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The paper presents a solution to the inverse problem for a gas turbine
stage within the frame of axisymmetrical stationary flow model. The
shapes of axisymmetrical stream surface are assumed to be paraboloi-
dal and flow is isentropic. The solution yields the curvatures of blade
channels and the distribution of parameters in the entire flow field.
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1. Introduction

Although the axisymmetrical models have becn already commonly used in
engineering aplications for turbomachine stages calculations (¢f Wennstrom
(1974), Biitikofer et al. (1989)), the inverse approach seems to be rather new
in the design problems. The inverse approach is a discipline which is growing
very rapidly in the field of engineering. This approach can support the design
procedures very efficiently if the problems are formulated in the way which
allows one to find an effective solution.

In the presented example the inverse approach is based on the assumptions
that axisymmetrical stream surfaces are known in the form of paraboloidal
shapes as it is shown in Fig.1. One can build the coordinate system based on
such paraboloidal surfaces using them as the coordinate surfaces. The family
of planes perperdicular to the axis of the stage and the family of meridio-
nal planes which contain the axis can be treated as the second and the third
coordinate surfaces, respectively. Such a coordinate system is described by
Puzyrewski and Namiesnik (1993). For the nozzle blade flow the solution in
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such a coordinate system was presented by Puzyrewski and Namies$nik (1995).
The paper presents the solution for the whole stage; i.e., nozzle, gap and rotor
domains fitted into such a coordinate system. Unlike a similar solution for
conical coordinate system as it was formulated by Puzyrewski and Pozorski
(1993) the present example includes the curvatures of stream lines in a meri-
dional cross section. Moreover, the inclination of the blading domain interfaces
in axial directions as it is shown in Fig.2 causes an additional complication in
the algorithm of rotor domain.

2. Basic assumptions

The assumptions on the model of the flow is formulated can be separated
into groups. The main assumptions are: the stationary and axisymmetrical
flow model.

The assumption of stationary flow excludes the main mechanism of the
energy subtraction from the flow. In the real turbomachinery stage the main
mechanism of the energy subtraction follows from dp/dt = 0. If the condition
0/0t = 0 holds, then one has to introduce energy subtraction from the flow,
in accordance with the Euler formula

—a= (U,UW))0 - (U,Urm)l (2.1)
where |
U,2y — circumferencial velocity of the flow
U, — rotor circumferencial velocity

and the subscripts 0 and 1 denote the corresponding positions along the axis
of the stage. For the nozzle flow and for the gap flow U, = 0, which simply
means conservation of total energy. The energy is subtracted at the rotor
inlet, where U, # 0. This is rather a rough model due to the discontinuity in
energy transfer from the flow at the rotor inlet of the stage.

The second assumption of axisymmetry makes the cascades "invisible”.
On the assumption that all derivatives in the circumferencial direction vanish,
the governing equations become more simple. As a consequence, the existence
of real cascade has to be represented in the mass conservation, momentum,
energy and entrophy equations, respectively in the way which reflect the exi-
stence of blading.

In the mass conservation equation the blockage factor 7(z(1), z(3) corre-
sponds to the fraction of the space occupied by blading, i.e. not available for
the flow.
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In the momentum conservation equation the existence of the blading can
be represented by the reaction force continuosly distributed in region of bla-
ding. In a general case the reaction force has three components. Here, for the
coordinate system based on parabolic surfaces the reaction force will be pre-
sented only by components in the plane tangential to the parabolic surfaces,
which means

Fyy=0 F»#0 Fos #£0 (2:2)

Thus the model is simplified because it removes one unknown F, ) =0.

In the energy equation the subtraction of energy appears only in the rotor
domain by formula (2.1) whereas in the nozzle and gap domains the total
energy is conserved as noted above.

