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Weight functions of the stress mtensity factors Ay and Ay for a sin-
gle radial crack emanating from a circular hole are denved using the
boundary element method (BEM) together with the Bueckner type sin-
gular complex stress function Z(:) applied in the vicnity of the crack
tip. Both weight functions, corresponding to the loading modes [ and
I1 respectively, are valid for any ratio of the crack length a to hole ra-
dius R. They are represented in the unified formn convenient lor creating
the weight function database. The accuracy of present solutions has ap-
peared to be much better than 99% verified by comparing the values of
Ky and K- obtained by means of the unitary weight function method
to the BEM results and to some particular Ay and N\'» solutions found
i the literature.
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1. Introduction

Stress intensity factor /I is one of the mosl important parameters of
Tracture mechanics, widely used in engineering for estimating counditions of
brittle [racture. fatigue life and corrosion cracking of a structural elemen:
subjected to static or variable loading. Since the value of I depends on many
factors such as: shape of the body. crack geometry and location. loading and
displacement conditions, tempevature field etc.. there exists a great nunber
of particular A" solutions and many methods of obtaining [/ values which
can be found in the literature e.g. Murakami (1987). Sih (1973a.bh), Tada et
al. (1973).

The weight function method, suggested by Bueckner (1970). (1973) and
Rice (1972} is the most versatile ane, due to the possibility of putting togel her
different linear elastic stress fields resulting from external loads. temperatnre
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fields, residual stresses, etc., as far as the weight function, proper for the

desired geometrical form, is known. Since the resultant stress distribution

along the potential crack path of the uncracked body is known. the related

stress intensity factors Ny, i’y and K’y are determined by a simple integration
LI.

I, = / 01](.1:)777,(-7')(.&(1) da (1.1)

0

where a is the crack length, mU)(2.a) represents known weight functions
adequate for the cracked body and o;;(2) stand for the components of stress
tensor released on the crack faces in the directions corresponding to three
loading modes ;= 1,2,3.

Some improvements of the weight function method were presented by Mol-
ski (1994a) offering a unified parametric description of any weight function
with subsequent applications to the determination of stress intensity factors.
valid for any stress distributions released along the crack surfaces. Some exam-
ples of such solutions can be found e.g. in Molski {1994a.b). (1996), (1997)
for various cracked elements.

In the present study a plane elastic problem of a single radial crack ema-
nating from a circular hole and loaded in opening and sliding modes, as shown
in Fig.1, has been analysed.

!
| |
e

Fig. 1. Single radial crack emanating [rom a circular hole and subjected to
a multiaxial in-plane loading on the surfaces

The normal oy3(2,0) and shear o1,(2.0) stress components that appear
along the potential crack path of uncracked body. are released on the crack
faces and form a multiaxial stress state, described at the vicinity of the crack
tip by two independent stress intensity factors ') and Ny, corresponding to
the modes [ and [1. respectively. Thus. the alm of the present work is to
determine the weight {function corresponding to each mode.
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2. Determination of weight functions

Particular values of weight functions, for various «/R ratios and for the
loading modes I and I, have been obtained numerically by means of the
BEM technique (cf Portela and Aliabadi, 1993). The complex stress function
Zi(z), given by Eq (2.1) and satisfying Bueckner’s (1970), (1973) loading
conditions, has been applied at a small distance {from the crack tip. Thus
stress and displacement fields can be derived from

(2.1)

where z = 7el¥ is a complex number in the polar coordinate system (7,¢)
located at the crack tip. Bueckner’s parameters B; = P;\/c/7 correspond to
a pair of self-equilibrated opposite forces P; applied to the crack surfaces at
a small distance ¢ from the crack tip.

The numerical approach is similar to that described by Molski (1996),
(1997). However, it should be noted that we look for the crack face relative
displacements, as a result of known Bueckner’s stress or displacement fields
applied in the crack tip, Eq (2.1). The boundary element method, due to the
accuracy and simplicity of data gathering, is an excellent numerical tool for
this purpose.

