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Multibody system dynamics formulas are well-known tools for robot dyna-
mics examination. Concurrently they can be used to predict dynamics of
road vehicles, too. Nevertheless, the multibody dynamics method is still
calling for new applications. A rail transport, especially the tram transpor-
tation, which is a very popular element of mass urban transport, can be seen
as a very interesting application. It should be emphasised that in comparison
with trains or underground, the tram vehicles work conditions are restrained
by a larger number of outside limitations. There is some literature about
the rail transportation dynamics available. However, the majority of it is
devoted to the behaviour characteristic for trains. In the present paper a
dynamic analysis of the railway vehicles bogies, under conditions characte-
ristic for the urban transportation is carried out. Calculation methods for
various bogie types have been discussed. A special attention has been paid
to the problem of choosing an appropriate dynamic model and a model of
wheel-rail contact reactions. Behaviour of the bogies entering a curve of
a small radius has been studied. The bogie classification criterion was the
wheel-rail contact interactions; the aim was to find a bogie with the smallest
actions on the rail. The results of computer simulation allowed us to identify
the basic physical phenomena affecting the rail and the wheel and to assess
analysed constructional designs.
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1. Introduction

Multibody system dynamics formulas are well-known tools for robot dyna-
mics examination. Concurrently, they can be used to predict dynamics of road
vehicles, too. Nevertheless, after equipping it with numerical tools, multibody
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system dynamics method is still calling for new applications. These appli-
cations, well rooted in everyday life, are especially interesting. To deal with
these new problems, a redefinition of general multibody dynamics methods is
indispensable, as well as new interaction models.

The tram transport is a very popular element of the municipal transporta-
tion. Trams are seen on the streets of many cities. These vehicles are widely
appreciated because of such features as a possibility of carrying a great number
of passengers, or using the kind of energy that does not pollute the city envi-
ronment. In comparison to trains or underground, tram vehicles work under
the conditions of a much higher number of outside limitations imposed by
the rules and regulations by which cities live. Reduction of the limitations is
extremely difficult and expensive. Among the most important limitations are:
a great number of rail-track curves, small radiuses of the curves, impossibility
of rail inclination on the curves, limited possibility of introducing coaches that
would deviate from the vertical position by large roll deflections, great speed
on the curves, aiming at maximum elficiency at boarding and getting out of
passengers, bad condition of tracks, and high requirements for the comfort of
travelling.

At present, there are many works (cf Kisilowski et al., 1991; Garg and
Dukkipati, 1984; Fisette and Samin, 1991) dealing with rail transportations.
Unfortunately, most of them concern the train transportation, that is the
kind of transportation that does not have to face the limitations mentioned
above. As a result, the conclusions drawn in literature are often of no use to
constructors of tram bogies. In the present study we have decided to analyse
dynamic behaviour of various kinds of bogies, taking into consideration their
behaviour on tram tracks.

2. The considered designs and models of appearing phenomena

The analysis will be limited to the phenomena affecting the bogies. This
approach will allow us to eliminate from the model all these constructional
elements that do not have a direct influence on the features of the bogie. The
analysed model will be limited to two elements (Fig.1): the front car and the
bogie. Then, three kinds of bogies will be examined. They can move on the
following configurations of wheels:

a) blocked with a common axis in the so-called wheelset (here it will be
given a symbol BW — Bogie moving on Wheelsets),
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b) placed independently on a common axis (Bl — Bogie moving on Inde-
pendent wheels),

c¢) independent on separate axes of varied set geometry (BA — Bogie Arti-
culated).

®

B
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D

C
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Fig. 1. Basic elements of the model: 1 - coach, 2 — bogie

2.1. Model of the front coach subsystem

The front coach model is the independent, ideally rigid body (1) of a
given mass and mass moments of inertia (Fig.1). The element that links the
coach with the rest of the tram is treated here as a massless and dimensionless
body A. This element moves at a constant speed along the trajectory showing
the central line of the track. It is connected to the coach (1) by a joint of three
rotating degrees of freedom. Additionally, the coach (1) is connected to the
bogie (2) at the point B by a six degrees of freedom spring and a set of
three dampers arranged in a configuration characteristic for a given bogie
construction.