In the entropy balance equation the dissipation losses can be modelled
assuming a certain distribution of entropy in the field of nozzle, gap and rotor.
Then one can use the formula

% = %e p[ 5 50)] (2.3)

where S has to be chosen as a function of position in the flow domain, presu-
ming a certain level of losses. For the isentropic model one can assume § = Sy
and formula (2.3) reduces to the isentropic one

4 Po
priair (24)
P Po

3. Geometry of the stage

The stage considered here has the form of the following parabolic stream
surfaces

r_rw-}—};—:(?—%) (3.1)

where 7, and 2o are the parameters shown in the Fig.1.
The parameter h identifies the parabola and will be treated as the first

coordinate
D =h

Along the circumference the angle ¢ will be chosen as the second coordinate

2 =
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and the third coordinate is

In the paraboloidal coordinate system formula (3.1) can be rewritten as

, = f(:u(l),z(S)) =1y + 2 ) (2 _ Z“g) (3.2)
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Fig. 1.

The system (1), 2 2() is non-orthogonal in pairs (z(1),z(?)) and
(z(1), z(3)) and orthogonal in the pair (2(2),z(3),
The axial borders of the nozzle are at the inlet

Zpo = const

and at the outlet
21 = 210+ tan ¢y (r — 1y,)

while for the rotor at the inlet

29 = z9p + tan ¢2(7‘ — Tw)
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and at the outlet

23 = 29 + tan ¢3(r — r3)

plane as it can be seen in Fig.2.

r‘}

where ¢, ¢2, ¢3 are the inclinations of conical domain interfaces in the (r,z)

23=z39+1g ¢3(r-r,,,)
Zy=2z10+18 @(r-r)

21=220 +1g (1)

Z0=200

Fig. 2.

4.

Governing equations

In non-orthogonal system 2(V 2(2) 2(3) the set of governing equations has
the form presented by Puzyrewski and Namiesnik (1993), (1995).

With the help of relation (3.2) one can derive the mass conservation equ-
ation

£(1)z(3) FOM PO 23
(e Gl ) i Gl

20 ) %0 >U 1 (1) ..(3) (3)
z - ( A ) =
,/1+[2—Zf,”(1”‘”)l2 PR )

20

p

(4.1)
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Momentum conservation equation in the z(1) direction

pU 2, pU2 - 22(()1)

(4.2)

1+[2§?)(1—I$))}2 op 2%“’( _ﬁ) op

- 1:(_3_)<2 _ ﬁ) dz(1) + 20 0z3)
zg

20

in the z(2) direction

pPU3) )} [3(]1(3) 2221) (1 B r»'i_:)> Vet =pF ) (4.3)

\/1 [ (1o )P [0 (2- =)

zo0
in the z®) direction

41:(1)2 ;1;(3)
PU) Wy | (1 - 30—) Uy |
2() \]2 | 9z 2:0) (1 _ )17
\/1+[27(1*7)] L [ (1 - =) ] "
4.4
‘1;(1) 1(3)
22, songe [E2(1-2) 5,
_sz(a>+\/l+ [ 20 (1_ X)} %(2_%3_)) 9r() 9z (3)
The energy conservation equation
1 K p
§(U3(2> + Uﬁ(a)) tooi, Vel = h(x(l)) (4.5)
The isentropic condition
P _ (1)
£ —clz 4.6
o = <(=) (46)
where
r
Ur = A 4
30" (4.7)

is the circumferencial velocity of rotor for = in rpm.
The above set of equations is closed with respect to: p, U 2y, Uyesy, Flu2y,
FJ;(3)’ p'
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5. Method of solution

The method of solution was described by Puzyrewski and Namiesénik
(1993), (1995). It is based on the fact that the solution of above equations
can be reduced to the hyperbolic one

1+ [ 2z0) (1 — ?%)]2 dp 92(1) 2@y ap
= (2— D) gz (1-%)amet

20

20

oU 2 oU 2 (1) ..(3)
HOGAT + 0755 = Ra (a2

(9p K (9p ('?U 2(2) l[r 8UI(2) _
0(9:1:(1) + k—10z(3) +0 dz(1) + UI(2)< Uz(z)) 0z(3)

