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This review article deals with two-point Padé approzimants (TPPAs)
and their applications to mechanics. The attention is paid to new ap-
plications of TPPAs such as: 1) Laplace transform inversion, 2) Mat-
ching of quasilinear and essentially nonlinear asymptotics, 3) Matching
of expansions for high- and low-frequency oscillations, 4) Matching of
limit asymptotics in the homogenization problems, 5) TPPAs in the
theory of composite materials, 6) TPPAs in the theory of nonlinear vi-
brations. The article deals also with one-point Padé approzimants (PAs)
and quasifractional approzimanis (QAs), which give possibility to over-
come some TPPAs shortcomings.
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1. Introduction

Practically, any physical or mechanical problem, parameters of which in-
clude the non-dimensional parameter ¢, can be approximately solved as ¢
approaches zero, or infinity. How can this kind of information be used in the
study of a system at intermediate values of €7 This problem is one of the
most complicated in the asymptotic analysis. As yet there has been no general
answer to this tricky question of how far the parameter ¢ can be considered
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small (or large) for the investigated systems. In many instances the answer to
it is given by PAs or TPPAs, which extend significantly the area of applicabi-
lity of the perturbation series (Aziz and Lunardini, 1993; Baker, 1975; Baker
and Graves-Morris, 1981, 1996; Brezinski and Redivo Zaglia, 1991; Bultheel,
1987; Cheney, 1988; Lorentzen and Waadeland, 1992; Dadlar and Geer, 1987;
Pozzi, 1994; Vinogradov et al., 1987). Recently the PAs have been applied to
asymptotic studies of the mechanical problems such as:

e Solutions to the mixed boundary value problem (Andrianov and Ivankov,
1987, 1988, 1993). The parameter ¢ is introduced into the boundary
conditions in such a way that the case ¢ = 0 corresponds to the sim-
ple boundary problem, while ¢ = 1 corresponds to the problem under
consideration.Then the ¢-expansion of the solution is obtained. As a
rule, at ¢ = 1 the expansion ol the solution is divergent, and the PAs
are used to remove this divergence. Various problems of dynamics and
stability of plates and shells have been solved by using the PAs method.

e Estimations of the convergence domain for perturbation series. Prac-
tically, sucli estimations may be obtained by comparing perturbation
series with the PAs. This approach is justified by many practical exam-
ples investigated in nonlinear mechanics (Andrianov and Bulanova, 1987;
Obraztsov et al., 1991).

o Elimination of nonuniformities of asymptotic expansions. The PAs elj-
minates nonuniformities of asymptotic expansions in a much simpler way
than, for instance well known Lighthill’s method (Andrianov, 1984).

e An important property of the trigonometric PAs applied to the Fou-
rier series, has been noted by Semerdjiev (1979). By applying the Padé
transformation to the Fourier series, he observed that Gibb’s phenome-
non significantly diminishes (see also Nemeth and Paris, 1985).

Besides the PAs methods mentioned above there exist other approaches
to the matching of asymptotic expansions. Among them the two-point Padé
method is the most perspective, that is why we deal with it now.

2. Definition of two-point Padé approximants

First we give some definitions. The notion of TPPAs is defined by Baker
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and Graves-Morris (1981, 1996). Let
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2 we! when ¢ —0
Fle)=4'® (2.1)
> bt when ¢ — o
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The TPPA is represented by the rational function
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where k+1 (k=0,1,2,....,n+ m+ 1) coefficients of a Taylor expansion,
if ¢ - 0,and m+ n+ 1— £k coefficients of a Laurent series, if ¢ — oo,
coincide with the corresponding coeflicients of the series (2.1). Properties of
the TPPAs were investigated by Draux (1991), McCabe (1975). The two-point
continued fractions (TPCFs) are closely connected with this subject (Achutan
and Ponnuswamy, 1991; Gonzales-Vera and Orive, 1994; McCabe and Murphy,
1976; Sidi, 1980b). For a heuristic role of TPPAs see Andrianov (1991b, 1993),
Andrianov and Manevich (1992).

3. Simple examples

Let us investigate a model problem of vibrations of a chain consisting of n
masses m, joined with springs of rigidity «. A finite difference approximation
stands for a model of the longitudinal vibrations of a rod. The deflection y
of the kth particle is determined by

mj = al(ye+r — yk) — (Yo — Yo-1)) k=1,2,..,n
At the ends of the chain the boundary conditions are given

yr =0 for k<l A k>n

There are possible:
— n proper forms of vibrations

. kst
Yr = Agsin o

cos(wyt + f) s=1,2,..n
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~ the discrete frequencies of free vibrations

a 0.5sm
*=2,/—si 1
w} ,/msmn_l_l (3.1)

Let us construct the asymptotic expansions of the frequency w? in the vici-
nities of the points s = 0 and s = 2(n + 1), respectively. We introduce new
variables

_ x 0.5sm
I = — T =
057 —x n+1
Thus instead of the segment [0.2(n + 1)] for s, we obtain the semi-infinite

interval z € [0,00). The expansions as z — 0 and # — oo take the forms

3

0577 0.57r93—i2+(1—’1'—;-)973— 1-Z)g 4., for &—0
sin — = o .
1+z 1- 222 4 (1- )33 - (1-5 )5~ + ... for &— 00
(3.2)
A solution obtained with the TPPA method, valid for 0 < Z < oo, is given by
« 1.57% 4 0.81z2
=2 — .
YT M1+ 157 1 0.8122 (3.3)

The results of the calculations of the frequency w* are presented in Fig.1. The
exact solution (3.1) is depicted by I, the expansions (3.2) by II and III. The
rearranged TPPAs solution (3.3) practically coiucides with the exact solution.

<[P T

— |

0.8 % —

X

Fig. 1. Frequencies of a chain obtained by various approaches

Another interesting example is the Van der Pol equation (Andersen et al.,
1984; Andersen and Geer, 1982; Andrianov and Bulanova, 1984). We give
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some necessary preliminary information according to Hinch (1991). The Van
der Pol oscillator is governed by the equation

i‘+/;i-(:v2—l)+.7;:0

After long time the frequency and amplitude of the oscillations do not depend
on the initial conditions. The limit period T is plotted in Fig.2 as a function
of the coefficient of the nonlinear friction k. The curve 3 gives the numerical
results obtained be means of the Runge-Kutta method. The curves 1, 2 give
the second order perturbation approximations

T = 27r(l+’1°—;+0(k4)) as k—0 (3.4)
k(3 — 2(n2) + 7.0143k=1/3 4+ O(k~Vink) as  k — oo '

The TPPA formula constructed from two terms of the expansion (3.4); and
one term of the expansion (3.4),

_ 6.2832 + 1.5291k 4 0.392742

B 1+ 0.2433k

shows a good agreement with the numerical results for all values of £ > 0
(curve 4 in Fig.2).
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Fig. 2. Period of the Van der Pol pendulum: comparison of numerical, perturbative

and TPPA solutions

4. Using of the TPPAs
4.1. Problem of hydrofoil

Let us consider the problem of a hydroloil. I'or great values of a relative
submerging h, the relative hydrodynamic lift  of a thin plate is expressed
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as follows (Panchenkov, 1976)

1 _
Q:1—16—hz+0(h 3) (4.1)

For h — 0 (hydroplaning), we have
Q=05 (4.2)

The exact solution for intermediate values of the parameter h is not known.
In the monograph of Panchenkov (1976), it is proposed to use the method of
functional parameters. However this approach is on the contrary, the formulae
(4.1) and (4.2) allow us to construct quite simply cumbersome the TPPAs,
which give the values of G for any A

16h% + 1

16h% + 2 (4.3)

Q=
Fig.3 presents the numerical values calculated from Eqs (4.1) and (4.3) (cu-
rves 2 and 1, respectively) and the experimental data taken from Panchenkov’s
monograph (1976) (curve 3). The correspondence between experimental data
and the results of the TPPA formula is quite satisfactory.

