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This paper presents a comparative analysis of stress and displacement
plane fields due to the presence of an interface Griffith crack and a rib-
bon absolutely rigid inclusion in a microperiodic laminated medium con-
sisting of alternating layers of two homogeneous, isotropic and linear-
elastic materials. The study is based on the approximate treatment
by using the homogenized model with microlocal paramaters (cf Wo-
zniak, 1987). Useful solutions with the standard (non-oscillatory) inverse
square-root singularity are obtained and the stress intensity factors are
defined as local failure parameters. Some illustrative examples are also
given.
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1. Introduction

The behaviour of interface defect under general loading conditions is of si-
gnificant interest and practical importance in the failure analysis. The purpose
of this contribution is to expand the research on interface cracks in microperio-
dic two-layered space given in our earlier papers (cf Kaczyriski and Matysiak,
1988, 1989, 1995) to cover the case of interface inclusions. Two types of defects
lying on one of the straight interfaces of layers in a microperiodic laminated
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medium are thoroughly considered; namely, that of a Griffith crack and a
ribbon absolutely rigid inclusion. The general plane problem dealing with a
thin-walled elastic inclusion of any stiffness was posed and studied by Yevtu-
shenko et al. (1995). It was shown that. the problem is reduced into the
solution of a complex system of integro-differential singular equations. The
literature on the problems treated herein is extensive, and only those works
which are pertinent to the present study will be cited.

In Section 2 we review briefly the governing equations of the homogenized
model of layered body by using the microlocal parameter theory in the linear
plane-strain static case. Such an approach has proved to be very useful in so-
lving several types of boundary value problems for periodic elastic composites
(see a comprehasive survey of papers in this field given by Matysiak, 1995).

In Section 3 the problem is formulae and a common method of constructing
the solution in connection with an interface defect such as a rigid ribbon-like
inclusion and a crack is outlined. The procedure follows along the same line
of reasoning as that used in the homogeneous isotropic case described in the
monograph by Berezhnitsky et al. (1983).

An analysis of the results aiming at assessment of the laminates strength
degradation of due to the presence of considered defects is included in Sec-
tion 4. Useful solutions are obtained with the standard crack-tip singularity,
contrary to those with oscillatory behaviour arising from the conventional for-
mulation (see, for example, Erdogan, 1972; Sih and Chen, 1981). Hence, the
concept of stress intensity factors as the parameters characterising the local
stresses and controlling the fracture instability may be applied. Some exam-
ples for illustrating main results have been given at the end of this section.

Some similar problem to that under study but considered in the homo-
geneous solids were discussed, for example, by Sih (1965), Atkinson (1973),
Matysiak and Olesiak (1981), Wang et al. (1985), Tvardovsky (1990). Detai-
led information on inclusion problems was given by Mura (1982) and (1988).

2. Governing relations of the homogenized model

The composite being considered is a microperiodic laminated medium con-
sisting of thin repeated fundamental layers of thickness ¢ which is composed
of two bonded homogeneous isotropic layers denoted by 1 and 2 (see its middle
cross-section given in Fig.1). In the following, all quantities pertaining to these
sublayers will be denoted with the index [ or (I) taking the values of 1 and 2,
respectively. Let A;, py be the Lamé constants and §; be the thicknesses of
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subsequent sublayers. A Cartesian coordinate system (z,y,2) is introduced
such that the y-axis is normal to the layering and the z-axis coincides with
one of the straight interfaces of the materials. Restricting the considerations
to the plane-strain state (independent of the variable z), denote at the point

(z,y,0) the displacement vector by [U(z,y),V(z,y),0] and the stresses by

o\, y), o¥(z,y), oz, y).

Fig. 1. Cross-section of a microperiodic composite with an interface Griffith crack

For the purpose of determining the stress and strain state in this lamina-
ted body, the homogenized model called the linear elasticity with microlocal
parameters, devised by Wozniak (1987) and Matysiak and Wozniak (1988), is
applied. Such an approach has proved to be useful and effective for solving
a variety of boundary problems (see Matysiak, 1995). We recall below some
relevant results from this theory.

The basis for microlocal modeling are some heuristic, kinematic and ap-
proximation postulates which can be written down in the following form for
the stratified body under consideration
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Ulz,y) = u(z,y) + A(ylple,y) = ulz,y)
Viz,y)=v(z,y) + hy)g(z,y) = v(z,y)
O-:l(jéj) % (/\[ + 2#’1)(’”»‘5/ +h‘7[ Q) + /\luvl‘ (21)

o) = (A 2w +Ai(0,y Hhag)
Uily) = sy +vy +hyp)
Here wu, » and p, g are unknown functions interpreted as the macro-

displacements and microlocal parameters, respectively, and his a priori given
6-periodic sectionally linear shape function, defined as follows

i €< 0,6 >
M= 8 S 1 e (2:2)
1_77 — 56 Yy E 81,6 >

where 1 = 0,/6.