Numerical calculations of weight functions for each mode and various ra-
tios of the crack length a to the hole radius R, have been carried out using the
BEM software program Cracker (cf Portela. and Aliabadi, 1993). The crack
face relative displacements - opening vj(7,7) for the mode [ and sliding
u3(r,m) for the mode [/, obtained using the BEM. have been interpolated
along the whole crack length and interpreted as the displacement weight func-
tions. Since the weight functions in this case do not depend neither on the
plane state of the body nor the elastic material constants F and v, their
values have been conveniently chosen as E = 1 and v = 0 to simplify the
output data analysis.

3. Correction and unitary weight functions — numerical results

The next step consists in transforming numerically obtained crack face
displacements vj(r,7) and wuj(r,7) into the correction Fj;(s) and unitary
w)(2/a,s) weight functions, following the procedure described by Molski
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(1994a). Two different correction functions: Fij(s) and F5(s), shown by the
solid and dashed lines in Fig.2, have been obtained by numerical integration
of the previously found and normalized displacement functions »(r,m) and
uj(r, 7). They depend only on the parameter s. where s = a/(« + R). and
indicate the influence of the uniform. self-equilibrated normal oy, and shear
015 stresses applied or released directly on the crack surfaces, on A’y and L'y
respectively.

It is worthwhile to note that particular values of the correction functions
F,(s). i.e. for the uniform stress released on the crack faces, may be also cal-
culated directly, making use of the principle of superposition. The problem
cosists in generating the uniform stress fields — the equi-biaxial teusion lor the
mode [ and the uniform shiear for the niode 7/ — in the whole body without
cracks. The first may be done by applying a constaut toad normal to all free,
both internal and external, surfaces of the uncracked body. The second one is
more laborious due to the fact that two properly chosen perpendicular loading
components have to be applied to all {ree surfaces to generate the uniform
shear, in direction of the crack plane. In both cases if a crack is present,
uniform stresses are released along the crack sides and unknown correction
functions F; are determined directly from the calculated stress intensity fac-
tors A’y and Ay, It is obvious, that in this way we obtain another proof of
the accuracy of the correction functions calculated in two different ways. In
the present work both I solutions for each mode - those obtained from inte-
grating of the crack face relative displacements and those calculated directly
— were alinost the same with the maximal difference ol about 0.2 percent.

Numerical values of the correction Tunctions I7(s) and Fiy(s), interpolated
by polvnomials, are given below for the modes [ and IJ and are also shown
in Fig.2

Fi(s)= 1.1215 = 0.882s + 1.325s* — 1.393s” 4 0.3655" + 0.737s° — 0.566-1s°
(3.1)
Fy(s) = 1.1215 = 0.202s — 0.3074s% + 2,116 — 5.5228" + 5.747s" — 2.2465°

The stress intensity factors Ky and L'y are expressed now by Eqs (3.2),

true for the uniform stresses o1 = const and o192 = const released directly

on the crack surfaces

Ny = Vra oy F(s)
(3.2)
Ny = /ma o12F5(8)

As shown by Molski (1994a,b). any form of the conventional weight func-
tion can be normalized and transformed into Fj(s) and wW)(x/a,s), which
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Fig. 2. Correction functions Fj(s) for modes [ and [/

has the following special feature

jlw(j)(g,.s) d% =1 (3.3)
0

Since the correction functions Fj(s) express the shape effect of the body
on the stress intensity factors K; for the uniform stress applied or released
directly on the crack surface, the unitary weight function, having the features
of dimentionless weight density function, qualifies the load distributed along
the whole crack length and estimates its contribution to the stress intensity
factor value.