(5.1)
- R, (z(l),x(a’))
dp dp U 2 U (2

(1) (3) #(2) )
dz 5200 + dx (9.1‘(3)+08( +0a 3 = dp

dp dp (1)U (30U _
05:0 * O%m T4 o T4 3. — Wao

where Ry and R. are the right-hand side functions.
The set of above equations has the main determinant of the coefficient
matrix equal to

WOZPU(2)( UT)_
z(2)
(5.2)
(1) (3)
220, 23 4[R2 (1- 22
— 2 N 0 (3) (1)
20 (1 29 )(LE * r_(_)(g _ ﬂ) de™ | do
20 20
The condition Wy = 0 defines two family of characteristics.
The first family is
2 = const (5.3)
The second family is
# _ 2 .
z(3) (229 — 2(¥)
(5.4)

1 ! (3) ' (3) _
I D) w2 = o
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where 2/ = 203 at 2() = 0.
Along the characteristics (5.4) the equation

dp  _ pUZs) 22?) (2 - %)) +
dz(1) ry + L“Z—o@(? B x(s)) 14 [2r(1)< %&))]2

(5.5)

pUZ . P20 (2 — 22
3 28

20 20

22
EE e
has to be satisfied. The boundary conditions have to be imposed at the bor-
ders where the characteristics (5.4) starts as shown in Fig.3. The domain of
the nozzle AgBoByA; is covered by the family of characteristics (5.3) star-
ting at the inlet of the nozzle AgBy and by the characterics of the second
family starting either from the inlet A{AJA{ ... etc or from the upper border
BBy By ... etc. The arrow shows the direction of integration.

r“ B, SB B3
Bl o,
P +—
Aq !
A5 T‘\
7 |
0 ‘v- ‘l'\
JARSEE
2
Ap 1

|
N d Lo
Ay A A St Sy %As
| 1

The domain of the gap A, BBy A, is easy to integrate explicitly because
the reaction force components F, ;) = F ) = 0 vanish.

The domain of the rotor AqsByB3.A3 is divided into three subdomains
where the integration is handled differently. As it follows from the determinant
(5.2) the points at which U_q) = U, are singular. If this condition occurs at
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the outer border of rotor B33 B3, at the point, say, Sg then the characteristics
starting at this point may be regarded as a singular line, where U_q) = U,.
This cuts the subdomain A;B,5458 out of the rotor. Here U, ) changes its
value from those known from the solution in the gap region at the line A,B,
to the value of U,y = U, at the singular line 545p. If one assumes the
function U_e (2, 2(¥) which fulfills the boundary conditions along the lines
AzB2 and 5458, then Eq (5.5) for the pressure can be integrated and the
blockage factor 7(z(1),z(3)) can be obtained. The blockage factor determines
the relative thickness of profiles in the region.

For the second subdomain in the rotor 54, Sg, B3, 5, the characteristics
which starts at the line Sp B3 can be integrated on the assumption of blockage
factor 7(z(1),2(3). In contrast to the first subdomain, here 7(z(1),2®) js
known and U, is the resulting function.

At the point 5%, one knows U, from the integration along B35%. If
one assumes the behavior of U () along 5’y A3 then the solution can be found
in the third subdomain 5/, B3As3. Here the direction of integration is shown
by the arrows. In this subdomain the blockage factor 7(z(1),2(3)) has to be
given and has to account for the relative trailing edge thickness along the exit
line A3Bj.

6. Numerical example

For the numerical example the gas turbine stage with the geometrical pro-
portions shown in Fig.4 was taken. The inlet static parameters were

po = 6 bars To = 1000 K

For the mass flow rate
m = 12.6 kg/s

the uniform axial component of velocity at the inlet to the nozzle was
Up = 47.8512m/s

At the upper border of the nozzle domain a linear distribution of U (2
component was asumed up to 350m/s. The velocity components at the points
Az and B3 were U, = —100m/s and U, ) = 0m/s, respectively.