2.2. Models of a bogie on a wheelset and on independent wheels

In view of the constructional compatibility between BW and BA designs,
both types will be described here simultaneously. Each of them consists of
(Fig.2):

— frame of the carriage (1),

— front-wheels axis (2) and back-wheels axis (3),

— two wheels (4) on each axis.
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Fig. 2. Graphic representation of the model elements and the elements
interconnecting the bogie with: (a) wheelsets, (b) independent wheels

The frame of the bogie has six degrees of freedom (dof): three translational
and three rotational ones. The bearing of the wheel axis is interconnected
with the bogie frame over the four degrees of freedom joint. Defining the
longitudinal direction as collinear with the direction of the tram motion, we
can assume that in the analysed joint the longitudinal direction as well as
rotation around the axis are blocked. In all the other directions there are
dumping and elastic elements working and generating forces or torques in
case of their deformation.

In the BW bogie the axes are placed {reely in the bearing, so an additional
fifth degree of freedom is placed in the previously described joint and the
wheels are connected with a common axis. In the Bl bogie tlie axes are locked
in the bearing and the wheels are connected to the axis by rotary motion. The
models described above, represent bogies located [ree in space. To indicate
that the bogies are located on a rail track, a set of four constrain equations is
additionally introduced. The equations describe mathematically the fact that
all the wheel profiles are in permanent contact with the rail profiles.

2.3. Model of an articulated bogie

An example of an articulated bogie is the bogie of BAS2000 type (Fig.3)
produced by Bombardier-Eurorail BN in Belgium. The model designed for
this configuration shows a mechanism used in this bogie which changes the
set geometry of wheels (Fig.4). As we have found, the BAS2000 is a com-
plex mechanical structure. To build a numerical model of it, well developed
multibody formalism is necessary (cf I'isctte et al., 1996).

The initial multibody structure of the bogie is composed of 13 bodies
(Fig.5a). The body No. 1, which represents the bogie frame, has six degrees
of freedom. All the other bodies are connected with one another by joints
introducing one or two relative degrees of freedom. One degree of freedom
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Fig. 3. Bogie BAS52000
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Fig. 4. BA bogie configuration; straight line (a), curve (b)

joints are presented in Fig.5a as short arcs. All two degree of freedom joints are
presented as the arcs containing a dot. Additionally, in the model which does
not include any closed loop of bodies, five constrains of the "cr — connecting
rod” type have been introduced, together with one constrain of the ”sa -
spherical articulation” type (Fig.5b). Finally, motion limitations which come
from the wheel-rail contact have been introduced as an additional set of four
constrain equations. After considering all the constrains introduced in the
configuration, the analysed mechanism has got eight degrees of freedom: six
describing the position of the bogie {rame in space, and two describing the
changes in the set geometry of the wheels.
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Fig. 5. Graph representation of the initial multibody structure of BAS2000 (a) and
the constrains imposed on it (b)

2.4. Models of the phenomena appearring between the rail and the wheel

2.4.1. Main point of conlacl

At the point of contact of the wheel with the rail a considerable normal
force appears. At such loads we can no longer presume that the wheel and the
rail remain rigid bodies at the contact point. The analysed wheel rolls along
the rail. Additionally, it moves along the arch of the route. To keep balance, a
great centripetal force is needed. The friction forces appearing at main points
of the contact of the wheel with the rail are often not strong enough to balance
the centrifugal force, so the wheels have got special flanges to prevent them
from sliding off the rail.

