JOURNAL OF THEORETICAL
AND APPLIED MECHANICS
1, 36, 1998

NEW METHOD OF PIVOTING IN THE BLOCK SOLVERS
FOR LARGE BANDED LINEAR EQUATION SYSTEMS

MAREK STABROWSKI

Institute of the Theory of Electrical Engineering and Flectrical Measurements,
Warsaw University of Technology

e-mail; mmst&charlic.iem.pw.edu.pl

New method of pivoting applicable to banded unsymmetric linear equ-
ation systems has been introduced. 1t limits the fill-in and nearly pre-
serves the basic band structure. Two solvers, using a new pivoting me-
thod, have been developed. One of these solvers uses elegant indirect
addressing and the second relies on explicit shifting of data and explicit
pivoting. Both solvers have been written in the C language for two po-
pular UNIX platforms (PC486 and Sun’s Sparch). The details of solvers
implementation have been described comprehensively. The performance
of both solvers has been analysed theoretically. Quantitative results of
the test runs on both platforms have been presented.
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1. Introduction

This paper deals with solution of large banded unsymmetric linear equa-
tion systems without diagonal dominance. Systems of this type appear when
solving the problems from various science and technology fields. In particular
finite element method (FEM), finite difference method (FDM) and implicit
method for ordinary differential equations (ODE) generate such systems. The
application areas include electromagnetic field analysis, mechanical stress ana-
lysis, kinematics of chemical processes, etc. If no pivoting is necessary, there
are available efficient out-of-core solvers for the systems with symmetric (cf
George and Liu, 1981; Manoj and Bhattacharyya [4]) or unsymmetric (cf Ge-
orge and Liu, 1981; Manoj and Bhattacharyya [4]; Stabrowski, 1981) matrix
of coefficients. These solvers preserve a banded structure of the matrix and
the system may be solved "in place”. The situation changes dramatically, i{
the system is unsymmetric. exhibits no diagonal dominance and the pivoting
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Fig. 1 The profile and bandwidth change as a result of pivoting in a matrix with
initial semi-bandwidth equal to 2; pivoted rows: 1—3, 2—4, 3—5, 5—6, 7—9,
9—11, 10—12, 12—14, 13—15, 15—16

is necessary. In this case the pivoting leads to more or less extensive filling of
zeros outside of the original non-zero band. Thus the bandwidth grows along
with a total number of non-zeros. This process is shown in Fig.l. presenting
a small example. The profile (skyline) of the band becomes highly irregular
and a total number of non-zeros increases. Most popular approach to similar
problems is to use the solver for dense problems (cf Crotty, 1982; Martin and
Wikinson, 1971; Stabrowski, 1987). Such solvers ignore the banded structure
of the system. In this way the efficiency (in the sense of solution time and
disk storage) is severely reduced. Most discouraging is a severe reduction of
the system size, resulting from resorting to a dense system solver. Thus some
sort of a compromise between the preservation of banded structure and the
pivoting with accompanying fill-in should be found.

2. Limited partial pivoting (LPP)

The limited partial pivoting (LPP) is a new original method of partial pi-
voting preserving the basic banded structure (to some degree) and simplifying
overall data storage.

At first let us remind shortly the basics of Crout method used in both

solvers described hereinafter. The Crout method has been selected because of
the compactness of formulas used. It lends itself very conveniently to enhance-
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ment of the stability through introduction of partial double precision in scalar
product computation.
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Fig. 2. The active computational {ront (bold lines) in the Crout method

Forward elimination in the Crout method is performed in the L-shaped
active front (Fig.2). The diagonal element and the column elements in the
kth step are computed according to the formula

lik = a;e — Z/wu,)k i=kk+1....n (2.1)
p=1
where
a;; — elements of the extended coefficient matrix
Lixz. ~—— elements of L (lower triangular) matrix
Uy, — elements of U (upper triangular) matrix.

The elements of the row section in the active front are computed from the
formula

1 4 _ .
Ug; = <(ij Z[W“Pl> J=k+1,.....n4+ 7 (2.2)
where
n - number of equations
r - number of right-hand sides.