1.1
|5 |
0.9'7”_"
2
o / \2
[
0.5

0 0.4 0.8 1.2 1.4
h

Fig. 3. Using of the asymptotic and TPPA approaclies when solving the problem of
hydrofoil

4.2. Inverse Laplace transform problem

Papers of Andrianov (1992), Grundy (1977) were devoted to the following
problem. Let us consider the Laplace transform

F(p) = 0.5/p[o(p) — Yo(p)]
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where Hp — Struve function, Yy - Bessel function, p — parameter of the
Laplace transform.
The exact inverse is

J)=Vite

The asymptotic inverses take forms

_ 2 N
f(t)’:{ 1 —0.5t+ ... for ¢ 0

=1 for ¢t — oo

By using the TPPAs one obtains
1+ 0.5¢

t) =
S 1 4+ 0.5t 4 0.5¢2
The numerical results are plotted in I'ig.4. The upper curve (Eq (4.4)) coin-
cides satisfactorily with the lower one (exact solution).

(4.4)

f(t)
0.8

0.4 \

Fig. 4. Laplace transform inverse, the exact and TPPA solutions

Hence the rational function (4.4) is an "asymptotically equivalent function”
in the sense of Slepyan and Yakovlev (1980). The accuracy of the TPPA
solution may be improved by removing of the essential transform singularities
(Krylov and Skoblya, 1974). The other approximate methods (Longman, 1973;
Sidi, 1980a; Talbot, 1979; Van Iseghem, 1987) enable the error analysis. The
TPPAs approach can also be applied to other integral transforms (Fourier,
Bessel, Mellin and so on).

4.3. Matching of quasi-linear and essentially nonlinear asymptotics

The next example deals with the problem of oscillations of a plate on a
nonlinear elastic foundation (Andrianov and Bulanova, 1995). That problem



584 [.ANDRIANOV ET AL.

may be solved using numerical or quasilinear asymptotic methods. In the
last one quasi-linear asymptotics are usually used. For large amplitudes the
solutions can be obtained as follows. In the long-wave approximation the
plate bending rigidity may be neglected and we can investigate oscillations
of the body on the elastic nonlinear spring. In a short-wave approximation
the nonlinearity of the foundation is negligible as well. For such a case the
TPPAs method is very suitable. It is also suitable for solving the nonlinear
problems for beams, plates and shells. Now we are going to give an example of
TPPAs application to the nonlinear theory of shells (Evkin, 1989). Within the
frame of the theory of buckling shells, the solution presented below has been
obtained by means of the asymptotic method for a closed sphere subjected to
the uniform external pressure ¢

Q = 0.42¢ + 0.3 4+ O(®) (4.5)
Here
[ 2/ _ 2
e = 2W\/3V1 - 12 g = Lok v 2(21 Vi) W = /E
: (3

and w — amplitude of supercritical axially-symmetric equilibrium form, E -
modulus of elasticity, » — Poisson ratio, 2 - shell thickness. In the region
of small deflection the approach of Koiter is valid, which gives the solution
expansion in the form

Q=1+4+0("" (4.6)

By matching the expansions (4.5) and (4.6) with the TPPA, we obtain the

solution in the form l
/L

= 4.7
A+2.19 (4.7)

Q
Here
A =e? +0.082¢3 +0.386¢2 + 0.92¢

Curve 1 in the I'ig.5 corresponds to the solution (4.5). The precise numerical
results, obtained by Gabrilyantz and Feodos’ev (1961) (practically the exact
solution) is presented by the curve 2. The curve corresponds to the solution
(4.7) practically coincides with the exact solution (i.e., with the curve 2 in
Fig.5).

The model of shell discussed above was used for estimation of the critical
pressure for cylindrical shells with initial imperfections (Evkin and Krassovsky,
1991). Moreover, the TPPAs were also applied for matching the coefficients
of the governing equations as functions of time (Stankevich et al., 1991).
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Fig. 5. Using TPPA for matching of quasilinear and essentially nonlinear
asymptotics

4.4. Matching of expansion for high and low-frequency oscillations

Dynamics of a ribbed plate is described by a system of partial differential
equations with discontinuous coefficients. Numerical methods are not effi-
cient and very often are not acceptable for such equations. It is possible to
use the homogenization method (Bakhvalov and Panasenko, 1989) for the low
frequency case. At the first stage, rigidities and densities of lateral ribs are
spread along the plate and the plate itself is replaced by a smooth orthotropic
plate with effective rigidities and densities. Further on, using the Vishik-
Lusternik first approximation approach, corrections to the frequencies and
displacements, caused by discretization, are obtained. In the high-frequency
case a perturbation method (Nayfeli, 1973) is used, and the theory of smooth
plates plays the role of the first approximation. In this section the homoge-
nization and perturbation solutions are to be matched by the TPPAs. As a
result of the application of the above-mentioned method an analytic expression
has been deduced which describes the oscillations of a ribbed plate on elastic
foundation for the whole spectrum of frequencies. A comparison with known
solutions was made and accuracy of the method was l[ound. Let us consider
the ribbed plate (0 < 2 < Ly, L, <y < L,) resting on the Winkler elastic
foundation of the stiffness ;. To a great extent this model represents the
basic features of the real system oscillations. The model equations are given
by

DVW + E\IP(y)Wapzr + C1W + Aph + py EFP(3)]W = 0 (4.8)

where

EhR3

Py)= 3 8(y—ib) b

1=—n

2
- N



586 I.ANDRIANOV ET AL.

and N - number of ribs, N =2k +1, p - mass density of the plate material,
Ey, py — modulus of elasticity and mass density of the rib material, é§ — Dirac
function, A - square of frequency, [ - inertia moment, I - square of the
cross-section of the rib.

The boundary conditions on the edges of the plate may be formulated as

Wyy = Wyyy =0 when y=2L,

Wir = Weze =0 when 2=0 A z=1, (4.9)

The homogenization procedure leads to the {ollowing boundary value problem

DV*Wo + EyIb™ Wogpez + C1Wo — (ph+ pr Fb™ D)MW =0 (4.10)

and the boundary conditions (4.9) (after replacing W with Wy). The appro-
ach used allows us to determine the expansions of frequencies and oscillation
modes with any desired accuracy. Now we will investigate high-{requency
oscillations. Let us introduce new "last™ £, n variables given by

£=c¢c%2 n=c% a>0
Here ¢ is an auxiliary small parameter. Then the derivatives may be rewritten
as follows 9 9 9 9
__:gaf_ ‘—-—:go‘— (411)
dx ¢ dy an

The plate oscillation mode and frequency squared asymptotic expansion may
be found as

W = W, (€. W, (€,
(&) + 206 m) + (4.12)

A=c71N + %0+ )

Substituting Eqs (4.11), (4.12) into 13q (4.8) and performing the e-splitting,
from the system of equations that determines the unknown expansion coeffi-
clents, one obtains

DVAW = X(phW, =0 (4.13)
DVAW, — M\ phWy = —C1Wy — EyTPWegee + AaphWy + \ipy EFPW,(4.14)

Eq (4.13) describes the smooth plate oscillations, while Eq (4.14) allows one to
obtain the frequency and mode expansions for the first order of ¢. The values
of the parameters used in the numerical analysis are: N =11, C\L{/D = 0.1,
E\F/(Db) = 200, p1F/pbh = 0.5, Ly/lh1 =1, m =1, 0 < k < 80. Here
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m(k) is the wave number in the direction of the z (y) axis. The results are
plotted in Fig.6, here the curves correspond to:

I — the orthotropic model of the oscillation frequency; II — the case of
the smooth plate’s oscillation frequency; ITI and IV - the truncated series
for the low- and high- frequency asymptotics’ (only the first two terms of
expansion are taken into account). The dotted line represents the values of
the frequency determined by numerical methods. Curve V corresponds to the
matched spectrum expression.
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Fig. 6. Matching by the TPPA of homogenized and higher-frequency solutions

The plots in Fig.6 show that the values of frequency obtained using the
approximate analytical and numerical methods lay inside the region bounded
by the curves 1 and 2. This result ascertains the physical nature of the problem
and confirms reliability of the solution. I'urthermore, the comparison with the
numerical data shows that for 0 < & < oo the curve V coincides satisfactorily
with the numerical solution. Thus, the TPPA method provides the closed
analytical formula for the total spectrum of the plate natural frequencies (see
also Obraztsov et al., 1991).

