be emphasised that almost all components appearing in Eq (3.7)
are the standard ones, but the coefficients defined by Eq (3.8) are derivatives
of nonstandard functions. However, it turns out that a proper choice of the
functions h$ ensuring that their derivatives are integrable over the infinitensi-
mal parts of the representative element allows the quantities (3.8) to take the
real values.
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The same approach can be followed when dealing with a 2D description of
a plate in the following global form

Yoel /(Balgq,gw,ag Vs —bv) da = / (py +p_)vds (3.9)
I H+Un_

Then, we obtain
YoelV VrteQ

/[Brdimld(??&“;-'\'ﬁ Vo3 +77'/y4;'qav~0/3 +77c/j§wv”a‘f T+ 7706~(6(1a7'b) —pvlda =0

0
The above formula represents a surface homogenised model of a periodically
elastic plate. The macro constraints (2.6) or (2.7). i turn, which lead to a
2D model can be introduced to Eq (3.6) yielding a 2D surface niodel. Here.
the question can be posed: is the process of modelling consisting of both the
aforementioned methods commutative, i.e. can we obtain the same results
despite the sequence of their application.

4. Commutativity of modelling

Consider first the homogenisation of one variable, e.g. 1. Then for every
x € Il relation (3.1) depends on one variable. with the representative elements
having the forni of the segment of the length <.

The material functions are

Bwklmn(frls T2, l'B) = *Bklmn (%» 2, 13)

In a way similar to the procedure represented by Eq (3.5) we impose on
the displacements wu the constraints of arbitrary shape functions. let us say.
depending only on z;. For the sake of simplicity, however, we can take on the
same functions, which should, therefore, satisfy the condition (3.6) within the
range in which yg represents the centre of representative element

/ hiy dxy =0 (4.1)
+

1o

Yo
Yo

S
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Usually, it is not true. It can be. therefore. noted that the spatial homo-
genisation cannot be directly replaced with the homogenisation with respect
to successive co-ordinates, having the same shape {unctions (and thus, the
micro constraints). If the micro constraints have the form (3.5) and the ho-
mogenisation is possible for each co-ordinate 4, £ = 1,2,3 then the spatial
homogenisation is also possible. If 1iq (4.1) is true it implies that the triple
integral (3.6) also equals zero. This conclusion is the same as that validated
for asymptotic homogenisation, (cf Kohn and Vogelius, 1984).

The last problem consists in finding out if the modelling process is com-
mutative, i.e. do the results obtained depend on the application sequence of
modelling procedures (approximation by constraints and nonstandard homo-
genisation). Note, that approximation by constraints yields Eqs (2.6), which
when extended take the form

Tl 1, o, 25) = "Wy, 02) + 5 wh(rn vg) + flan. oz, vs) (4.2)

where f is a nonstandard function assuming the infinitensimal values.

The homogenisation allows the following micro constraints to be imposed

Up(21, 22, 23) = "up(@g, 22) + hi(2y, 22, v3)7qL (21, 22) (4.3)

Applying first the modelling with the constraints (4.2) and then the ho-
mogenisation with micro constraints of the form

wzy, 22) = (a1, 22) + hi(z 1, 29)qE (21, 22)
qie s

1 1
w1, w2) = "vplrr, 22) + ki1, 22)"

affects the form of functions A%, k¢ and ¢} which appear in Eq (4.2), in

particular, their dependence on 23; thus the following condition should be
satisfied

h(lg(‘rla L2, 1‘3)*(];;('7;17 22, 7/'3) =
(4.4)

= hi(2, 22) g (@1, x2) + vaki(20, 22) g (21, 22)

As can be easily seen from the above consideration the class of homogeni-
sation problems (4.3) to be considered is considerably limited when first the
approximation by constraints is applied followed by the homogenisation. The
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three-dimensional

model
approximation nonstandard
by constrains homogenization
4 v
surface model lhree-dlpaen51onal
homogenized model
nonstandard approximation
homogenization by constrains
v L
surface homogenized i homogenized surface
model model
Fig. 2.

micro constraints (4.3) can be thus assumed only as depending explicitly on
x3 and satisfying the condition (4.4). If it is true the sequence of application
of modelling techniques does not matter, Fig.2

From the above it follows that, generally speaking, these two methods

of modelling are not commutative. This conclusion agrees with the results
obtained for the asymptotic homogenisation by Kohn and Vogelius (1984).

In a certain singular case when the constraints and microconstraints have

been chosen in the way ensuring the condition (4.4) to be satisfied, the model-
ling is commutative. However, Eq (4.4) represents the condition limiting the
class of constraints, which additionally is a sufficient condition.
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Dwie metody modelowania niejednorodnych periodycznie plyt
sprezystych

Streszczenie

W pracy rozwaza si¢ dwie metody modelowania w sprezystosci. Pierwsza z nich
prowadzi do modeli uproszczonych przez wiezy a druga do modeli zhomogenizowanych
niestandardowo.

W pracy badano czy podstawowe relacje modelu skonstruowanego przy uzyciu
metody wiezéw 1 metody homogenizacji niestandardowej zaleza od kolejnosci ich sto-
sowania. Zbadano tez czy stosowanie homogenizacji etapami, wzgledem kolejnych
wspolrzednych — kolejnych bokdéw elementu reprezentatywnego — daje ten sam wynik
co homogenizacja przestrzenna, tzn. dla calego tréjwymiarowego elementu reprezen-
tatywnego réwnoczesnie.

Okazuje sie, ze ogdlnie nie mozna zamienia¢ homogenizacjl przestrzennej na
homogenizacje kolejno po wspélrzednych przy tych samych funkcjach ksztaltu. Nato-
miast gdy homogenizacja jest mozliwa dla kazdej ze wspdlrzednych, to jest mozliwa
takze homogenizacja przestrzenna. Takze kolejnos¢é modelowania aproksymacyjnego
przez wigzy 1 homogenizacji przy uzyciu analizy niestandardowej moze dawac rézne
wyniki. W pracy okreslono warunki, przy ktérych kolejnosé ta nie jest istotna.
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