The contact friction forces appearing on the rolling surfaces are accompa-
nied by slip. To describe the slip between the wheel and rail, a concept of
non-dimensional creep was introduced by Carter (1926). Pointing to the fact
that the rail is considered as stationary, we can use the creep concept in the
notation proposed by Garg and Dukkipati (1984)

- for longitudinal creep
&r = Ywa 7 Bur (2.1a)

v'LUT
— for lateral creep
= a7 Ypr 2.1b
&y = (2.16)

ULUT
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— for spin creep

w w
fsp — In 2n (2]_6)
Vwr
where
Vwa,Vpe — actual longitudinal and lateral velocities, respectively, of
the rolling body
Vwr,Vpr — pure longitudinal and lateral velocities, respectively, due
to the rotation of the body
Win — i-th body angular velocity component which is parallel to

the normal to the contact surface of bodies.

In modelling the contact forces between the wheel and the rail, the three-
dimensional linear contact theory was developed by Kalker (1967). In the
general contact theory of rotating bodies we state that the contact surface
between the rolling bodies is divided into two distinct regions: adhesion area
with static friction forces and slip area with kinematic friction.

In the linear theory we take for granted the fact that for very small creep
€x, &y, Esp the slip area is so small that its influence can be neglected. It is
equivalent to the assumption that in the whole contact area we deal with a
deflection zone without slip. If both rolling elements are made of steel, the
relations between friction forces and creep, worked out by Kalker (1967), are
the following (cf Kalker, 1990)

F, = —*GCr&,
F, = =2GCyt, — G Cstsp (2.2)
M, = —c*GC3¢, — ¢"GCa3€sp

where: ¢ = V/ab, a,b are the axes of the contact ellipse (cf Hertz, 1895), G
is the steel shear modulus of rigidity, Cy1, Ca2, Ca3, Cs2, C33 the coefficients
of creep and spin (collected and presented aby Kalker (1979) and (1990)) and
Czz = —Ca3.

For more considerable creep, the approximate, non-linear method of calcu-
lating tangent forces, proposed by White et al. (1978), has been used. In this
method the tangent forces are first assessed, using the Kalker linear theory,

and then the expression
F;%:,/‘FI2+Fy? (2.3)

is calculated. Next, taking into consideration a non-linear effect connected
with the existence of friction, we will approximate the friction force by the
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function (cf Garg and Dukkipati, 1984)

FRz{fN[%‘%(%)2+717(%)3] for Fr<3fN (54

fN for Fp>3fN

To assess the components of the friction force it is necessary to determinecal-
culate the direction of this force. The angle between the tangent force and
longitudinal direction can be calculated as:

— for small creep

F,
6; = arctan Fz (2.5a)
— for considerable creep
6, = arctan b (2.5b)
Y

For others creepage values White et al. (1978) proposed the use of a linear
approximation of the angle 6. Tlen, for assessing the components of the
tangent force, the following equations (cf Garg and Dukkipati, 1984)

Fon = Frsiné Fyn = Frcosf (2.6)
are true.

2.4.2.  Point between the flange of wheel and the rail

wheel

Fig. 6. Flange contact

It is well-known that rail vehicles have not got any active driving devices.
To substitute this deficiency, all their wheels have been equipped with flanges
(Fig.6). Then, the flange of a bogie wheel eliminates the possibility of its
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transverse movement. When a danger that the wheel slipping off the rail
appears, a force appears on the flange, that exerts pressure on the rail and
keeps the wheel on it. Among the rail vehicles it is the tram that works
under most difficult conditions. High security is required, as well as bad track
condition can be expected. Simultaneously, small curve radiuses are popular.
Then, to increase the vehicle security, rails can be equipped with a groove
(Fig.7). The presence of groove requires modelling of a eventual point of
contact on the inner and on the outward side of the flange. To model the
flange contact two hypotheses are accepted:

1. The lateral position w of the contact point on the flange profile is sup-
posed to fixed (Fig.6)

2. The second contact occurs only if the lateral displacement of the "can-
didate” contact point is greater that the fixed constant value.