Thus, in the case of non-uniform stresses oy,(2) distributed along the
crack sides, the stress intensity factors A'; are

a a

1
K, = J/ra Fj(s)/a“ (g)wm(ﬂs) a* (3.4)
0

where the intergrand may be interpreted as an equivalent constant stress
(0eq); that would give the same K; values as a true non-uniform one.
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For numerical purposes, in the case of non-uniform stress along the crack
faces. it is more convenient to use the fractional values of the unitary weight
function integrals f2;(s) (cf Molski, 1994a). Theses values are obtained by
dividing the whole crack length « into ten equal segments ¢ and integrating
the unitary weight function numerically for each segment, starting {rom the
crack end opposite to the considered crack tip. The courses of fractional
integral values §29,(s) and f2;(s) of the unitary weight functions versus
shape parameter s are shown in Fig.3 and Fig.4. These values are interpreted
as weight coelficients. valuating the stresses released along each one tenth of

vhe crack segnient.

0.4

€2,(s)

— mode [ -
e

0.3

Fig. 3. Fractional values of the unitary weight function integrals (weight
coefficients) for mode [: §2);(s) versus s

Once obtained fractional integral values f21;(s) and f25;(s) have been
interpolated by polynomials and incorporated, together with the correction
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Fig. 4. Fractional values of the unitary weight function integrals (weight
coeflictents) for mode I/. §24,(s) versus s

functions F)(s), into the main program (Molski and Truszkowski, 1995) able
to calculate stress intensity factors K in accordance with Eq (3.4), for any
load related to the crack faces. All normalized K; values, obtained in this
way and used below for comparative studies. are indicated as Unitary Weight
Function Method (UWEFM) results.

4. Accuracy verification

To estimate the accuracy of the present UWFM approach, the calculated
stress intensity factors Ny and Ko are compared to particular reference
solutions from the literature (cf Isida et al., 1985; Murakami, 1987; Tweed
and Rooke, 1973) and also to the BEM results obtained by the author for the
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same problems by means of a direct modelling. Uniform loads: o, and o
for the mode [ and 7 for the mode I[ have been applied to the wide plate,
containing a circular hole with a single radial crack, sufficiently far from the
cracked area. In the case of mode [ — two different loading conditions have
been analvsed:

L. Equi-biaxial tension: o, =0, =0, (A =1). where A =0,/0,

2. Simple tension: o, =0, 0, =0, (A =0).

For all three cases being considered here, the normal and shear stresses
distributed along the potential crack path of uncracked body are well known

from the theorv of elasticity (c¢f Timoshenko and Goodier, 1951) and are shown
in Fig.5.

3.0
ax) mode / *ng —7
T /,"'(,1=o) ‘__l v T__»
£ o @?&9
20 o]
mode 1 7y
(A=1)
1.0k ~mode 1/ J
0 0.5 1.0 R 1.5

Fig. 5. Elastic stress distributions along the potential crack path resulting from
various loading conditions of the uncracked body

These stresses, together with the weight coefficients <Qi(5)> ~and correc-
J

tion functions Fj(s), enter the integration (3.4) to calculate the stress inten-
sity factors A, for various «/R ratios. The numerical results obtained in the
present UWFEFM approach, as well as the reference values mentioned above,
are shown in Table 1 and Table 2 for two loading modes, respectively. New
dimentionless correction functions Yj(s) and Y3(s) are defined by Eq (4.1).
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Their values depend on the loading conditions imposed on the body

_Ii’l Yz _ A"Z

a\/TT T/

Y] =

Table 1. Mode [ correction functions Y] obtained using various methods

/R Y1 (A =0) Yi(A=1)

a :

[4,11]| [20] |BEM|UWFM [4,11]| [20] |[BEM |UWI'M
0.01 3.293/3.291| - 3.292 [2.213/2.212 2.212

0.10 |2.772\2.77112.781| 2.767 |1.989|1.988(1.992| 1.985
0.20 [2.374|2.373|2.379| 2.370 |1.807]1.807|1.810| 1.804
0.30 | - 12.092]2.095]| 2.090 - 11.67111.674| 1.670
0.50 |1.7281.727|1.730| 1.727 |1.480]1.480|1.481| 1.481
1.00 |1.306]1.306|1.308] 1.307 ]1.226/1.226]1.227| 1.227