Observe that the values of this function are small but its derivative
h'(y) = h, are not small, taking the values 1 for { =1 and —9/(1 — ) for
[ = 2.

The asymptotic approach to the macro-modelling of this laminated body
leads to the governing relations of certain macro-homogeneous medium (the
homogenized model), given in terms of macro-displacements (after eliminating
the microlocal parameters) and taking the following form (in the absence of
body forces and in the static case)

Agtiyze +(B + C)val‘y +Cuayy =0

(2.3)
A1,y HB + C)typy +C,3p = 0
o2, y) = Bu (2,9) + Ayvy (2,y)
gté)/(:t,y’) = C{u,y(l‘,y) + U,r(JL',y)}
(2.4)

o2, y) = Div,y (z,y) + Eng (2,9)

A
D — ! (1) ()
Uzz(lay) 2N +,U'l) {Oxx(ray)+ Uyy(.”ﬁ, y)J
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in which the positive coefficients A;, A2, B, C', D, E;, describing the mate-
rial and geometric properties of the composite constituents, are given by the
formulae

4y = b2

(1= m)by + 7b2

4n(l — — A — A —
Ay = A, + n)(uzl u;?l() 1+nb2+m 1t2)
- 2
1 (2.5)

g L= mAzby 4 nhiby C - f41 2

A dp(A A
Dt:b_’A1 E = pu( 1+l;uz)+ 1B

! !

with b, = Ay 4+ 2, 1 = 1,2 and 7 = 6,/6.

3. Formulation and solution of the problem

Within the framework of the homogenized model presented in Section 2 we
consider the plane boundary value problem involving an interface Griffith crack
(denoted by (') or perfectly rigid line inclusion (denoted by I) occupying the
region (see Fig.1)

= {(z,y,2) : —a<z<a A y=0 A -—co<z<oo}  (3.1)

Evidently, the associated global conditions on 5 have to be satisfied

(G o =af =0
I: uthJ: 'Uiy: 0 (3.2)

Here and afterwards the quantities assigned with = refer to the limiting values
as y — 0%,

An efficient approach to the interface problems in question is based on the
"classical” complex representation (similar to that given by Muskhelishvili,
1966) in terms of two potentials (denoted by @ and f2) on the z-axis (cf
Kaczynski and Matysiak, 1989)

+ . + +
or —iteoy, = ¢F 4+ 0F
v o (3.3)

|, E +it,v, T | = K, 8% — QF
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where

=l _ A4 - B oo At A
: T T4 T AL

Ay (
A, = ¢ Au%“ﬂfgﬂi (3.4)

A+:\/A1A2+B A_:\/AlA'z_B

We proceed now to the conventional approach constituting in the fact that
the problem treated within the framework of homogenized model is linear, so
we have the following decomposition of the stress tensor and displacements

o=0d"+o" (u,v) = (u0,09) + (u*,v") (3.5)

where superscripts 0 and * refer to the problem of laminated composite
without the crack or rigid inclusion, acted upon by an arbitrary external load
and to the corresponding perturbed problem (being in the focus our attention),
respectively.
Using the same technique as that developed by Berezhnitsky et al. {1983)
assume first that for |z] < a
0% —i1,0% = ~[P(z) £ Q(z)]

vy *Yay

(3.6)
2y [0 it | = —[f2) £ ¢2)]

The fundamental perturbed problem reduces then to finding two single-
valued, sectionally holomorphic potentials &(.) and §2(-) satisfying, in
view of Eqgs (3.2) =~ (3.6), the boundary conditions at the interface segment
(—a,a) x {0} and at the infinity

&t + 0F = P(x) £ Q(x)
kBT — 2F = flz) + ¢'(2) (3.7)
P(o0) = 2(c0) =0

The solution to the above problem involving the crack (problem (') as

well as the rigid inclusion (problem ) may be written in the common form
as

_F(E)+y
N

2(Z) = —0.9(2) + 20.G(2)

+G(3)
(3.8)
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where the functions (Cauchy integrals) F and G of generalized complex
variable z (for details see Kaczynski and Matysiak, 1989) and a constant g¢
are defined in terms of the known functions F*(p.,?) and G*(p.,1) as follows

Va2 — {2F*
F(z / ¢ F (lt
47rg*
g= 2t /G*(gx,w di (3.9)
0 — Q*—a
L1 [ Gen)
7(Z) = dt
G2 47rig*/ t—z ‘
provided that in the problems (" and I we set
¢ Ox = —1 0 = Ku
F*(0.,t) = —2P(1) G™(ox,1) = =2Q(1)
(3.10)
I : Ox = K o=-—1
F*(Q*,i) = 2]“(1) G’*(Q*vt) = 2gl(t)

The general solution obtained above for the crack and rigid line inclusion
problems makes it possible to characterize the local field behaviour in the
vicinity of the tips a* as well as to determine the stresses and displacements
throughout the periodically layered composite.