rail
k groove

/%

< TR SSS

Fig. 7. Rail with a groove moving laterally

The force working on the flange, as well as the force at the main contact
point, have two components:

1. Normal component - resulting from the rigidity of the wheel-rail arran-
gement

2. Tangent component due to the friction between the wheel flange and the
head or groove of the rail.

To evaluate the flange contact normal force, a model of laterally moving
rail was introduced. Then, a spring and dash-pot restriction on its motjon
was applied (cf Garg and Dukkipati, 1984), Iig7. For the tangent component,
considering much lower values of forces at the flange contact point in compa-
rison to the main point and considerable higher creeps at this point, a simpler
friction model has been used. The following assumptions have been made:
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1. In the area of contact between the flange and the rail that we consider,
both the bodies are rigid and then the point contact occurs

2. Friction at the contact point is fully developed.
Then the flange force equals
Fy = pk, (27)

The friction force acts along this same line and has the opposite direction to
the relative velocity of bodies.

3. Equations of dynamics

In contrast to a rather simple mechanical structure of the BW and BI
bogies, the structure of BA bogie can be seen as a complex one. Moreover,
because of big displacements of the elements the well-known small motion
linearisation and simplification cannot be employed now. To deal with such
a kind of structure, well developed multibody formalism has to be used (cf
Maes et al., 1985). Another important aspect of the dynamical analysis is
the wheel-rail stay-in-contact problem. The classical four degrees of freedom
wheelset model (cf Garg and Dukkipati, 1984) cannot be employed now, due
to the articulated nature of the BA bogie. Then the original concept of the
wheel-rail contact treated as multibody structure constrains, introduced by
Fisette and Samin (1992), has been employed. Finally, we have decided to
generate the equations of motion on the basis of the "Recursive Newton/Euler
Method”, initially developed in robotics for solving the inverse problem of
dynamics of a tree-like multibody system (cf Fisette et al., 1994).

We have assumed the following way of numbering the bodies in the system.
The first element is treated as the reference element and identified with the
system base. For an open system, that is the system that does not include a
closed loop of bodies in its structure, individual elements (successors in the
base) are numbered in the order in which they appear in the chain of elements.
Individual joint (kinematic pair) receives a number which is identical to the
body number for the body that [ollows it directly in the chain.

If the same numbering code is applied to a system having closed chains of
elements, it becomes clear that there appears an element (see element A in
Fig.8a) that is a predecessor of two (elements B and C in Fig.8a) or more
elements having a common follower (element D in Fig.8a). Any element sa-
tisfying the conditions described above is called the loop origin. In the closed
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loop case, to apply the numbering code mentioned above, it is necessary to
make an imaginary cut in the closed chain structure. The ”loop origin” ele-
ment is then divided into two parts: the original part retaining all its physical
properties and the fictions closing element which has only got kinematic pro-
perties, but which allows us to define the so-called, expanded graph structure.

The components of the model are rigid by definition. So the distribution of
their masses is constant. Their mass parameters have the following symbols:

m; — mass of the component element
l;; — vector positioning the mass centre
I;; — inertia tensor expressed in relation to the mass centre.

All of them are constant in the co-ordinate system fixed with the compo-

nent.

Fig. 8. System including a closed polygon of bodies {a) and the respective
broadened structure with an example numbering (b)

3.1. Parameters describing the joint

While the model is in motion, the points connected with the joint belonging
to different bodies can become closer or more distant (translational joints) and
the co-ordinate systems (bases) fixed with the bodies attached by this joint can
change their relative orientation (rotation joint). Relative motion of the joint
final points can be described by a translation vector 2/ and an orientation

matrix [A;;], when
z; = [z;][z)] [2;] = [Ay;][z:] (3.1)

where
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[z;] - column matrix constructed of the co-ordinate system unit
vectors (versors) number i
[z;] - column matrix of the co-ordinates of vector z; expressed
in the base [z;]
Ai;] — orientation matrix, transforming the base z;] into
j g
base [z;].