In the backward substitution the values of solutions sg, are computed
from the formulas

Sk; = Ukj — Z Spiligp j=n+1,...n+r7r (2.3)
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Partial pivoting, performed during forward elimination, starts with the
search for largest (absolute value) coefficient in the current column of the
active front. If this largest element, called pivot, is found outside of the current
kth row, these rows are interchanged (pivoted). Unrestricted pivoting leads
to extensive fill-in already illustrated in Fig.1. The limited partial pivoting
limits this fill-in and the expansion of the non-zero band through application
of two rather simple rules.

The first rule of LPP restricts the search of pivot to nband rows below the
current diagonal element. Here nband (the name derived from the C code
of the solvers) is the semi-bandwidth of the non-zero band. This limitation
is quite natural in the beginning of forward elimination. At this initial stage,
there are only zeros beyond mnband positions below the main diagonal. The
first rule of LPP does not limit the growth and expansion of the non-zero band
in the course of pivoting.

The second rule of LPP restricts pivoting down (shifting down) of any
coefficient row to one such operation. This rule limits, as a consequence. the
growth and expansion of the non-zero band to the double value of the original,
L.e.. to 4nband. It can be observed (see Fig.1 and Fig.2) that after shifting of
a row nband positions down, the prediagonal section of this row expands to
2nband. Conversely the postdiagonal section of a row shifted nband positions
up expands to 2nband. Shifting is limited to nband by the first rule. This
second rule of LPP coupled with the first one limits the band expansion.

The storage scheme of the non-zero band is not connected directly with
the LPP strategy. Nevertheless, it can influence the efficiency of a solver
using the LPP. Two approaches to the storage have been considered. The first
one — modified band scheme introduced originally by Martin and Wikinson
(1971) — is rather simple but a bit redundant. The second one — the linked
list storage introduced by Jennings (1966) — uses disk and operational memory
very economically but the overhead of management seems frustrating. Because
of the last feature, Martin’s scheme with the total bandwidth expanded to
dnband has been selected. The extra width allows one to expand the band to
the maximum value following from the LPP strategy.

3. Direct and indirect addressing in lpp block solvers

The limited partial pivoting has been implemented in two solvers written
in the C language for two UNIX platforms. The first solver uses indirect
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addressing in the coefficient matrix (cf Stabrowski, 1966). The second one
addresses the coefficients directly and implements all moves explicitly.

The basic idea of indirect addressing may be summed up as elimination
of the shifting of large data blocks. The shifting is replaced in some way by
modification of the referenced elements addresses.

2-nband+1

working window

macroblock no.l

Fig. 3. The working window and its structure in the solver with indirect addressing

The indirect solver nicknamed szsolve (from ”indexing solver”) looks at
the non-zero band through a working window composed of five macroblocks
(Fig.3). Every macroblock encompasses mnband rows, where nband is the
semi-bandwidth of the equation system. The fourth macroblock is the active
one, i.e., the forward elimination is performed in this block. The next — fifth
block — is necessary, as the column section of the active front (Fig.2) extends
down for nband rows. Two macroblocks above the active one are necessary
for forming of the scalar products appearing in Eqs (2.1) and (2.2). It should
be reminded that the LPP method limits the growth of the non-zero band to
2nband. One additional block — the first one — must be present in the working
window, because of indirect addressing and virtual pivoting. The element
located logically in the second macroblock, may be located physically in the
first macroblock.

During forward elimination the working window slides down along the non-
zero band. However the window is organised as a cyclic buffer with the pointer
marking its physical origin. Thus moving a window one macrostep down (i.e.
nband rows down) means that a new macroblock is read-in from disk memory
in the place of the oldest one, i.e., the first. At the same time the pointer of
this cyclic buffer is incremented by nband, with eventual wrapping at 5nband.
The macroblocks numbers used so far are in fact the logical numbers.
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In order to perform pivoting virtually, an information structure has been
linked to every row of the coefficient matrix. It is composed of the following
members:

e index — physical position of a current row

e diagonal — physical position of the main diagonal element; strictly spea-
king it is the shift from initial position

e before — number of elements before the main diagonal
e after — number of elements after (beyond) the main diagonal.