4.5. Matching of liniting asymptotics in the homogenization problem

The theory of homogenization has been developed for perforated media by
many authors in recent years (see Bakhvalov and Panasenko, 1989). The main
problem in this field is solving of the so called cell (or local) — boundary value
problem for the periodically repeated clement with conditions of periodicity.
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This problem has usually been studied by means of numerical methods. For
solving the cell problem the asymptotic methods were used by Andrianov and
Shevchenko (1988, 1989), Andrianov et al. (1995). Let us assume the example:
bending of rectangular plate with circular perforations. Analytical solutions
for small and large holes were obtained by Andrianov and Shevchenko (1989)
by using the asymptotic methods (perturbation of the domain and boundary
form). For the coefficients A and B of the homogenized equation

A(WIIII + Wyyyy) + 2BWzryy = Q(xa y)

we have the following expressions (for v = 0.3)

1—c¢ 1—¢
A= —— — B= ——WM —
1-0.5785¢ 1 —-0.6701¢

where ¢ = b/a, b — diameter of the hole, a - length of the square cell side.
Fig.7 shows the numerical results for A4 and B.

0.8

0.4

0

Fig. 7. Comparison of the TPPA solution for homogenized coefficients of perforated
plates with other analytical approaches and experimental data

The values of coefficients are compared with the theoretical results ob-
tained by means of the two-period elliptic functions method (Grigolyuk and
Phil’shtinsky (1970), A = B, curve 1 on Fig.7) and experimental results (po-
ints on Fig.7, Grigolyuk and Phyl’shtinsky, 1970). The accuracy of the TPPA

method is visible.

4.6. Theory of composite materials

Transport coefficients of composite materials may be evaluated effectively
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using the method of bounds. The bounds become increasingly accurate when
more information on geometrical properties of the medium is known. For two-
component isotropic composites, the PAs bounds for the effective constants
Ae/ A1 already exist (Bergman, 1978; Milton and Golden, 1985; Milton, 1986;
May et al., 1994). These bounds are usually obtained in the form of continued
fractions (CFs) on the basis of the analytic properties of A.(A;,A2). Berg-
man (1978) studied these analytic properties of A.(A1,A2). He proved that
Ae(A1,A2)/ A1 = Ao(1, A2/ A1) is a Stieltjes function of A;/A;, analytic except
for the negative real axes, satisfying A.(A1, A2)/A; > 0 when Az/A; > 0. The
Stieltjes functions have been extensively studied in the mathematics literature
and their PAs and CF's representations are well known (Gilewicz, 1978; Jones
and Thron, 1980; Graves-Moris and Baker, 1981, 1996).

On the contrary, the analytic properties of TPPAs generated by two diffe-
rent power expansions of Stieltjes function have not been examined as deeply
as the PAs. The authors concerned themselves mostly with the TPPAs using
equal number of coefficients of two power expansions at zero and infinity ("ba-
lanced” situation).

The convergence of TPPAs has been investigated by (Jones and Thron,
1970; Gragg, 1980; Jones et al., 1983). In the paper of Casasus and Gonzélez-
Vera (1985) the analytical properties of a special type of TPPAs to the Stieltjes
functions are examined. Monotone sequences of TPPAs forming upper and
lower bounds for the Stieltjes functions have been reported by Gonzdlez-Vera
and Njastad (1990).

Recently (Tokarzewski et al., 1994a; Tokarzewski, 1996a,b) investigated
the TPPAs to non-equal, finite number of terms of two power expansions of
the Stieltjes functions at zero and infinity ("unbalanced” situation). Under
some assumptions they proved that the diagonal TPPAs form sequences of
lower and upper bounds uniformly converging to the Stieltjes function.

The general "unbalanced” situation, i.e., the TPPA corresponding to an
arbitrary number of terms of power expansions at zero and infinity has been
studied in real domain by Bultheel et al. {1995) and independently by Toka-
rzewski and Telega (1996b, 1997). They extended the fundamental inequalities
derived for the PAs (Baker, 1975) on the general "unbalanced” TPPAs case.
They proved the following theorem very useful for practical applications.

Theorem 1. The TPPAs to the Stieltjes function R(z) = [y~ dy(u)/(1+ z)
represented by the following power expansions at zero

R(x) ~ Z "
n=1

5 — Mechanika Teoretyczna



590 [.ANDRIANOV ET AL.

and infinity

R(z)~ Y C_,a™™ (R2)~Cizt+ 3 Coa™)
obey for k=1,2,...,2M (k=1,2,...,2M + 1) the following inequa-
lities

(=DF[M/M]e < (=DF[(M + 1)/(M + )] < (1) R(2)

(=R IMIM = Dk < (=1F (M + 1)/ M) < (=1} R(2))

where R(z) stands for the limit as M tends to infinity of [M/M]x,
([(M + 1)/M]k), and =z is real and positive. Note that we introduced
the following notation of TPPA, cf. Section 3

M )
Z: !
J=0

N

Y. Bjad
3=0

[M/N]). =

Here k denotes the given number of coeflicients of power expansions
at infinity matched by the TPPA represented by [M/N]i. The above
inequalities have the consequence that [M/M], and [(M + 1)/M]x
form upper and lower bounds on [R(z) obtainable using only the given
number of coefficients, and that the use of additional coefficients (higher
M) improves the bounds.

Theorem 1 have been successfully used (Tokarzewski et al., 1994b) for the
study of the eflective heat conductivity A (k) (h = A1/A2) for a periodic
square array of the cylinders of conductivity Ay = A (A2 = 1) embedded in
the matrix of conductivity Ay = 1 (A; = k). As an input for calculation
of TPPAs the authors used coefficients of the expansions of A.(z) in powers
of z and in powers of 1/z, where 2 = h — 1, h = Ay/A;. The sequences
of TPPAs uniformly converging to the effective conductivity A.(h) are shown
in Fig.8. The best bounds obtained by the TPPAs method, namely [18/18];
and [18/18];, are presented in Fig.9. In all Fig.8 and Fig.9 the asymptotic
solution obtained by McPhedran et al. (1988) is drawn for comparison.

It follows that the TPPAs approach allow us to evaluate the effective mo-
duli for a range of parameters much larger then the PAs methods reported in
literature (McPhedran and Milton, 1981; May et al., 1994). For example for
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Fig. 8. The sequences of [M/M]o, [M/M], and [M/M]z, M =2,4,6,12,18
uniformly converging to the effective conductivity A.(h) (h = Ay/A1) of square
array of cylinders. The curves [M/M] are lndlstmglushab]e (solid line - (a)). The
bounds [18/18], and [18/18], are very restrictive

(b)
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@ =0.785398163397... @ =0.78539816 20/ ¢ =0.785398163...
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Fig. 9. The TPPA upper and lower bounds on the eflective conductivity for a square
array ol densely packed highly conductling cylinders. For ¢ = 0.785 the bounds
coincide. For ¢ = 0.7853, 0.78539 are very restrictive. For higher volume fractions
@ > 0.78539816 the diflerence between lower and upper bounds increases rapidly

= 0.78539 the TPPAs approach leads to very restrictive bounds, whereas
the PAs methods fails, Fig.8a and I"ig.9a.

The TPPA method presented in this Section can be applied to calcula-
tion of the bounds on dielectric constants, magnetic permeabilities, viscous
coefficients, elastic constants and others.