Matrices of coefficients [A;;] and [z;] can be assessed basing on the
displacement in the joint. Displacements in the joint will be generally treated
as generalised co-ordinates g;.

3.2. Equations of kinematics

Location of a component in the base co-ordinate system is defined, when
we know:

1. The centre of mass position vector z;

2. Orientation of the body j fixed frame base [z;], with respect to the
reference base

i<y i<y

z; = Zz; +1; [A_,'] = H[Aj,'] (3.2)

Given the location of bodies we can calculate their speeds

i<y i<y
z; = Z(Z','a,‘ +w; X (z + l,‘j)) w; = Zeiai (3.3)
i=1 =]
and accelerations
i<j i<y .
gi= (5 +1j) wj =y 6ia;i+wi1 x bia (3.4)
i=1 i=1

where

Z; = Z;a; + w; X zia; + 2w; X Zia; + w; X w; X @
(3.5)

l,’j = w; Xl,'j +w; X w; Xl,‘j

and (¢ — 1) stands for the body that directly precedes the body ¢.



COMPARATIVE ANALYSIS OF DYNAMIC REACTION... 651

The kinematic analysis is additionally provided with the equations of con-
strains which were removed from the system while constructing an expanded
structure. In the program, two kinds of constrains have been examined. For
the classical constrains, both the source and closing bodies must have the same
position of the mass centre and identical base orientation. For the wheel-rail
contact constrains, a full description of the constrain equation can be found
in Fisette and Samin (1992).

3.3. Equations of dynamics

Fig. 9. Forces and force moments acting on body ¢

Using Newton’s 2nd Law of Motion we can write (Fig.9)
Fi=Fi +mi(3 — g+ 00 x Li + wi x w; x 1) (3.6)

M; = Mi)i-l +1; % Fi-}- [(pi,i+1 —Iii) X F,-+1]E+I,-d),-+w,- X I,-w,- (3.7)

where
F,-)‘;l - resultant of all forces acting in the joints which in the
chains of bodies appear right after the body bearing the
number 1
M,-‘):+1 — resultant moment of all moments appearing in the joints

which in the chains of bodies appear right after the body
bearing the number ¢

[(piiy1 — bii) X Fiz1]¥ — sum of vector ratios (p; ;4 — i) X Fiy

counted for all forces acting in the joints appearing in the
body chains right after the body bearing the number 1.

For the analysed system we can determine and control:
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a) For a rotation joint — projection of the force moment vector acting in the
joint on the axis of the joint

b) For a translation joint — projection of the force vector acting in the joint
on the motion direction axis.

Because the above quantities can be controlled by us, these data are the
function of springs deformations, dampers velocities, driving force and external

forces applied to the joint.
The equation of the analysed extended body system dynamics takes the

following form

P = { M;-a; for a rotation joint (3.8)

F;.a; for a translation joint

After regrouping the expressions appearing with derivations of the joint di-
splacements, these equations will assume the following form

M(q,1)d = Q(q.q,1) (3.9)
where

q — column matrix of generalised variables, describing confi-
gurations of all the bodies being parts of that expanded
system

M(q, 1) - mass matrix (the elements of this matrix depend on the
components ol a q vector and time 1)

Q(q,q,t1) - column matrix of generalised forces (not including the

effects produced by the constrains).

3.4. Reduction of dependent variables

The constrains introduced into the system can be shown in the matrix

form
®(q,t) =0 (3.10)

where ®(q,1) is the column matrix of constrain functions.

In all the systems we can meet in practice the constrain functions are
constant and have derivatives of the second order.

Making the additional assumption that the equations in the system (3.10)
are independent, there is the Jacobian

Q, (3.11)

09®;
b
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which is a matrix having dimensions n x m, and the order m.

