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In this paper a transversally loaded monosymmetric I-beam is optimized.
The beam consists of a number of uniform segments and their optimal
dimensions are sought for In order to maximize the lateral buckling load
with the total volume of the beam material kept fixed. Various types of
support are allowed for and the beams of such supports are subjected
to either constant external bending moment or varying bending moment
that occurs when both concentrated and uniformly distributed loads are
applied. The analysis is carried out by using numerical integration of
the set of differential equations describing the critical state of the beam
under consideration. Both the influence of monosymmetry on the design
and the effect of loading location are discussed.
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1. Introductory remarks

The majority of papers dealing with rods optimized against instability is
devoted to design of columns. Many results of non-prismatic elements ha-
ving solid or thin-walled cross-sections have been obtained for various support
conditions and load cases. On the other hand it is known that thin walled
rods are very often used also as beams and in such a case they are exposed
to lateral buckling. There has not been much attention in the literature paid
to optimization of non-uniform beams with respect to that type of instability.
Usually when optimizing elements like that only the form of cross-section is
designed and the beam remains prismatic. For prismatic elements instead of
designing the cross-section the optimal location of rigid braces can also be
determined so as to maximize the elastic buckling load (Ang et al., 1993). As
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far as non-uniform beams are concerned most of the literature on lateral buc-
kling deals with the analysis only. Lateral buckling of non-prismatic I-beams
has been considered by Trahair and Kitipornchai (1971) (stepped beams), Ki-
tipornchai and Trahair (1972) (beam taper free to take an arbitrary shape),
Anderson and Trahair (1972) (monosymmetric cross-section). There has been
little research on optimization of non—uniform beam resistance to the lateral
buckling, limited however to design of narrow rectangular beams with various
types of beam taper (e.g. Popelar, 1976, 1977; Wang et al., 1986). For I-beams
the approximate optimal solutions obtained on the assumption of negligible
influence of warping rigidity are also given by Popelar (1976, 1977).

Only Wang et al. (1990) presented optimal solutions of linearly tapered
I-section beams. The Rayleigh-Timoshenko energy approach was used in the
instability analysis to derive the Rayleigh quotient and then for optimal design
that buckling capacity was maximized subject to a volume constraint. The
three design cases were considered so that either the degree of monosymmetry
for prismatic beam was found or flange or web optimal linear tapers were
determined.

The stepped doubly-symmetric I-heams were optimized by Bochenek
(1993) where several solutions for various types of support conditions and
load cases were obtained. The analysis has been carried out with the use
of numerical integration of the set of first order differential equations descri-
bing the critical state of the beam under consideration. The lateral buckling
load was maximized with respect to hoth the constant volume requirement
and inequality constraints, imposed on maximum permissible stress and local
instability of both flange and web.

The present paper aims to complement the results of that paper by solving
the design problem for monosymmetry of I-section allowed for. Similarily as
in Bochenek (1993) the stepped beams are considered, and only the steps in
the flange width are permitted. For beams with I-section steps in the web
depth lead to the physical breaks in the flanges, whereas steps in the web
thickness hardly affect the critical load. The assumption of the cross-section
monosymmetry opens more possibilities for the design problem formulation.
For example, only one of the two flanges can be designed and, what is pro-
bably more important, both flanges can be optimized independently. That
significantly improves the efficiency of the design.

Various types of support are allowed for but simply supported beams and
cantilevers are considered in details. Beams of such supports are subjected
to either constant external bending moment or varying bending moment that
occurs when both concentrated or uniformly distributed loads are applied. The
effect of loading location (top flange loading, load application point coinciding
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with the shear centre, bottom flange loading) is also discussed.

The analysis is carried out by using numerical integration of the set of first
order differential equations describing the critical state of the beam under
consideration. The following assumptions are accepted in the analysis: the
cross-section retains its original shape (no local buckling), deformation in the
plane of applied loads is small.