For some special input data also three- and four-point PAs were used for
estimation of the effective conductivity of two-component medium (Helsing,
1993, 1994).
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4.7. Matching of local expansions iu the theory of nonlinear vibrations

Interesting results were obtained using the PA method in the theory of
normal vibrations of nonlinear finite-dimensional systems. Normal vibrations
in the nonlinear case are generalization of corresponding normal vibrations of
linear systems. In the normal mode a finite-dimensional system behaves like
a conservative one having a single degree of freedom. In this case all position
coordinates can be well defined from any one of them by

T, = p,((l?) T =2 1= 2,3,...,71 (415)

with p;(z) being analytical [unctions. Rosenberg and Atkinson (1959), Rosen-
berg (1966) get credit for being the first to introduce broad classes of essentially
nonlinear conservative systems allowing normal vibrations with rectilinear tra-
jectories in the configurational space

T; = ki1 t=2,3,...,n (4.16)

For instance, the homogeneous system potential of which is an even homogene-
ous function of the variables refer to such a class. It is interesting to note that
the number of modes of normal vibrations in the nonlinear case can exceed the
number of degrees of freedom. This remarkable property has no analogy in the
linear (non-degenerate) case. In systems of a more general type, trajectories of
normal vibrations are curvilinear. Lyapunov (1992) showed that solutions of
this kind exist in nonlinear finite-dimensional systems with an analytical first
integral which are close to generating linear systems. New results concerning
normal vibrations with curvilinear trajectories in essentially nonlinear case
have been obtained by Manevich and Mikhlin (1972, 1989), Mikhlin (1985),
Manevich et al. (1989).

Consider a conservative system

m;T; + Hr‘. =0
(4.17)
dz; olr :
r; = s = =1,2,..,
T T 1, 5, 1 n

Il = II(z) being potential energy. II is assumed to be a positively definite
function; z = [z1,23,...,2,]. Power series expansion for II(z) begins with
the terms having a power of at least 2. Without reducing the degree of gene-
ralization, assume that m; = 1 since this can be always ensured by dilatation
of coordinates. The energy integral for system (4.17) is

n

sz+ﬂ($l,x2,...xn):h (4.18)
k=1

DN —
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h being the system energy. Assume that within the configuration space, boun-
ded by a closed maximum equipotential surface /I = h, the only equilibrium
position is z; = 0 (¢ = 1,2,...,n). In order to determine the trajectories of
normal vibrations (4.15), the following relationships can be used
h—11 :
20 ———— 4 zi(M1,) = — 11, 1=2,3,..,n T =1 (4.19)

T

1+ Y 2
k=2

These are obtained either as the FSuler equations for the variational principle in
the Jacobi form or by elimination of time from the equations of motion (4.17)
with consideration of the energy integral (4.18). An analytical extension of
the trajectories on a maximum isoenergetic surface II = h is possible if the
boundary conditions, i.e. the conditions of orthogonality of a trajectory to the
surface, are satisfied (Rosenberg, 1966)

2} [~ Ia(X, 22(X), o 2a(X)] = =11 (X, 02(X), 20( X)) (4.20)

(X,xg(X), :zn(X)) being the trajectory return points lying on [T = h sur-
face where all velocities are equal to zero. If a trajectory z;(z) is defined, the
law of motion with respect to time can be found using

z+ ]71.(.1',.1'2(.1'), ...,.7:,1(:1:)) =0

for which a periodic solution 2({) is obtained by inversion of the integral. Ma-
nevich and Mikhlin (1972) developed nearly rectilinear trajectories of normal
vibrations in the form of power series. Now consider a problem of normal vi-
brational behavior in some nonlinear systems when the amplitude (or energy)
of the vibrations is varied from zero to an extremely large value. Assume that

in a system
F411,,(21,%2y 00y 2n) =0 (4.21)

the potential energy [1(z),z22,...,2,) is a positive definite polynomial of
21, .-y 2y having a minimum order of two and a maximum of 2m. On choo-
sing a coordinate, say z;, substitute z; = ca; where ¢ = 2z1(0). Obviously,
z1(0) = 1. Furthermore, without loss of generality assume z; = 0. Eqs (4.21)

can be rewritten
i+ Vi(e, oy, a2, 02,) =0 (4.22)

where
2m—2

V= Z ckV(k“)(m,zg,...,xH)
k=0
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V(r+1) contains terms of the power (7 + 1) of the variables in the potential
Vie,21,22,...,2n) = 17(31(.1'1),:2(1'2), ...,zn(mn))

It is assumed below that the amplitude of vibrations ¢ = z(0) is an inde-
pendent parameter. At small amplitudes a homogeneous linear system with a
potential energy V(2) is selected as the initial one while at large amplitudes,
a homogeneous nonlinear system with a potential energy V(2™) is selected.
Both linear and nonlinear homogeneous systems allow normal vibrations of
the z; = k;x; type, where the constants k; are determined from the algebraic
equations
k VI (1, ko, oy k) = VIO, kg, oo k)

(A number of possible vibrations of this type can be greater than the number
of degrees of freedom in the nonlinear case). In the vicinity of a linear system
at small values of ¢ the trajectories of normal vibrations zgl)(x) can be
determined as power series of z and ¢ (assuming that z; = z, while in the
vicinity of a homogeneous nonlinear system (at large values of ¢), 152)(.@),
as power series of z and ¢!, Construction of the series is described by
Manevich et al. (1989). The amplitude values (at ¢ = &; = 0) define the
normal vibration modes completely. Therefore, for the sake of simplicity, only
expansions of pl(-l) = 151)(1) and p_Ez) = 2;(1) in terms of powers of ¢ will be
discussed below

SEED W VG ED o DS
=0 i=0

In order to join together the local expansions (4.23) and investigate hehavior
of normal vibration the method of TPPA were used (Mikhlin, 1985, 1995;
Vakakis et al., 1996). We obtain

i a(l)cf
pi) = =2 B $=1,2,3,... i=2,3,..,n (4.24)
> b]L ¢’
3=0
or zs: a(’)cJ—s
P =2 S=123,. =23 (425)
ber—s
: J
1=0

Compare Eqs (4.24) and (4.25) with Eq (4.23). By preserving only the terms
with an order of ¢” (—s < 7 < s)and equating the coeflicients at equal powers
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of ¢, n — 1 systems of 2(s + 1) linear algebraic equations will be obtained
for determination of a;'-, bg') (7 =0,1,2,...). Since the determinants of these

systems A(i) are generally not equal to zero, the systems of algebraic equations
have a single exact solution, a( = b(' = 0. Select the TPPA corresponding to

)

the preserved terms in Eq (4.23) having nonzero coefficients a§- ), b§- . Assume

that bg) # 0, for otherwise at ¢ — 0, xf-l) — 00. Without loss of generality
i)

it can also be assumed that bg = 1. Now the systems of algebraic equations

for determining of agi), bgi) become overdetermined. All unknown coefficients
agi), aﬁf), bgi), bgf), t=2,3,...,n are determined from (2s + 1) equations while
the ”error” of this approximate solution can be obtained by substituting all
coefficients in the remaining equatlon Obviously, the "error” is determined

by the value of A( ) since at A( = (0 nonzero solutions and consequently, the
exact PA will be obtained in the given approximation in terms of ¢. Hence
the following condition

Agi) —0AforAs — oo Ai=2.3,...n (4-26)

is necessary for convergence of a sequence of TPPAs (4.24) to the rational
function

§ agi)cj

P = =2 b8 = 1) (4.27)
5 bles
7=0

Indeed, if the conditions (4.26) are not satisfied, nonzero values of the coeffi-
cients agi), bg-’) in Eq (4.27) will obviously not be obtained. The conditions
(4.26) are necessary but not sufficient for the convergence of approximants
(4.24) to functions (4.27); nevertheless, the role of conditions (4.26) can be
clarified as follows. In the general case there are more than one quasilinear
local expansions and essentially nonlinear local expansions alike, the numbers
of expansions of the respective type being not necessarily equal, it is the co-
nvergence conditions (4.26) that allow one to establish a relation between the
quasilinear and essentially nonlinear expansions, that is to decide which of
them corresponds to the same solution and which to different ones. For a con-
crete analysis based on the above technique, consider a conservative system
with two degrees of freedom, potential energy of which contains terms of 2nd
and 4th powers of variables z;, z,. Substituting z; = ca, z; = cy, where
¢ = z1(0) for z(0) = 1, one obtains