Interchange of the rows during pivoting is performed through interchange
of the index members of the structures linked to the corresponding rows. Ac-
cess to any row starts with its logical number. Next, the index value tells where
the requested row is located physically. Pivotal interchange should be accom-
panied by the horizontal shift of interchanged rows. In the solver izsolve this
shift is replaced with appropriate modification of the variable diagonal. Access
to an element of already indirectly addressed row, is made through modifica-
tion of the logical column number with the value of diagonal. The variables
before and after reflect eventual pivoting and fill-in. They are used primarily
for limiting the operations with zeros in the scalar products computation.

In the companion solver noirsolve (from "nonindexing solver”) both shi-
fting operations are performed explicitly. The working window is composed of
four macroblocks and its position with respect to the non-zero band is symmne-
trical. The active macroblock is the macroblock number three. Two preceding
blocks are sufficient, as the maximum growth of the non-zero band is limited
to 2nband and the pivoting is performed explicitly (physically).

If the working window of nowrsolve slides down one macrostep, the macro-
blocks number two to four are shifted up in the working window buffer. A
new macroblock is read from the disk to the place freed at the bottom of the
working window.

During pivotal interchange the rows are interchanged physically with the
appropriate horizontal shift. Therefore no information analogous to the va-
riable diagonal used in the solver izsolve is necessary. However, the variables
before and after are useful for limiting of the operations in the scalar products
computation. The variable indez is replaced with the logical variable pivoted.
This variable prevents repeated pivoting of the rows, according to the second
rule of the LPP method. It is worth to mention, that in the solver izsolve,
the variable indexz has been used for a double purpos. If the value of index
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was different than the logical row number, the pivoting (strictly speaking -
pivoting down) of this row was blocked.

4. Analysis of two addressing schemes

Very popular rule for software optimisation recommends avoiding of exten-
sive shifting of the large blocks of data in operational memory. It has been
proved for example in the field of sorting algorithms. In the case considered,
i.e., in the case of pivoted block solver, at the very beginning this widely ac-
cepted rule seemed questionable. Because of this suspicion, after development
of the indirect addressing solver, the second one with direct addressing and
explicit shifting and pivoting has been developed. Major differences in the
sense of computational work may be summed up as follows. The indirect ad-
dressing solver computes the indexes (addresses) in the working window in a
more complex way and performs the check for wrap-around of the cyclic buffer
of working window. On the other hand the direct addressing solver compu-
tes the indices of the working windows elements in a simpler way and after
finishing with the current macroblock, almost wliole contents of the working
window is explicitly shifted up.

Let us begin with estimation of the additional computational work in the
indirect addressing solver. At first an arbitrary assumption about fill-in will
be made setting this value at 25%. The fill-in is defined for current purposes
as the additional storage occupied by new non-zeros created during pivoting.
The addresses of the band elements are computed basically as the sums of
two components — physical row and physical column indexes. Physical row
index is computed as the sum of logical row index and the pointer to starting
address of the cyclic buffer. Thus one integer addition (symbol #,,44 will be
used for its execution time) is necessary. Moreover, one check for wrap-around
is performed, consuming the time equal to t.ng (cond — for condition). In
the case of physical column computation, only one additional integer sum is
computed (variable diagonal) contributing #,,44 time. The total additional
time for single element addressing is equal to

ti = 2tiadd + teond (4.1)

The indirect addressing solver accesses all elements of non-zero band. 1t follows
from the Crout formulas (2.1) and (2.2) that every element (small boundary
effect at the end of forward elimination is neglected) is accessed nband times.
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During the backward substitution only the half of the band is involved into
computation — see Eq (2.3). Thus the number of elements accesses for the
band expansion coefficient 1.25 may be calculated from the following formula

Nindir = 1.25 - nband - (3 - nband + 2 - nrhs) - nueq (4.2)
where
nband - semi-bandwidth
nrhs - number of right-hand sides
nueq - number ol equations.