2. Lateral buckling of I-beams

An I-section beam being bent in the plane of symmetry zz is conside-
red. Since the flexural rigidity corresponding to the bending in that plane is
significantly larger then the one for bending in the perpendicular plane zz
and additionaly torsional rigidity is small then lateral buckling of the beam
may occur. The state equations describing critical state of the beam can be
presented in the following form (e.g. Vlasow, 1959; Timoshenko and Gere,
1962; Trahair and Woolcock, 1973)

(Elyky) =To + Myp — MoKy

(2.1)
(GL+ M.)p — (ELp'Y] = ~Mak, + Myrs + M,
where
M;,M, - bending moments
M, — torsional moment
T: — shear force
Kz, Ky — curvature components
p - twist
EI;,EIl, - flexural rigidities
Gl - torsional rigidity
El, — warping rigidity
whereas [, defined as
Be = ]i(/ 22y dA + /y3 (lA) - 2y (2.2)
YA A

it is the monosymetry property (for a doubly symmetric cross-section it equals
to zero). In Eq (2.2) yo is the coordinate of the shear centre and z, y stand for
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the axes with the origin at the centroid. Eqgs (2.1) can easily be transformed
to a convenient form of the set of first order differential equations

M,
r— g g = 2y
b FI,
MZI/:TIJFM:vP ¢ =p
B M
r_ __Z ' — M. —Y .
’=TFI, M. gL, ~ 9 (2:3)

B = (_GIS + MI,BJ;)P + Mz

where the deflection wu, the angles of rotation 8, ¢ have been introduced
and the following definitions of the moment of free torsion M,, the warping
moment M, and the bimoment B functions have been adopted

Mz = Ms + Ajw A{s = (_Gls + Mrﬂr)¢l
(2.4)

M,=P B=-FEI,¢"

The expression @Qa¢ stands for an additional torsional moment resulting from
application of loading at the distance a above or below the shear centre. The
terms representing bending in the plane of major rigidity have been omitted in
Eqs (2.3) because of their negligible influence on the design (Bochenek, 1993).
The boundary conditions in the form dependent on the type of beam ends
support are now added. Cantilevers and supported beams are considered and
for the latter case we distinguish the support conditions in the plane of minor
rigidity (simply supported or clamped) and in the plane of major rigidity (only
simply supported). In what follows we get:
— cantilever

w(0) = 6(0) = $(0) = p(0) = M,(0) = M.(L) + Pad(0) = B(L) =0 (2.5)
— both ends simply supported
u(0) = My(0) = ¢(0) = B(0) = w(L) = ¢(L) = B(L)=0  (2.6)
— both ends clamped

u(0) = 8(0) = $(0) = p(0) = w(L) = (L) = $(L) =0 (2.7)
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3. The optimal design problem

A straight monosymmetric [-beam of upper flange width D,q, lower flange
width Dyg, flange thickness 73, web depth H, web thickness T, and length
L is considered. This beam is referred to as the reference (prismatic) one
and its material of given volume Vj is redistributed during the optimization
process.

The optimal design problem is formulated in the following way. The distri-
bution of the flange widths D,;, Dj; of n segments, beam has been divided
into, are sought for so as to maximize the lateral buckling load subject to the
volume constraint.

If the general buckling load F' is introduced then the function

F=F(-Dllv-D?laD127D22v"'D1n7D2n) (3'1)

is maximized with respect to the equality constraint representing the constant
volume requirement

V=3 ((Dii+ Do)y + HT,) Li = Vo (3.2)

i=1
and the following flanges width geometrical bounds

DT¥™ < Dy; < Do DJ¥" < Dy < Do i=1,2,..,n
(3.3)
The above mathematical programming formulation can easily be extended
by imposing additional constraints that, for example, take care of maximum
permissible stress in prebuckling state, local instability of the flanges or local
instability of the web (Bochenek, 1993).
Since the cross-section is monosymmetric the optimization problem can be
formulated in the following four variants:

1. Proportional change of upper and lower flange dimensions, i.e.:
Dyi/Dyi = Do/ Dag = const

2. Design of the upper flange, lower flange prismatic, i.e.:
Dy; — variable, Ds; = Dyg = const

3. Design of the lower flange, upper flange prismatic, i.e.:
Dy; = Dyg = const, Dy; — variable

4. Independent design of both flanges, i.e.:
Dy;, Dgy; — variable.



632 B.BOCHENEK

The quantities Dig, Dz stand lor the width of upper and lower flange
of the reference, prismatic beam. It is worth noting that the above four de-
sign cases can be applied to the optimization of both doubly symmetric and
monosymmetric reference beams.

4. Results and discussion

The design problem formulated in Section 3 has been solved for various
combinations of geometrical parameters, loading and beam support types. In
particular, the following beam types were considered:

e simply supported ends - point loading in the middle of the beam
e simply supported ends — uniform loading
e cantilever — end point loading

e cantilever — uniform loading.