Bearing the above assumptions in mind, on the basis of Lagrange’s equa-
tions of the 1st kind, the dynamic equation for a joint system can be written
as

M(q,1)q + [Qq(a,1)]"A = Q(q,9,1) (3.12)

where X is the Lagrange multiplies vector.
Now, separating the dependent and independent variables in Eqs (3.10)
and (3.12), we have

M G+ My + ] = Q¥ (3.13)
M* i+ MWy +®TA =Q" (3.14)
®.u+ dv=—(9,q)q - Ppq- =17 (3.15)
du+dv=-9% =v (3.16)
u=h(v,1) (3.17)
where

u - dependent variables coefficient vector

v — independent variables coefficient vector

h - set of functions of v vector of variable and time t which

solves Eq (3.10).

Egs (3.13) and (3.15) + (3.17) help us determine u, 4, i and A. Next,
using these values in Eq (3.14) we will receive a dynamic equation for a system
including closed loops of elements of the form

M(v, 1)V = Q(V,v,1) (3.18)
where

=M™ — M8 1%, - 8](8,") My, - M™878,]  (3.19)
= Q- M™a 1y — 2] (3;")T[Q" -~ M*8; 4] (3.20)

O

Now, the system of equations obtained includes only independent variables
and has the form identical with Eq (3.9) for the open loop. This system can
be solved using any optional numeric algorithm for solving the system of 2nd
degree differential equations. The received solutions show the trajectory of
the model caused by the applied force or kinematic input.

9 — Mechanika Teoretyczna
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4. Computer simulation
4.1. Conditions for computer simulation

The models described in this work have been used in computer simulation
for various kinds of vehicles. The front coach based on a BW, BI or BA bogie
has been analysed.

Table 1. Model parameters
LBogie Bm Bogie BI ] Bogie BAT

Dimensions

]

" carbody length [m] 6.4 6.4 64 |
wheelbase [m] 1.7 1.7 1.7
track gauge [m] 1.435 1.435 1.435
wheel diameter [m] 0.64 0.64 0.64/0.395

( Masses

| carbody [kg] 15323 15323 15323

| bogie frame [kg] 2.462 2.464 2.096
wheel [kg] - 260 260/80
wheelset 570 570 -

Secondary suspension stiffens
Kiong [10°N/m] | 2x635 | 2x6.35 | 2x6.32
Ky [108N/m] 2x 355 | 2x3.55 | 2x3.17
Kyere [105N/m] 2x0.53 | 2x0.53 | 2x0.32
Secondary suspension dumping
Clong [10°N/m] - - -
Clar [10°N/m] 55 55 33
Crert [10°N/m] 2x 25 2x25 2x 27

Data used for simulation was chosen in such a way that it represents typical
conditions of a tram bogie operation. So:

e Bogies with cylindrical wheels profile were analysed

e The wheels were equipped with flanges set with a 3.5 mm clearance re-
lative to the head of the rail

e The flanges profile was set as conical with 1.3526rad slope

e The rail profile was set as cylindrical with 0.2m radius
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e At the initial moment the tram was set on a straight part of track
e the initial velocity of the tram was 7m/s

e Behaviour of the tram entering a lelt-side curve was analysed

e The radius of curvature was 50 m

e The bogies wheels turn without any driving moment on them

e The rail-track inclination angle was set O rad

e Straight-curve transition time was set at about 1 s for front wheels.
4.2. Analysis of simulation results

Top view
- direction of motion

wheel No.l /H wheel No.2
wheel NO.L//H wheel No.4

Fig. 10. The wheel numbering and frame orientation

[

The wheels force time histories for the all analysed structures have been
presented on a common graph. For the components of forces which appear at
the main point of contact, we have decided that their values are expressed in
a frame which is fixed with the wheel. In the simulation initial configuration
of these frames are collinear with the z frame (see Fig.10). For normal forces
appearing flange contact point, we have decided to take them as positive.