4. Asymptotic analysis

A knowledge of stress field in the neighbourhood of the crack (inclusion)
tip is essential in the failure analysis. Owing to the representation given by
Eqgs (3.3) the solutions to the interface problems within the framework of the
proposed homogenized model are closely related to those for homogeneous
isotropic bodies. It can be easily seen that, Eqs (3.8) show the classical stress
singularities having the usual square-root form in contrast to these oscillatory
ones existing in the interface problems. Thus, the magnitudes of the local
stresses may be determined in terms of some paraneters known as the stress
intensity factors (SIF). For the purpose of obtaining expressions for these
parameters, we follow the procedure outlined by Berezhnitsky at al. (1983)
consisting in examining the singular parts of the local stresses induced by the
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potentials given by Eqs (3.9). The asymptotic form of the solution in the
small vicinity of the tips a* on the z-axis is found to be (see the principle
established by the conditions (3.10))

ayy(2,0) | _ ox— 1| kT ! 0 i

== — + 0 =taxr 0<r<a
{aw(m) 2. | k| va PO
a3t o K

—L 4
20* 2T

_ +
[u(z,o)}:m K*[/Zi’}\/;owm) v=faFr  0<r<a
I

Ouz(2,0%) = — o) T=tatr D<r<a (4.1)

by O

where

2w (2A + 2 — Ay)

C+ — C(l) ¢ = C(2) C(l) =1
(Ar+ 2u) At

(4.2)

and the SIFs ki i 7 (superscripts ”-” and "+ refer to the left and right-hand
crack (mchmon) tlps respectively) are defined by

/i
it kE = / ¢ 0., 1) dt £ i
— 1t kyy 27r\/— P (¢ :f:l

It is observed that the character of the above asymptotic expressions is
similar to that obtained in the homogeneous isotropic case. Intensification of
the local stresses is fully characterized by two parameters &y, ky; determi-
ned by Eqs (4.3) (in the crack theory called the stress intensity factors and
connected with the corresponding modes of crack extension). However, as it
was shown in our paper (cf Kaczynski and Matysiak, 1988), the asymptotic
angular distribution is different. The influence of the layering is seen in the
dependence of local crack displacements and inclusion stresses on the parame-
ter k., pertinent to the composite structure as indicated in Eqs (3.4). Finally,
we may compare the obtained solution with the solution for a homogeneous
isotropic body (characterized by the Lamé coefficients A, x4 and the Poisson
ratio v = (A4 3u)/(A+ p)) in which

(oet) dt] (4.3)

A=Ay = A H1 = [2 = [
Al = A=A+ 2u B = C=p (4.4)
Dy=2A Ey = A+ 2pu '

t. =1 e = Mu Ky =V
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Comprehensive investigation of the interaction between rigid line inclusions
and cracks in a homogeneous isotropic body may be found in the aforemen-
tioned monograph by Berezhnitsky et al. (1983); accurate or approximate
values of the stress intensity factors for a lot of different configurations are
also listed. Owing to the use of the same technique it becomes possible to
obtain and compare the solutions to the corresponding problems involving the
periodically layered composite under study.

As an illustration of the results obtained above we consider two simple
examples of the interface problems in question for a given external loading.
Attention will be focused on determination of the stress intensity factors.

4.1. Uniform tension in the y-direction

Assuming that oy.(00) = p, 0,(00) = 0 and bearing in mind Eqs (3.5)
and (3.6), we obtain in Fqs (3.10)

G*(Q*vt) =0
(4.5)
Zp ¢ (Qx = _l)
F*(0.,1) =
eo={ T, T
and after integration (see Eqs (4.3)) we get
. p/a C
kT = B;Li){‘a I
T (4.6)

ki =10

4.2. Special system of concentrated forces

For the sake of simplicity we take only the case of external loads in the form
of a system of two equal and opposite vertical concentrated forces (0,Yy) and
(0,~Yy) applied at the points (20,0) and (—zg,0), respectively, (z¢ > a)
into consideration (for detailed analysis of the stress intensity factors affected
by arbitrary concentrated body forces, see Kaczyriski and Matysiak, 1995).
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Proceeding as in the previous case and making use of the results given in
our paper, Eqgs (3.10) yield

G*(px, 1) =0
(4.7)
LCuzoy; C (0w =—1)

(0« = 5*)

C.Yp 1 v
‘ C
Lt — W\/E ;dQ -1
T — D*YQ 1
m/a Vd2 -1

To A_C
d== Cu= | ra—err
a A](Al + 20)

C’
D.= (VA4 + C)\/;A

(A4 +2C)

where

(4.9)

Passing to the homogeneous isotropic body the results obtained coincide
with those presented by Berezhnitsky et al. (1983).