.TQ 2
V = 62(d17 + dQ% + dgly) +
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z* 2242 . y
+ (’71 T + '721'3y + 3 5 + 741.,!/3 + 75._4_) = 2y + Ay
The equation representing the trajectory y(a) is of the form
2y”(h - V) + (1 + y2)(—ylva: + Vy) =0 (428)

while the boundary conditions (4.20) can be written on the isoenergy surface
h=V
('—ylvx + Vy) =0

For definiteness, let

di=do=14+v dy=—-v
=1 72 =0 73 =3
v4 = 0.2091 Y5 =7

Write equations of motion for the following system

7 T — (23 + 32y% +0.20919°) = 0
+z+y(z—y)+c*(2” +32y° + y) (4.29)

F+y+y(y—2a)+ 2207 + 3%y 4+ 0.6273y%2) = 0

In the linear limiting case (¢ = 0) two rectilinear normal modes of vibrations
y = koz, Ic((Jl) =1, k((,z) = —1 are obtained,while a nonlinear system (equations
of motion contain only third power terms with respect to z,y) admits four
such modes: Ict()a) = 1.496, Ic((,4) =0, I\:L()'r’) = —1.279, lc(()G) = —5. In order to
determine nearly rectilinear curvilinear trajectories of normal vibrations, Eq
(4.28) is used along with the boundary conditions. By matching of the local
expansions the following PA are obtained '

_ . _ 1+ 1.20¢2
I=1V. y=2: p=17760t+ 072
— . — 1 -f: 1.066‘2
V=055 2= 100 06 + 32087
y=02: p= 1+ 1.70c?

r= 2 062 q
.96 13.2
14 3.96¢« + 13.29¢ (4.30)

_ _ 5. _ —1—1.11¢2 — 0.275¢4
=V y=2: = T70625 0205

_ . _ —1 — 2.76C2 — ].36C4
¥=05 " P = TS T 1.04c

_ . _ =1 —6.41¢% — 9.03c4
7=02: P = T 01 7.02¢0
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The two additional modes of vibration exist only in a nonlinear system; as

v = c¢? increases (amplitude ¢ decreasecs), they vanish at a certain limi-
ting point. For the analysis of these vibration modes, assume a new variable
o = (p—1.496)/(p—5). By using the variable o two expansions in terms

of positive and negative powers were obtained; therefore, fractional rational
representations can be introduced as above. By comparing these expansions,
the following TPPAs are obtained

8.874a¢ + 1.1260°

1=2: Y = 1 X 43000 + 2.83602 + 0.54903

_ _ 35.4970 4 5.10802
7 =05 Y T 13X 3.0210 — 0.79102 + 0.62203 (4.31)
¥ =0.5 v = 88.9860 + 1.4700°

T 1—-0.1430 4+ 3.7470% + 0.07203 F4

Now proceed to the determination of the limiting point. Obviously, it can
be found from dv/do = 0. From L[qs (4.31) at v = 2 the limiting point is
va121, e~ 091;at y=05-v=11.10, ¢x 0.30; at vy =0.2 - v = 23.93,
¢ =~ 0.20. Hence, as v — 0 the limiting point is characterized by the amplitude
¢ — 0. Therefore, the two additional vibration modes in a nonlinear system
can exist at rather small amplitudes of vibrations. Note that quasilinear ana-
lysis does not allow one to find these solutions even at small amplitudes. In
the limit, when 5 = 0, a linear system decomposes into two independent
oscillators of identical frequencies and admits any rectilinear modes of normal
vibrations. Obviously, a full system (4.29) at ¥ = 0 admits four modes of
vibrations (in a nonlinear case) y; = ky,, K = 1.496,0, —1.279, —5. Thus, the
TPPAs allow of judgment of nonlocal behavior of normal vibrations in nonli-
near finite-dimensional systems. For the system (4.29) the evolution of modes
of normal vibrations is shown in Fig.10 using parameters { = Ln(1 4 ¢2h?)
and o = arctan p (the picture shows periodicity in ¢, the period being 2m).
Solid lines correspond to analytical solutions (Eqs (4.30) and (4.31) were em-
ployed) while the dotted ones were obtained in computer check calculations at
~4 = 2 carried out by Zhupiev. The analvtical solutions and numerical calcu-
lations show good agreement. For the solution I = V, relationship (4.30) and
the numerical calculation gave, in the scale selected, the same curve (Fig.10).

Note that the systems considered above can be obtained in calculations of
nonlinear vibrations of shells (using the Bubnov-Galerkin technique) as well as
in other problems. Torinstance, in the problem of vibrations of a construction
on elastic supports under a force having a constant direction.
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Fig. 10. Matching asymptotic expansions in nonlinear normal modes lor arbitrary
energies

5. Quasifractional approximants

Evidently, the TPPAs is not a panacea. For example, one of the "bottle-
necks” of the TPPAs method is related to the presence of logarithmic compo-
nents in numerous asymptotic expansions. Van Dyke (1975) wrote: A tech-
nique analogous to rational functions is necded to improve the utility of series
containing logarithmic terms. No striking results have yet been achieved. We
give an example of partial success”. This problem is the most essential for
the TPPAs, because, as a rule, one ol the limits (¢ — 0 or ¢ — o0) for
a real mechanical problems gives expansions with logarithmic terms or other
complicated functions. It is worth noting that in some cases these obstacles
may be overcome by using an approximate method of TPPAs construction by
taking as limit points not ¢ = 0 and ¢ = oo, but some small and large (but
finite) values (Terapos and Diamessis, 1984). On the other hand, Martin and
Baker (1991) (see also Chalbaud and Martin, 1992) proposed the so called qu-
asifractional approximants (QAs). Let us suggest that we have perturbation
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approach in powers of ¢ for ¢ — 0 and asymptotic expansions F(¢) contai-
ning, for example, logarithm for ¢ — co. By definition QA is a ratio R with
unknown coefficients a;, b;, containing hoth powers of ¢ and F(¢g).The coef-
ficients @, b are chosen in such a way, that (a) the expansion of R in powers
of € match the corresponding perturbation expansion; and (b) the asymptotic
behavior of R for ¢ — oo coincides with F(¢). Let us examine the example
of Laplace inverse problem. In Section 4.2 we had power series expansions
for t - 0 and ¢ — oo. But this case is not general, because usually the
inverse contains exponential functions. Then, we may construct QA to power
expansion for t — 0 and to exponential terms given for ¢t — oo (Andria-
nov, 1992). The interesting heuristic methods for multiplicative and additive
matching of limiting asymptotic expansions were proposed by Chicovani et
al. (1990), Frost and Harper (1976), Kalitvyasky et al. (1985), Kashin et al.
(1983, 1984). Succesfull application of the quasifractional approximants to the
mechanics of inhomogeneous media, for evaluation of the eflective moduli, has
been discussed recently by Andrianov et al. (19906).