4.2.1.  Longitudinal force at the main contact point

As a result of the above analysis performed the following conclusions have
been drawn:
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e During the curvilinear motion the longitudinal force for the BW bogie
is much greater than for the BI type (Fig.11). This is caused by a
substantial difference in curve lengths covered by the wheels of the same
axis. With the wheels connected to the axis in a rigid way, the difference
in path can only be got rid of by a longitudinal slip.
. 0.5
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Fig. 11. Longitudinal creep force at the tread point of contact
e In the wheels working on the same BW bogie axis, the longitudinal forces

act in the opposite direction. The moment about the rotation axis,
caused by friction, is considerable. We have found out that because of
a low acceleration resulting from the whole system dynamics, balancing
the friction torque with the torque on the other wheel of the axis is
indispensable.

In the type BW bogie the longitudinal forces acting on the back wheels
are greater than those on the front wheels. It is a consequence of the ro-
tation about a vertical axis appearing in the original mounting (Fig.12a).
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This rotation makes the angle of attack smaller and in the same way it
makes smaller the transverse component of the friction force when the
friction force is saturated.

(@) o=

Fig. 12. Longitudinal creep forces acting on wheels of the BW bogie (a), creep
forces configuration for a wheel having a contact point at the flange (b)

e For the type BI and BA bogies the longitudinal forces appear only with
wheels having an additional contact point between the rail and the
flange. The friction force at the contact point creates a torque about
the axis of wheel rotation. Because of a low wheel acceleration resulting
from the dynamics of the whole system, the equilibrium between the
torque mentioned above and the torque created by the force in the main
contact point is necessary (Fig.12b).

Fig. 13. Creep forces configuration for a wheel having a contact point at the flange:
BW or BI bogie (a), BA bogie (b)

e For the wheels of the BA type bogie the longitudinal forces are greater
than for the same wheels of the BI type bogie (Fig.11b). Because of the
differences in the angles of attack, we can observe a different locations
the contact point at the wheel flange (Fig.13). This difference results
directly in higher values of the longitudinal forces for the BA bogie.
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4.2.2.  Lateral force at the main contact point

4.2.8.

The lateral forces for the wheels in the type BW bogie are smaller than
the forces for the same wheels in the type Bl bogie. They are marked in
Fig.15 as Fiapw and Fia By, respectively. We claim this is the effect of
a greater value of Fionggw — the longitudinal component of the friction
force FyrictionBw Which has been found fully saturated.

The BA bogie is characterised by small lateral creep of a coach on a
curve. For this bogie the angles of attack are big and, what follows,
they produce big transverse creep in transient configurations between
the bogie working on a straight rail and the bogie working on a curve.

In spite of relatively small angles of attack of the wheels in the type BA
bogie, the lateral friction forces at the main contact points of the front
wheels have the biggest values of all the analysed types of bogies. A
small angle of attack causes creepage comparable to the creepage limit
(saturation limit). This limit was introduced to mark a point where the
friction is modelled by the Culomb law (cf Eq (2.4)). Because of the
construction asymmetry, the front wheels of the type BA bogie are addi-
tionally characterised by the greatest pressure forces operating between
the wheel and the rail.

For the BA bogie on a curve we can observe that lateral force on the
back left wheel acts in has got the opposite direction to that on the
back right wheel. The opposite directions of the force are the result of
opposite signs of the attack angles of these wheels.

Normal force at the conlact poini between the flange and the rail

In the right turn contact between the flange and the rail exists for the
following wheels: front right and back left in the type BW and BI bogie,
and front right and back right in the type BA bogie (Fig.16).

For the BI bogie we can observe smaller normal forces at the contact
point between the flange and the rail than for the wheels in the type BW
bogie. This results from the two phenomena: a greater lateral friction
component at the main contact point and a smaller torque about to the
vertical axis, affected by longitudinal friction components at the main
contact point.