Table 1

design | design | design | design
case 1 | case 2 | case 3 | case 4

supported ends
point load 69.8 36.3 87.8 96.6
lower flange loaded

supported ends
point load 51.3 20.5 43.7 66.0
upper flange loaded
supported ends
uniform loading 36.6 13.4 40.3 57.8
upper flange loaded

cantilever
point load 30.4 49.9 374 90.1
lower flange loaded

Some of the results obtained for the doubly symmetric reference I-beam
are now presented. Table 1 shows values of the design effectiveness parameter
€, defined as

c = Fopl - Fpris’m 100%

Fprism
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Fig. 1. Simply supported beam, point load, lower flange loaded, design case 1,
e =169.8

5
E | — upper flange

SE — lower flange
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Fig. 2. Simply supported beam, point load, lower flange loaded, design case 2,
€=236.3
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Fig. 3. Simply supported beam, point load, lower flange loaded, design case 3,
€ =878
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Fig. 4. Simply supported beam, point load, lower flange loaded, design case 4,
€=196.6
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Fig. 5. Cantilever beam, point load, lower flange loaded, design case 1, ¢ = 30.4
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Fig. 6. Cantilever beam, point load, lower flange loaded, design case 2, ¢ = 49.9
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Fig. 7. Cantilever beam, point load, lower flange loaded, design case 3, ¢ = 37.4
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Fig. 8. Cantilever beam, point load, lower flange loaded, design case 4, ¢ = 90.1
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that have been found for chosen support and load cases and various formu-
lations of the optimization problem. Fj., and F,, are the critical load
values evaluated for reference prismatic and optimal beam, respectively.

It can be seen from the presented results that the design is more effective
if the flange that is in tension is optimized. It is the lower one for supported
beams and the upper one for cantilevers. For supported beams better results
are obtained in the case of load applied to the lower flange. The values of
the effectiveness parameter ¢ can be even two times greater than in the case
of upper flange loading. The design of upper flange for cantilevers is usually
more effective, however, in the case of load applied to the upper flange the
result can be different. In such a case the effect of monosymmetry (critical
load is greater when the tension flange is smaller) and the effect of position of
the load above the shear center (critical load is greater when the upper flange
is larger) act as the opposite ones. In Fig.1 + Fig.8 the optimal distribution
of upper and lower flange width for selected beam types is shown. A simply
supported beam (Fig.1 + Fig.4) and a cantilever (Fig.5 + Fig.8) have been
chosen and for both of them the load has been applied to the lower flange.

The analysis of the obtained results has led to the following conclusions.
The design of the flanges of I-beam significantly increases the value of the
lateral buckling load, even up to 100%. That improvement is much more
significant for monosymmetry ol the cross-section allowed for and it is evident
especially for independent design of both upper and lower flanges. It has been
also shown that in some cases optimization of only one flange gives better
results than the proportional design of both flanges.
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Optymalne ksztaltowanie narazonych na zwichrzenie monosymetrycznych
belek dwuteowych

Streszczenie

W pracy przeprowadzono analize zwichrzenia przegubowo podpartych oraz wspor-
nikowych belek o monosymetrycznym przekroju dwuteowym. Sformulowano zadanie
optymalizacji parametrycznej polegajace na doborze wymiaréw przekroju poszcze-
golnych segmentow, na ktére podzielono belke, tak aby dla ustalonej objetosci ma-
terialu belki obciazenie krytyczne bylo maksymalne. Ze wzgledéw praktycznych
Zrezygnowano z dowolneJ zmiennosci wymiarow belki koncentrujac uwage na bel-
kach skladajacych sie z segmentéw o ustalonych wymiarach. Dla kazdego segmentu
przyjeto jednakowa wysokos¢ srodnika oraz grubosc srodnika i1 pdlek, pozostawiajac
jako zmienne ksztaltowania szerokosci pélek. Dopuszczenie monosymetrii przekroju
pozwoll}o na wieksza swobode w formulowaniu zadania optymalnzacy w szczegblno-
$ci umozliwilo niezalezne ksztaltowanie zmiennosci wymiardw gornej i dolnej polki.
W rezultacie zwigkszyla sie efektywnosé optymalizacji 1 mozliwe bylo znaczne pod-
niesienie wartosci obciazenia krytycznego w poréwnaniu z belka o przekroju o dwdch
oslach symetrii.
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