6. Concluding remarks. Perspectives and open problems

The main advantage of the TPPAs and QAs methods is simplicity of algo-
rithms allowing for solving the complicated problems even with using a finite
number of coefficients of the asymptotic expansions. For the control of the
correctness of the matching realized by the TPPAs and QAs the numerical
methods (Kaas and Petersen, 1987; Krasnosel’ski et al., 1969) or procedures
of recalculations of the matching parameters (Bensaadi and Potier-Ferry, 1993;
Cochelin et al., 1993) may be applied. To this end one-point PAs constructed
for the expansions ¢ — 0 and ¢ — oo can be used (Mason, 1964, 1981).
It has been observed that the PAs possesses the property of self-correction
of the errors (Luke, 1980a,b; Litvinov, 1993) and then may be used for the
solution of the so called "ill-posed” problems. The PAs self-correction effect
is closely connected with the fact that errors of the coefficients of PA don’t
spread arbitrary, but wrong coefficients create the new good approximations
of the solution. Until now, we don’t know, does this self-correction property
exist for the TPPAs. It is worth adding that PAs, TPPAs and QAs applica-
tions bear new ideas for mathematicians, working on multi-dimensional Padé
approximants (Baker and Graves-Moris, 1996). On the other hand, some well
developed branches of PAs, for example branching continued fractions (Scoro-
bogat’ko, 1987), are still waiting for applications. Evidently, as we said above,
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PAs, TPPAs and QAs are not a panacea, and in some cases they fail. Then,
it is possible to apply other methods of interpolation (Bakhvalov et al., 1987;
Krylov, 1989; Scorobogat’ko, 1987).

This work was supported in part (for 1.Andrianov) by the International Soros
Science Education Program through the grant N SPU061002.

10.

11.

12.

References

ACHUTHAN P., PoNNUswaMY S., 1991, On General Two-Point Continued
Fraction Expansion and Padé Tables, J. Approz. Theory, 64, 3, 291-314

ANDERSEN C.M., DaprFar M.B., GEErR J.F., 1984, Perturbation Analysis of
the Limit Cycle of the van der Pol Equation, SIAM J. Appl. Math., 44, 5,
881-895

ANDERSEN C.M., GEER J.F., 1982, Power Series Expansion for the Frequency
and Period of the Limit Cycle of the Van der Pol Equation, STAM J. Appl.
Math., 42, 3, 678-693

ANDRrRIANOV [.V., 1984, The Use of Padé Approximation to Eliminate Nonu-
niformities of Asymptotic Expansions, Fluid Dynamics, 19, 3, 484-486

AnDRrRIANOV [.V., 1991a, Continual Approximation for Higher-Frequency
Oscillation of Chain, Doklady AN Ukr. SSR, ser. A, 2, 13-15 (in Russian)

ANDRIANOV [.V., 1991b, Application of Padé Approximants in Perturbation
Methods, Advances in Mechs, 14, 2, 3-15

AnDriANoOvV [.V., 1992, Laplace Transform Inverse Problem: Application of
Two-Point Padé Approximant, Appl Maths Lelt, 5, 4, 3-5

AnpriaNov 1.V., BurLaNova N.S. 1984, Constructing of Van-der-Pol Equ-
ation Solution by the one and Two-Point Padé Approximants, in Differential
Fqualtions and thewr Applicalions, Dnepropetrovsk, 87-91 (in Russian)

. ANDRIANOV L[.V., BuLaNova N.S. 1987, Using Padé Approximants for the

Error Estimate of Perturbation Mcthod, Num. Appl. Math., 62, 31-34 (in
Russian)

ANDRIANOV L[.V., Buranova N.S., 1995, Non Quasilinear Asymptotics in
Problem of Oscillation of Rods and Plates on the Nonlinear Elastic Subgrade,
Doklady AN Ukr., Maths, Natural Sciences, Technical Sciences, 9, 28-30 (in
Russian)

ANDRIANOV 1.V, DANISHEVSKI V., ToKARZEWSKI S., 1996, Two-Point Qu-
asifractional Approximants for Effective Conductivity of Simple Cubic Lattice
of Spheres, Int. J. Heal Mass Transf., 39, 11, 2349-2352

ANDRIANOV L.V., Ivankov A.O., 1987, Using Padé Approximants in the
Method of Introduction Parameter for Investigation of Biharmonic Equation
with Complicated Boundary Conditions, USSR Comp. Maths Math. Physics,
27,1, 193-196



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Two-POINT PADE APPROXIMANTS... 601

ANDRIANOV L.V., Ivankov A.O., 1988, Solution of Mixed Bending Plate
Problem by Modified Boundary Conditions Perturbation Method, Doklady AN
Ukr. SSR, Ser A, 1, 33-36 (in Russian)

ANDRIANOV L.V, ManevicH L.1., 1992, Asymptotology 1: Problems, Ideas
and Results, J. Natural Geometry, 2, 2, 137-150

ANDRIANOV 1.V, SHEVCHENKO V.V., 1988, Calculation of Averaging Pa-
rameters in the Problem of Bending and Natural Oscillations of Periodically
Perforated Plates, Doklady AN Ukr. SSR, Ser A, 12, 22-26 (in Russian)

ANDRIANOV [.V., SHEVCHENKO V.V., 1989, Perforated Plates and Shells, in
Asymplotic Methods in the Theory of Systems, Irkutsk, 217-243 (in Russian)

ANDRIANOV 1.V, SHEVCHENKO V.V., KunoLop E.G., 1995, Asymptotic Me-
thods in the Statics and dynamics of Perforated Plates and Shells with Periodic
Structure, Technische Mechanik, 15, 2, 141-157

Az1z A., LUNARDINI V.J., 1993, Perturbation Techniques in Phase Change
Heat Transfer, Appl. Mech. Revue, 46, 2, 29-68

BaBicH V.M., BULDIREV V.5., 1972, Asymptotic Methods in the Theory of
Short Wave Diffraction, Nauka, Moscow (in Russian)

BAKER G.A., 1975, Essentials of Padé Approrimants, Academic Press, New
York

BAKER G.A., GRAVES-MoRRIs P., 1981, Padé Approximants. Part I: Basic
Theory. Part 2: Extensions and Applications, Addison-Wesley Publ.Co., New
York

BAKER G.A., GRAVES-MORRIS P., 1996, Padé Approximants, Sec. Edit.,
Cambridge UP, Cambridge

BakHvALov N., PANASENKO G., 1989, Averaging Processes in Periodic Me-
dia. Mathematical Problems in Mechanics of Composite Malerials, Klumer
Academic Publishers, Dortrecht

BAkHvaLov N.S., ZHIDKoV N.P., KoBeEL’kov G.M., 1987, Numerical Me-
thods, Nauka, Moscow (in Russian)

BENsAADI M. I1., PoTIER-FERRY M., 1993, Computation of Periodic Solutions
by Using Padé Approximants, in Abstracts of the Ist Furop Nonl Osc Conf, 14

BERGMAN D.J., 1978, The Dielectric Constant of a Composite Material a
Problem in Classical Physics, Phys. Rep., 34, 377-407

BRrEzINSKI C., 1979, Rational Approximation to Formal Power Series, J. Ap-
proz. Theory, 25, 295-317

BREZINSKI C., REDIVO ZAGLIA M., 1991, Eztrapolation Methods. Theory and
Practice, Elsevier Scientific Publ. Co, New York

BULTHEEL A., 1987, Laurent Series and their Padé Approzimations, Birkhau-
ser-Verlag, Basel

BULTHEEL A., GONZALES-VERA P., OrRIVE R., 1995, Quadrature on the Half
Line and Two-Point Padé Approximants to Stieltjes Function. Part I. Algebraic
Aspects, J. Comp. Appl. Math., 65, 57-72



602

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.
45.

46.

47.

48.

[.ANDRIANOV ET AL.