1.50 1.127|1.130| 1.128 - [1.097|1.098] 1.098
2.00 | - ]1.030|1.034| 1.032 - 11.020|1.021| 1.021
5.00 | - ]0.845/0.847| 0.847 - 10.850{0.851] 0.852

Table 2. Mode [1 correction functions Y, obtained using various methods

Yy
a/R
[4] | BEM | UWFM

0.01 | 0.053 = 0.053
0.05 | 0.244 | 0.243 | 0.243
0.10 | 0.436 | 0.436 | 0.434
0.20 | 0.712 ] 0.713 | 0.708
0.50 | 1.085 | 1.087 | 1.082
1.00 | 1.200 | 1.202 1.199

1.50 - 1.179 | 1.176
2.00 - 1.134 1.131
5.00 - 0.950 | 0.949

For all normalized I, values shown in Tables 1 and 2 the agreement is
excellent. Since the reference I solutions obtained by Isida at al. (1985) and
by Tweed and Rooke (1973) are estimated to be in error of about 0.1% + 0.2%
and the accuracy of the BEM results is at least 99.5% — it may be concluded
that in the presented cases the error of the UWFM approach do not exceed
ole percent.
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5. Conclusions

Boundary element method BEM together with the complex stress function
Z(z) describing a singularity of Bueckner’s type at the crack tip, have appe-
ared to be a very effective and accurate numerical tool for determining stress
intensity factor weight functions of mode [ and mode [/, for the problem of
a single radial crack emanating {from a circular hole. Both weight function so-
lutions are quite different and valid in the whole range of s parameter, i.e. for
0 < s <1, coinciding with the solution for a single edge crack in a half plane
at the left extreme (s = 0) and with Griffith’s crack at the right one (s = 1).

The uniform load correctjon functions £ and weight coefficients (2y; and
{29; depend only on the parameter s. which describes the relation between
the crack length and the hole radius K.

The accuracy of stress intensity factors, for both loading modes being ana-
lysed here, has appeared to be very satisfactory with the maximal error much
lower than one percent compared to some particular solutions known from the
literature and to the boundary element results obtained by the author. De-
spite of the fact that the accuracy has been verified for well known normal and
shear stresses released along the crack faces, shmilar errors of maximum 1%
can be expected for any other loading functions, including residual and ther-
moelastic stress fields, as far as their distributions along the potential crack
path can be properly determined.

Acknowledgements

The investigation presented in this paper 1s a part of grant No. 7510104004
sponsored by the State Committee [or Scientific Research (ICBN).

Numerical results have been obtained using the boundary element software pro-

gram Cracker from Wessex Institute of Technology, UK

References

1. Bowie O.L., 1956, Analysis of an Infinite Plate Containing Radial Cracks
Originating at the Boundary of an Interual Circular Hole, J. Mathemalics and
Physics, XXXV, 1, 60-71

2. BueckNer H.F., 1970, A Novel Principle for the Computation of Stress In-
tensity Factors, ZAMM, 50, 529-545

3. BueckNeEr H.F., 1973, Field Singularities and Related Integral Representa-
tions, Chapter b, Methods of Analysis and Solutions of Crack Problems, 1,
Noordhoff Int. Publ.



-1

10.

I1.

13.

14.

16.

17.

18.

19.