This formula may be simplified after taking into account the fact that the
number of right-hand sides is usually several orders of magnitude lower than
the semi-bandwidth

Nindir = 3.75 - nband? - nueq (4.3)

Total additional computation time for indirect solver may be estimated
after combining of Eqs (4.3) and (4.1)

tindir = 3.75 - nband? - nueq - (28044 + toond) (+.1)

The direct addressing solver uses the logical row and column indexes direc-
tly. Therefore, there is no overhead for address computation for this purposes.
The overhead arises during the shift of the elements in the working window.
The shift of a single element is accompanied by calculation of two addresses
(source and destination) and by floating number movement. Every address
calculation consumes the time for one integer multiplication ?;,,, and one
mteger addition ?,,44. It Tollows from quite common procedure of converting
the indexes of two-dimensional array into a single index of one-dimensional
array or dynamically allocated memory block. Next component of this addi-
tional time is the floating number transfer time t;,,,... The total time for a
single element addressing and move equals

tqg = 2(tiadd + timu ) + tfmoue (45)

Every element of the non-zero band 1s shifted in this way three times inside
the working window. It follows from the fact that the working window in
the direct addressing solver is composed of four macroblocks. During the
backward substitution the shifting is restricted to the right semi-bandwidth
and the right-hand sides. After neglecting the share of right-hand sides, total
number of shift operations is equal to

Ngir = 1.25 -3 -3 - nband - nuegn = 11.25 - nband - nueq (4.6)
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After taking into account the time of a single shift operation Eq (4.5). the
total additional time for direct addressing solver is equal approximately

1
tgir = 22.5 - nband - nuegn - (T-mdd 4 b + Etfmwé) (4.7)

The ratio of the overhead time for the direct and indirect addressing solvers

IS
tair _ 6 tiadd + Timaul + %tfmove

tindir  nband tindd T tcond

(4.8)

It is rather difficult to estimate the exact value of the second quotient. Several
simplifying assumptions have been made and the details of specific machine
code depend on the compiler. It seems to be safe to assume that this value does
not differ significantly from one. The first quotient for real problems is very
small, as the semi-bandwidth value nband without any doubts is larger than 6.
This way, the conclusion that the addressing overhead for direct addressing
solver is lower than for the indirect one is proved. [t should be noted that the
bulk of the processing time ~ the computation of floating point products - has
been left beyond the scope of this analysis.

It is worth at the end of these considerations to point out explicitly the
cause of this difference. In indirect addressing solver the additional processing
is performed nband times for every non-zero coefficient. In direct addressing
solver the additional processing (its exact nature and time are different) is
carried out only 3 times for every non-zero coefficient.

5. Results of numerical experiments

Both solvers noizsolve and izsolve have been developed as C programs
for the UNIX platform. Full scalability has been achieved through the usage
of dynamic memory allocation for all storage depending on the size of the
problem. The solvers have been tested on two popular platforms. The first
one — the PC486DX2 — has been used with the USL-Consensys UNIX operating
system. The second one — the Sun’s Sparc5 - has been used with the Solaris 2.5
operating system. For the test purposes the matrix coefficients have been
generated with the aid of random number generator. [t has been quite a
pleasant surprise to discover that on both platforms the random number series
are identical.

The results of test runs for several examples of equation systems are sum-
marised in Table 1 and Table 2. It is very interesting to observe that modest
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P (486 has been far better performing than Sparc5. Execution times for PC486
are as low as approximately 55% of the execution times for Sparcs. It is attri-
butable to the excellent floating point performance of the Intel processor and
probably better disk services provided by USIL UNIX. Both machines have
been equipped with comparable SCSI disks. Last, not least also the compilers
probably influenced the performance.