References

1. ATKINSON C., 1973, Some Ribbon-Like Inclusion Problems, Ini. J. Engng Scu.,
11, 243-266

2. BEREZHNITSKY L.T., PaNASYUK V.V., STascHUK N.G., 1983, Inieraction
of Rigid Linear Inclusions end Cracks, Izd. Naukova Dumka, Kiev

3. ErDoGAN F., 1972, Fracture Problems of Composite Materials, Fngng Fracture
Mech., 4, 811-840

4. YEVTUSHENKO A.A., KACzZYNSKI A., MATYSIAK S.J., 1995, The Stress State

of a Laminated Elastic Composite with a Thin Linear Inclusion, J. Appl. Maths.
Mechs., 59, 4, 671-676



SOME 2D INTERFACE CRACK AND... 761

5. KaczyNskl A., MaTysiak S.J., 1988, On Crack Problems in Periodic Two-
Layered Elastic Composites, Int. J. Fracture, 37, 31-45

6. KaczyNski A., MaTysiak S.J., 1989, A System of Interface Cracks in Perio-
dically Layered Elastic Composite, Engng Fracture Mech., 32, 745-756

7. KaczyNskl A., MaTysiak S.J., 1995, Analysis of Stress Intensity Factors in
Crack Problems of Periodic Two-Layered Elastic Composites, Acta Mechanicr
110, 95-110

8. MaTysiak S.J., 1995, On the Microlocal Parameter Method in Modelling of
Periodically Layered Thermoelastic Composites, J. Theor. Appl. Mech., 33, 2,
481-487

9. MaTtysiak S.J., OLESIAK Z., 1981, Properties of Stresses in Composites with
Ribbon-Like Inclusions, (in Polish), Mech. Teor. Sios., 19, 3, 397-408

10. MaTysiak S.J., Woiniak C., 1988, On the Microlocal Modelling of Thermo-
elastic Composites, J. of Tech. Phys., 29, 1, 85-97

11. Mura T., 1982, Mwcromechanics of Defects in Solids, Martinus Nijhoff
12. Mura T., 1988, Inclusion Problems, Appl. Mech. Rev., 41, 1, 15-20

13. MUSKHELISHVILI N.I., 1966, Some Basic Problems of the Mathematical Theory
of Elasticity, (in Russian), Izd. Nauka, Moskva, ed.5

14. St G.C., 1965, Plane Extension of Rigidly Embedded Line Inclusions, Proc.
9th Midwestern Mech. Conf., Wiley, 3,1, p.61

15. Siu G.C., CHEN E.P., EDIT., 1981, Cracks in Composite Materials. A Com-
pilation of Stress Solutions for Composite System with Cracks, Mechanics of
Fracture, 6, Martinus Nijhoff, The Netherlands

16. TvarpovsKY V.V., 1990, Further Results on Rectilinear Line Cracks and
Inclusions in Anisotropic Medium, Theor. Appl. Fracl. Mech., 13, 193-207

17. WanG Z.Y., Zuang H.T., CHou Y.T., 1985, Characteristics of the Elastic
Field of a Rigid Line Inhomogeneity, Trans. ASME, J. Appl. Mech., 52, 818-
822

18. Woiniak C., 1987, A Nonstandard Method of Modelling of Thermoelastic
Periodic Composites, Int. J. Engng Sci., 25, 483-499

Pewne dwuwymiarowe zagadnienia szczelin 1 sztywnych inkluzji
miedzywarstwowych w mikroperiodycznych kompozytach sprezystych

Streszczenie

Praca przedstawia analize poréwnujaca plaskl stan naprezenia i przemieszczenia
wywolany istnieniem miedzywarstwowej szczeliny Griffitha i doskonale sztywnej inklu-
zji w mikroperiodycznym osrodku z powtarzajaca sie warstwa zbudowana z dwéch jed-
norodnych 1 izotropowych materialdw sprezystych. Oparto sig na przyblizonym pode-
jéclu z zastosowaniem zhomogenizowanego modelu z parametrami lokalnymi (por.
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Wozniak, 1987). Otrzymano uzyteczne rozwiazania ze standardows (nieoscylujaca)
osobllwosc1q napre&en 1 zdefiniowano lokalne parametry zwane wspolczynmkaml inten-
sywnoscl naprezenl, odgrywajace role przy analizie pekania. Podano réwniez przyklady

ilustrujace otrzymane wyniki.
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