The gas constants were

R = 287 kJ/(keK) k=14
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TZ 4.7628 4.762°

0.083

Hy=

Z00=0.163802

Up=47.851m/s

yor

e Nozzle flow

The upper boundary condition set as linear velocity Uy led to the pres-
sure distribution along the arc BgBj. The blockage factor in form of the
function

3)

0109 — 2y 1 - #®)y2 /5
T(m(1)7$<3)):(0.1+0.1 0_10; )(1 0; )2@@)2

was introduced into the nozzle domain. Here (3 is the relative width of
nozzle blading changing from 0 at the inlet to 1 at the outlet along the
coordinate axis z(3).

The main aim of the calculations was to find the surfaces S5 as it is shown
in Fig.5 for radially positioned generatrix. The results of calculation are shown
in Fig.6 in the form of 53 surface. The distribution of parameters at the outet
enabled us to start with the calculations of the gap domain.
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generatrix of §
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o Gap flow

The flow parameters within the gap can be found by the direct integration.
The exit parameters at the gap were startig parameters for the rotor domain.
The Fig.7 surface of type S, for the gap is shown in Fig.7.

Fig. 7.

e Rotor flow

The first subdomain of the rotor (left to singular line) was covered by the
linear change of U,(z) velocity component from the value at rotor inlet to the
value U, = U, at the singular line where U, results from n = 8000rpm. In
the second and third subdomains S4, Sp, B3, 5% and 5! B3As, respectively,
the blockage factor was introduced in the form

(x(Q)’ x(3)) — TgKa_:(B))O'I n 0.1<1 B j(3))1.25]

where 7, is the blockage factor at the singular line and Z®) is the relative
width of the rotor blade startig with 1 at singular line and ending with 0 at
the exit.
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It is worth noting that the blockage factor reaches a very high value in the
first subdomain as it is shown in Fig.8. Here z = 0 is the blockage factor at
the root, x; = 0.0545 is the blockage factor at mid-height and z; = 0.109 at
the tip. From the design point of view the magnitude of so high blockage factor
is rather questionable. But one has to take into account that in the presented
example the flow is non-dissipative, so it is not realistic. It demonstrates the
conditions which have to be fulfiled for the demanded .5, surfaces on given
assumptions and chosen boudary conditions.

The relative pressure drop in the rotor with respect to the pressure drop in
the whole stage along meridional streamlines is shown in Fig.9. The degree of
reaction is proportional to this factor. It shows the positive, of a rather high
value, degree of reaction along the height of the stage.

The surface 5, for the rotor in the absolute system is shown in Fig.10a
and for the relative system in Fig.10b.

(b)

v
AT A

Fig. 10.
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7. Conclusions

The paper demonstrates the effectivness of the algorithm of inverse pro-
blem solving for a gas turbine stage shaped by parabolic meridional stream
lines (57 surfaces).

The boundary conditions for the rotor domain had a specific character
which demanded division of this domain into different subdomains. The paper
aimed at showing this feature of the problem.

The solution for nondisipative flow has been obtained, but the main idea
of the algorithm can be applied also to a dissipative case.
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Problem odwrotny dla osiowosymetrycznego parabolicznego stopnia
turbiny gazowej

Streszczenie

Praca zawiera rozwiagzanie problemu odwrotnego dla stopnia turbiny gazowej
w ramach osiowosymetrycznego modelu. Ksztalty osiowosymetrycznych powierzchni
pradu zalozono w formie parabolid. Przeplyw jest $cisliwy oraz izentropowy. Rozwia-
zanie prowadzi do okreslenia krzywizn kanaléw miedzylopatkowych 1 rozkladu para-
metréw w calym obszarze stopnia.
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