20,

WEIGHT FUNCTIONS OF Ny AND Ny, 13

. 1sipa M., CHEN D.H.. Nisirant H., 1985, Plane Problems of an Arbitrary Ar-

ray of Cracks Emanating from the Edge of an Elliptical Hole, Engng. Fracturc
Mech.. 21, 5. 983-995

Mowrskl K.L., 1994a, Method of Stress Intensity Factor Calculation Based on
the Unitary Weight Function, Journal of Theoretical and Applied Mechanucs,
1. 32, 153-161

Mocrsii K. L., 1994b, Unitary Weight Functions for Semi-fnfinite Crack Ap-
proaching Free Boundary, Comput. Mcch. Publications, Southampton, 416-424

Mowrskl IK.L., Truszrowskl W., 1995, Application of the Unitary Weight
Function and Numerical Techniques in Determination of Stress Intensity [Mac-
tors, V' National Conf. on Fracture Mechanics, Amehidwka, 57, 31-38 (in Po-
lish)

Movusxl IK.L., 1996, Weight Functions of Loading Modes 1, I and ITI for a
Round Hole with Two Symmetric Rachal Cracks, Journal of Theoretical and
Applied Mechanics. 3, 34. 609-620

MorLskl W.L., 1997, Weight Functions of the Stress Intensity Factors Ny, No
and K3 for a Single Radial Crack Emanating from a Semi-Circular Side Notch,
Journal of Theoretical and Applied Mechanics, 1, 35, 57-70

MURARAMI Y . 1978, A Method of Stress Intensity Factor Calculation for the
Crack Emanating from an Arbitrarily Shaped Hole, Trans. Japan Soc. Mech.
Eng., 44, 378, 423-432

Muraramt Y., 1987, Stress Intensily Faclors Handbook, Pergamon Press, 5,
244-248

Newnman J.C., 1971, An Improved Method of Collocation [or the Stress Ana-
lysis of Cracked Plates with Various Shaped Boundaries, NASA Technical Nole,
NASA TN D-6376

PorTELA A, ALtaBADI M .H. 1993, Crack Growlh Analysis Using Boundary

Flements, Software Program Cracker, Comput. Mech. Publications, Ashurst
Lodge, Southampton, UK

Rice J.R., 1972, Some Remarks on Elastic Crack-tip Stress Fields. J. Solids
and Struclures, 8. 751-758

SCHIJVE J., 1983, Stress Intenstty Factors of Hole Edge Cracks. Comparison
Between One Crack and Two Symmetric Cracks, fni, J. of Fracture, 23, R111-
R1l5

Sii G.C., 1973a, Handbook of Siress Intensity Factors, Lehigh University, Be-
thlehem, Pennsylvania

Sy G.C.. 1973b, Methods of Analysis and Solutions of Crack Problems, Noor-
dhoff International Publishing, Leyden

Tapa H., Paris P.C., IrwiNn G.R., 1973, The Stress Analysis of Cracks
Handbook, Del Research Coorporation

TIMOSHENKO S., Goobpier J.N.. 1951, Theory of Flasticity, 2nd edition,
McGraw-Hill Book Company, luc., 78-82

Tweed J., Rooke D.P |, 1973, The distribution of Stress Near the Tip of a
Radial Crack at the Edge of a Circular Hole, /nt. J. Engng Sci., 11, 1185-1195



14 K.MoLsKI

Funkcje wagowe wspdlezynnikéw L) 1 Ky dla pojedynczej szczeliny
wychodzacej z okraglego otworu

Streszczenie

Analizowano plaskie zagadnienie pojedynczej szezeliny wychodzacej promieniowo

z okraglego otworu w materiale podlegajacym prawu Hooke'a. Wyznaczono funk-
cje wagowe dla wspdlezynnikdéw Ry 1 Ay stosujac metode elementu brzegowego
MEB w potaczeniu z zespolona funkcja naprezen Z(:) zadana w sasiedztwie wierz-
cholka szczeliny. Otrzymane rozwiazania przedstawiono w postaci funkeji korek-
cyjnych 1Jednosrl\owych funkeji wagowych o zunifikowanym zapisie. pO/walancvm
zastosowac je do wspomaganych l\omputelowo symulacji rozwoju peknie¢ kruchych,

zmeczeniowych 1 korozyjnych, przy dowolnym rozkladzie obciazenia uwalnianego na

powleuchm szezeliny. Maksymalny blad obliczonych ta meroda wspolczynml\ow Ny

1 Ay nie przekraczal jednego procenta.
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