Table 1. Typical execution times [s] for example problems run on
PC486DX2 (66 MHz) with USL-Consensys UNIX operating system

number  |total bandwidth |indirect addressing|direct addressing
of equations

(2-nband + 1) solver solver
2400 199 76 66 |
4800 199 146 131 |
4800 399 767 620
9600 399 1367 1142

Table 2. Typical execution times [s] for example problems run on Sun’s
Sparch (85 MHz) with Solaris 2.5 operating system

number total bandwidth |indirect addressing|direct addressing|
of equations | (2 - nband + 1) solver solver
2400 199 153 126 ]
4800 199 287 230
4800 399 1492 1107
9600 399 2792 2065

Very interesting is the difference between the indirect and direct addressing
solvers. The direct addressing solver, according to theoretical analysis, is
better than the solver with indirect addressing. On the P(C'486 platform the
difference is of the order of about 20% and on Sparch - about 30%. Two
important conclusions follow from these observations. First of all, widespread
numerical wisdom that extensive shifts and interchanges of the data are very
expensive (in the sense of execution time) is far from true in some cases. In
the case considered the time for shifting the data has been outweighed by
additional effort intensive computing of indirect addresses. Next, it should be
mentioned that the indirect addressing solver has been developed as the first
one. The direct addressing solver has been developed as the afterthought. It
has been hoped that it will prove not only the elegance of indirect addressing
but also its efficiency. The result has been exactly the reverse of preliminary
expectations. The analysis following the experiments has led to the conclusion
that this expectations have been unfounded.
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Table 3. The dependence of the execution times [s] on the bandwidth
value; example problems run on Sun’s Sparc5 (85 MHz) with Solaris 2.5 ope-
rating system

number  |total bandwidth |indirect addressing|direct addressing
of equations | (2 - nband 4 1) solver solver
9600 19 27 26
9600 39 45 44
9600 99 126 111
9600 199 487 419
9600 399 2792 2065

The results presented in Table 3 have been gathered in order to verify more
precisely analytical considerations. According to the analysis for equation
systems with narrow non-zero band both solvers should come to the solutions
in almost the same time. Some traces of such behaviour may be found in this
table. For the widest band, indirect addressing solver consumes approximately
30% more time. If the band shrinks to 199. the difference is only 15%. For
the total bandwidths of 39 and 19, the execution times are practically equal.
However it is a bit risky to trust the data for these extremely narrow bands.

6. Conclusions

New pivoting method nicknamed "limited partial pivoting” has been intro-
duced. It has been implemented in two out-of-core solvers and the results are
very satisfying. Both solvers are useful tools solving of large banded unsym-
metric systems of linear equations without diagonal dominance. According to
analytical considerations the solver with explicit pivoting and direct addres-
sing performs better than its indirect addressing counterpart. However, it is
hoped that some reduction of the scope of indirect addressing (e.g. explicit
row interchange) may lead to some improvement.

Both solvers have been tested on two different UNIX platforms. The mo-
dest PC486DX2 solved the equation systems two times faster than the expen-
sive Sparc5. This spectacular difference is caused by excellent floating point
performance of the Intel processor and by lower operating system overhead of
USL UNIX.

Introduction of more flexible block structure into the coefficient matrix
is envisaged for the future. It is hoped that at the expense of more time-
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consuming communication with the disk memory and more complex user in-
terface further extension of the application area may be achieved.

~1
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Nowa metoda wyboru elementdw gléwnych w blokowym programie

rozwiazywania duzych pasmowych ukladéw réwnan liniowych

Streszczenle

Przedstawiono nowga metodq wyboru elementéw glownych dla pasmowych nie-
symetrycznych ukladéw réwnail llmowych Metoda ta ogranicza wypelnienie 1 za-
chowuje dos¢ dobrze strukture pasmowa. Opracowano dwa programy stosujace nowa
metode. Jeden z nich wykorzystuje elegancki wybér elementdéw gldwnych, a drugi sto-
suje bezposrednie przemieszczanie danych w pamieci operacyjnej i bezposredni wyb01
elementow gléwnych. Oba programy napisano w jezyku C dla dwéch popularnychsro-
dowisk Unixowych (PC486 1 Sparch firmy SUN). Obszernie opisano szczegdly realizacji
obu programoéw. Przeprowadzono analize teoretyczna efektywnosci obu programdw.
Przedstawiono rezultaty testéw dla obu srodowisk sprzetowych.
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