. Casasus L., GoNzaLEZ-VERA P., 1985, Two-Point Padé Type Approximants
for Stieltjes Functions, in Proc. Conf Polinomes Ortogonauz el Applica-
tions, Bar-le-Duc, 1984, Lecture Notes in Math., 1171, C.Brezinski, A.Draux,
A.P.Magnus, P.Maroni and A.Ronveaux (edit.), Springer, Berlin, 408-418

CHALBAUD E., MARTIN P., 1992, Two-Point Quasifractional Approximant in
Physics: Method Improvement and Application to Ju(x), J. Math Phys, 33,7,
2483 -2486

CHENEY E.W., 1966, Introduction to Approrimation Theory, McGraw Hill,
New York

CHIKOVANI Z.E., JENKOVSZKY L.L., Maximov M.Z., PaccanNoni F., 1990,
Analytic Model for Soft and Hard [adronic Collisions, Nuovoe Chim, 103A, 2,
163-173

CocHELIN B., DaMmiL N., POTIER-FERRY M., 1994, Asymptotic-Numerical
Methods and Padé Approximants for Nounlinear Elastic Structures, /nt J. Num.
Meths Eng., 37, 7, 1187-1213

Daprar M.B., GEer J.I., 1987, Power Series Solution to a Simple Pendulum
with Oscilationg Support, SIAM J. Appl. Math., 47, 4, 737-750

DraUx A., 1991, On Two-Point Padé-type and Two-Point Padé Approximants,
Appl. Math. Pura el Appl., 158, 99-124

EVKIN A.YU., 1989, A New Approach to the Asymptotic Integration of the
Equations of Shallow Convex Shells in the Post-Critical Stage, Appl. Maths
Mechs, 53, 1, 92-96

EvKIN A.Yu., Krassovsky V.L., 1991, Post-Critical Deformation and Esti-
mation of the Stability ol Real Cylindrical Shells under External Pressure, Souv.
Appl. Mechs, 27, 3, 290-205

FrosT P.A., HAarRPER E.Y., 1976, Extended Padé Procedure [or Construc-
ting Global Approximations from Asymptotic Ixpansions: an Explication with
Examples, SIAM Rev., 18, 1, 62-91

GABRILYANTZ A.G., Fropos’ev V.I., 1961, About Axisymmetrical Equili-
brium Forms of Elastic Spherical Shell under the Influence of Uniform Pressure,
Appl. Maths Mechs, 25, 6, 1091-1101 (in Russian)

GRIGOLYUK E.1., PHYL’SHTINSKY L.A., 1970, Perforated Plates and Shells,
Nauka, Moscow (in Russian)

GrAaGG W.B., 1980, Truncation Error Bounds for T-Fractions, in Approzima-
tion Theory I1I, E.W. Cheney (edit.), Academic Press, New York, 455-460

GiLewicz J., 1978, Approzimanis dc Padé, Springer-Verlag, Berlin

GonNzALEZ-VERA P., NJAsTAD O., (990, Convergence of Two-Point Padé
Approximants to Series of Stieltjes, J. Comp. Appl. Math., 32, 97-105

GonNzALEZ-VERA P., OriVE R., 1994, Optimization of Two-Point Padé Ap-
proximants, J. Comp. Appl. Math., 50, 1-3, 325 -337

GrUNDY R.E., 1977, Laplace Transform Inversion Using Two-Point Rational
Approximants, J. Inst. Maths Applics, 20, 299 -306

HeLsinG J., 1993, Bounds to the Conductivity of Some Two-Component Com-
posites, J. Appl Phys, 73, 3, 1240-1245



49.

50.
L

92,

93.

o4.

95.

96.

o7.

98.

59.

60.

61.

62.

63.

64.

65.

66.

67.

TwoO-POINT PADE APPRONIMANTS... 603

HELSING J., 1994, Improved Bounds on the Conductivity of Composite by
Interpolation, Proc Royal Soc London, Ad44, (1921), 363-374

Hincu E.J., 1991, Perturbation Methods, Cambridge UP, Cambridge, UK

JoNEs W.B., NiisTaDp O., THRON W.J., 1983, Two-Point Padé Expansions
for a Family of Analytic functions, J. Comp. Appl. Malhs, 9, 105-123

JonNEs W.B., THRON W .]. 1970, A Posteriori Bound for Truncation Error of
Continued Fractions, STAM J. Num. Anel., 8, 693 -705

JoNES W.B., THRON W.J., 1980, Continued Fraction. Analylic Theory and
Its Applications, Addison-Wesley Publ Co., New York

JoNEs W.B., THRON W.J., 1983, Two-Point Padé Expansions for a Family
of Analytic Functions, J. Comp. Appl. Malhs, 9, 105-126

Kaas-PETERSEN C., 1987, Continuation Methods as the Link between Per-
turbation Analysis and Asymptotic Analysis, SIAM Rev, 29, 1, 115-120

KaLitvyansky V.L., Kasain A.P., Maxksimov M.Z., CHikovaNi Z.E.,
1985, On Some Rules for Nonsingular Potentials in Quantum Mechanics, J.
Nucl. Phys., 41, 2, 329-338 (in Russian)

KASHIN A.P., MaksiMov M.Z., Cuikovant Z.E., 1983, On one Method of
Matched Asymptotic Expansions in Physics, Bull. Acad. Science Georgian
SSR, 111, 3, 489-492 (in Russian)

KAsHIN A.P., KVARATSKHELIA T.M., MaksiMmov M.Z., CHiKovaNl Z.E.,
1989, Higher Approximations of the Reduced Method of Coalescence for
Asymptotic Expansions and its Convergence, Theorel. Math. Phys., 18, 3,
392-399 (in Russian)

KRASNOSEL’SKIY M.A ., ET AL., 1969, Approzimale Solulions of Operalor Equ-
alions, Nauka, Moscow (in Russian)

KryLov V.I., 1989, Mathematical Analysis: Acceleralion of Convergence, Na-
uka and Technika, Minsk (in Russian)

KryLov V.I., SkoBLya N.S., 1971, Methods of Approzimate Fourier and
Laplace Transforms Inverse, Nauka, Moscow (in Russian)

LitviNov G.L., 1993, Approximate Construction of Rational Approximations
and the Effect of Autocorrection Etror, Russian J. Math. Phys., 1, 3, 313-352

LoNGMAN I.M., 1973, Use of Padé Table lor Approximate Laplace Translorm
Inversions, in Padé Approzimantes and thewr Application, Academic Press, Lon-
don, 131-134

LORENTZEN L., WAADELAND H., 1992, Continued Fractions with Applicatlions,
Elsevier Scientific Publ. Co, New York

LUKE Y.L., 1980a, Computations of Coeflicients in the Polynomials of Padé
Approximants by Solving Systems of Linear Equations, J. Comp. Appl. Math.,
6, 3, 213-218

Luke Y.L., 1980b, A Note on Evaluation of Coellicients in the Polynomials ol
Padé Approximants by Solving Systems of Linear Equations, J. Comp. Appl.
Math., 8, 6, 93-99

LYAPUNOV A .M., 1992, The General Problem of the Stabulily of Molion, Taylor
and Framis, Bristol, PA



604

68

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

[ ANDRIANOV ET AL.

. ManevicH L.I., MicHLIN YUu.V., 1972, On Periodic Solutions Close to Rec-
tilinear Normal Vibration Modes, Appl. Maths Mechs, 36, 6, 1051-1058

ManNEvIcH L.I., MiKHLIN Yu.V., 1989, Normal Vibrations of Nonlinear
Finite-Dimensional Systems, Advances in Mechanics, 12, 3, 2-38 (in Russian)

MANEVICH L.I., MIKHLIN YU.V., PiLIPCHUK V.N., 1989, The Method of
Normal Oscillations for Essentially Nonlinear Systems, Nauka, Moscow (in
Russian)

MARTIN P., BAKER G.A. Jr., 1991, Two-Point Quasifractional Approximant
in Physics. Truncation Error, J. Math Phys, 32, 6, 1470-1477

Mason J.C., 1981, Some Applications and Drawbacks of Padé Approximants,
in Approzimation Theory and Applications, Z.Ziegler (edit.), Academic Press,
Haifa, 207-223

Mason J.C., 1964, Rational Approximations to the Ordinary Tomas-Fermi
Function and its Derivative, Proc. Phys. Soc., 84, 357-359

May S., TokARZEWSKI S., Zaciara A., CicHockl B., 1994, Continued
Fraction Representation for the Effective Thermal Conductivity Coefficient of
a Periodic Two Component Composite, Int. J. Heat Mass Transf., 37, 14,
2165-2173

McCaBE J.H., 1975, A Formal Extension ol the Padé Table to Include Two
Point Padé Quotients, J. Inst. Maths Applics, 15, 363-372