As we can see from the balance, the influence of smaller torque is more
important than the influence of bigger lateral forces.
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Fig. 16. Flange normal force

e The biggest pressure forces acting between the flange and the rail can

be noticed for the front right wheel in the type BA bogie. It is caused
by a non-uniform distribution of centrifugal force between the front and
back wheels and the biggest of all the cases lateral friction force at the
main contact point.

5. Conclusions

Analysing the interactions between the wheels and the rail for the presented

above bogies we have drawn the following conclusions:

1. While negotiating the curve, relatively small dynamic effects appear in

the analysed constructions and they show good stability during the on-
curve motion on a perfect track. For this curve radius value negotiation
there is no contact between the groove and the flange.

For type BA bogies, in spite of decreasing the angle of attack, it was not
possible to lower considerably the interaction on the rail. The lateral
creep observed in the simulation assumed values which are close to the
creepage of the saturation limit. We can even notice some increase in
the rail loading caused by asymmetry in distribution of the load between
the front and back wheels.

In spite of the wheels in the type BI and BA bogies being mounted
independently, the longitudinal [riction components appear on the curves
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at the main contact point. It results {from the {riction between the flange
and the rail. A smaller angle ol attack of that kind of wheels results
additionally in greater longitudinal forces at the main contact point.

4. Smaller wheel-rail interactions types can be noticed for the type Bl and
the type BW bogie. However, [or the BI bogie appear, weakly damped,
high-frequency vibrations. Damping of those vibrations would require
considerable alterations in the position of dampers in the bogie moun-
ting.

Finally it should be mentioned that the interactions between the rail and
the wheels should be studied more thoroughly. The analysed forces appearing
at the same point act in opposite directions. The analysis should be sup-
plemented by the global forces influence on the rail. The dissipated power
analysis should be an interesting output too.
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Analiza poréwnawcza reakcji dynamicznych dla ukladéw wézkéw
tramwaju przy wchodzeniu w zakret

Streszczenie

Metody stosowane w dynamice ukladéw wielomasowych sa powszechnie znanym
i skutecznymi narzedziem badari dynamiki robotdw i manipulatoréw. Sa one takze
wprowadzane do analizy dynamiki samochoddéw. Mimo to, dla metod tych poszukuje
sie nowych zastosowan. Komunikacja szynowa, a szczegdlnie tramwaje, bedace po-
pularnym $rodkiem miejskiego systemu komunikacyjnego, o zlozonych konstrukcjach
ukladéw jezdnych nadaja sie doskonale do zastosowania tych narzedzi. Istniejaca
literatura na temat dynamiki komunikacji szynowej w wiekszoséi poswiecona jest
pojazdom kolejowym. Niniejsza praca dotyczy analizy wézkow jezdnych pojazdéw
szynowych pracujacych w warunkach charakterystycznych dla komunikacji miejskiej.
W poréwnaniu z kolejg lub metrem, warunki pracy tramwajow posiadaja znacznie
wiecej zewnetrznych ograniczen. Przedstawiono wyniki symulacji komputerowej prze-
prowadzonej dla kilku rozwiazan ukladéw jezdnych. Szczegdlna uwage poswiecono wy-
borowi odpowiedniego modelu ukladu oraz modelu zjawisk zachodzacych pomiedzy
kolem i szyna. Analizowano zachowanie pojazdu na luku o stosunkowo malym pro-
mieniu. Jako kryterium oceny wybrano sily reakcji powstajace miedzy kolem i szyna,
a jej celem bylo znalezienie konstrukcji wywolujacej najmniejsze obciazenia szyny.
Wyniki symulacji komputerowej pozwolily na zldentyﬁkowame najwazniejszych zja-
wisk wplywajacych na wielkosé reakceji, a takze oszacowaé je w réznych rozwiazaniach
konstrukecyjnych woézkow.
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