McCaBE J.H., Murpruy J.A., 1976, Continued Fractions which Correspond
to Power Series [Expansions at Two Points, J. Inst. Maths Applics, 17, 233-247

McPHEDRAN R.C., MiLToN G.W. 1981, Bounds and Exact Theories for the
Transport Properties of Inhomogeneous Media, Appl Phys, 26, 207-220

McPHEDRAN R.C., PorLapiaN L., MiLToN G.W., 1988, Asymptotic Studies
of Closely Spaced Highly Conducting Cylinders, Proc. Royal Soc. London A,
45, 185-196

MIKHLIN YUu.V., 1985, Joining of Local Expansions in the Nonlinear Oscilla-
tions Theory, Appl. Maths Mechs, 49, 5, 733-743

MIKHLIN YU.V., 1995, Matching ol Local Expansions in the Theory of Non-
Linear Vibrations, J. Sound Vibr., 182, 4, 577-588

MictoNn G.W., 1986, Modelling the Properties of Composites by Laminates,
in Homogenization and Effective Moduli of Materiels and Media, 1.L. Ericksen,
D. Kinderlehrer, R. Kohn and J.L. Lions (edit.), Springer, Berlin, Heidelberg,
New York, 150

MirtoN G.W., GoLDEN K., 1986, Thermal Conductions in Composites, in
Thermal Conductivity 18, 'T. Asworth and D.R. Smith (edit.), Plenum Press,
New York, 571-582

NAYFEH A.H., 1973, Perturbation Methods, John Wiley and Sons, New York

NEMETH G., Paris G., 1985, The Gibbs Phenomenon in Generalized Padé
Approximants, J. Math. Phys., 26, 6, 1175-1178

OBRrRAZTSOV I.F., NERUBAYLO B.V., ANDRIANOV 1.V, 1991, Asymplotic Me-
thods in the Structural Mechanics of Thin-walled Structures, Mashinostroenie,
Moscow (in Russian)



86.
87.

88.

89.
90.
91.

92.

" 93.
94.
95.

96.

97.

98.

99.
100.
101.

102.

103.

TwoO-POINT PADE APPROXIMANTS... 605

PANCHENKOV A.N., 1976, Foundalion of Limiting Correclion Theory, Nauka,
Moscow (in Russian)

Pozz1 A., 1994, Applicalion of Padé Approzimation Theory in Fluid Dynamics,
World Scientific Publ. Co., Singapore

ROSENBERG R.M., ATKINSON C.P., 1959, On the Natural Modes and their
Stability in Nonlinear Two Degrees of Freedom Systems J. Appl. Mechs, 26,
377-385

ROSENBERG R.M., 1966, On Nonlinear Vibrations of Systems with Many De-
grees of Freedom, Adv. Appl. Mechs, 9, 156-243

SCOROBOGAT’KO V.YA., 1987, Theory of the Branching Continual Fractions
and ils Application in the Numerical Mathematics, Nauka, Moscow (in Russian)

SEMERDJIEV KH., 1979, Trigonomertic Padé Approximants and Gibbs Pheno-
menon, Rep. Uniled Inst. Nuclear Research, NP5-12484, Dubna (in Russian)

Sipi A., 1980a, The Padé Table and its Connection with Some Weak Expo-
nential Function Approximations to Laplace Transform Inverse, Lect. Noles

Maths, 888, 352-362

Sipi A., 1980b, Some Aspects of Two-Point Padé Approximants, J. Comp.
Appl. Maths, 6, 9-17

SMiTH D.A., Forb W.F., 1979, Acceleration of Linear and Logarithmic Co-
nvergence, SIAM J. Numer. Anal., 16, 2, 223-240

SMiTH D.A., Forp W.F., 1982, Numerical Computation of Nonlinear Co-
nvergence Acceleration Methods, Math. Comp., 38, 158, 481-499

STANKEVICH A.l., EVKIN A.YU., VERETENNIKOV S.A., 1991, Oscillation of
Spherical Shells with Large Deflections, lzv. VUZov Mashinostroenie, 10-12,
29-33 (in Russian)

TaLBoT A., 1979, The Accurate Numerical Inversion of Laplace Transforms,
J. Inst. Maths Applics, 23, 97-120

THErRAPOS C.P., DiamEssis J.E., 1984, Approximate Padé Approximants
with applications to Rational Approximation and Linear-Order Reduction, Proc
IEEE, 72, 12, 1811-1813

ToKARZEWSKI S., 1996a, Two-Point Padé Approximants for the Expansions
of Stieltjes Functions in Real Domain, J. Comp. Appl. Maths, 67, 59-72

ToKARZEWSKI S., 1996b, N-Point Padé A pproximants to Real-Valued Stieltjes
Series with Nonzero Radiii of Convergence, J. Comp. Appl. Maths, 75, 259-280

TOKARZEWSKI S., BLAWZDZIEWICZ J., ANDRIANOV I., 1994a, Two-Point Pa-
dé Approximants for Formal Stieltjes Series, Num. Alg., 8, 313-328

TOKARZEWSKI S., BLAWZDZIEWICZ J., ANDRIANOV L., 1994b, Effective Con-
ductivity for Densely Packed Ilighly Conducting Cylinders, Appl. Phys. A, 59,
601-604

ToxkarRZEWSKI S., TELEGA J.J., 1996a, S-Continued Fraction to Complex
Transport Coeflicients of Two-Phase Composites, Comp. Assis. Mech. and
Eng. Sc., 3, 109-119

6 — Mechanika Teoretyczna



606

104.

105.

106.

107.

108.

[.ANDRIANOV ET AL.

TOKARZEWSKI S., TELEGa J.J., 1996b, Two-Point Padé Approximants to
Stieltjes Series Representations of Bulk Moduli of Regular Composites, Comp.
Assis. Mech. and Eng. Sc., 3, 121-132

TOKARZEWSKI S., TELEGA J.J., 1997, A Contribution to the Bounds on Real
Effective Moduli of Two-Phase Composite Materials, Math. Models and Meth.
Appl. Sci., (in press)

VAKAKIS A.F., ManNEvIcH L.I., MiKHLIN YU.V., PHILIPCHUK V.N., ZE-
VIN A.A., 1996, Normal Modes and Localization in Nonlinear Systems, Wiley
Interscience, New York

VAN ISEGHEM J., 1987, Laplace T17 Transform Inversion and Padé-type Ap-
proximants, Appl. Num. Maths, 3, 529-538

ViNnoGraDOV V.N., Gay E.V., RaBoTnov N.C., 1987, Analytical Approxi-
mation of Dala in Nucler and Neutron Physics, Energoatomizdat, Moscow (in

Russian)

Dwu-punktowe aproksymanty Padé i ich zastosowanie do rozwiazywania

problemdéw mechaniki

Streszczenie

Wiele matematycznych i mechamcmych zagadmen zaleznych od bezwymiarowego
parametru ¢ daje si¢ rozwiaza¢ w postaci rozwinigé asymptotycznych wokél ¢ = 0
1 ¢ = co. Powstaje naturalne pytanie, czy moina w oparciu o dostepne rozwinigcia
asymptotyczne sluszne dla ¢ — 0 and ¢ — oo przewidzie¢ rozwigzanie obowiazujace
dla dowolnego ¢. Na tak ogélnie postawione pytanie nie uzyskano dotychczas pelnej
odpowiedzi. Istnieja jednak szczego6lne przypa(ll\l gdzie taka odpowied? jest mozliwa.
Uzyskuje sie ja Lonstruu_]a,c dla szeregow asymptotycznych tak zwane przyblizenia
Padé. Niniejsza praca poswigcona jest przegladowi wybranych problemow teorii plyt,
powlok, liniowych i nieliniowych drgan, przewodnictwa cieplnego dla osrodkéw niejed-
norodnych 1 innych, ktére w ostatnich kilku latach rozwiazano stosujac przyblizenia

Padé.
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