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An algorithm of modelling and triangulation of plain domains is presen-
ted. For the purpose ol geometrical modelling of 2D domains apprio-
priate topology is defined. B-spline curves represent the boundary. An
algorithm of generation of graded grids on B-spline curves is worked out.
The internal points are generated by using the advancing front techni-
que. The triangulation is performed by mneans of the Delaunay advancing
front method. Numerical examples present meshes over airfoils.
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1. Introduction

The paper is focused on modelling and triangulation of 2D domains of
complex geometry. It especially concerns the profiles (airfoils), which are
commonly met in fluid mechanics. An important class of them is the NACA
(with or without a flap) family of wings or Korn’s airfoil profile (see Derivieux
et al. (1989)). Boundaries of these domains are described by sets of points,
which are approximated by B-spline functions. Having the domain modelled
in this way, we triangulate it using the algorithm being the subject of the
paper. Triangulation of such domains is necessary for the FEM (finite ele-
ment method) or the FDM (finite difference method) computations in fluid
mechanics. In the case of airfoil profiles it is necesary to generate graded finite
element meshes of the size of the order 10-VFe along the boundary, where
Re is the Reynolds number, and gradually increasing when reaching the part
of the boundary (on which Sommerfeld’s conditions are imposed) defining the
computational domain. It is assumed, that there is a prescribed mesh density
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function defining the sizes of éelements and the problem is how to generate a
finite element mesh according to the given density.

In the paper, numerical algorithms for mesh generation are proposed and
their computer implementations are presented. In conclusion some numerical
examples are presented. The mesh generation procedure with the mesh density
function can also be used as a remeshing algorithm (see Zienkiewicz and Zhu
(1991)), where according to the local error estimate, a completely new mesh is
generated resulting in a better approximation of the solution. In the present
approach, the idea of mesh generation is a continuation of the approach for
uniform meshes (see Kucwaj (1992), (1993), (1995)). The algorithm of mesh

generation and triangulation can be divided into the following steps:
e Boundary points generation with a given mesh density function p
o Internal points generation according to a given mesh density function p
e Triangulation of the domain on the previously obtained grid points
e Laplacian smoothing of the mesh.
In author’s opinion new contributions of the paper are as follows:

1. Internal and boundary points generation with the aid of advancing front
technique

2. The modelling of boundary by B-spline curves (see Bartels et al. (1989))

3. Computer code and data structure for generation of points and triangu-
lation with a mesh density function

4. Generation of graded meshes on B-spline curves
5. Numerical examples illustrating the algorithm.

Further developements will be connected with: improvements of points ge-
neration, extension of the code by new algorithms, generation of grid points
on surfaces with a given mesh density function, application of the method to
remeshing algorithms, construction of a mesh density function for some fluid
mechanics problems.
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2. Main assumptions about the boundary representation

Topology and appriopriate data structure for a plane domain triangulation
are connected with different types of curves which represent pieces of the
boundary (cf Kucwaj(1995)). A curve is represented by its ends and the type.
Therefore all the curves available having a representation in the computer data
structure are topologically equivalent to a straight line segment.

It is assumed, that the domain D C IR? is multiconnected, say, k-connec-
ted with a finite number of internal contours. The boundary of the domain is
represented as a union of closed curves, without multiple points. Every loop is
represented as a sequence of curves, appearing in the order, in which the end
of any curve is the beginning of the next one. In a special case the end of the
last curve is the beginning of the first one. As it was assumed every curve was
topologically equivalent to a straight line segment with the ends belonging to
a fixed set of points 7. The curves are counter-clockwise with respect to the
domain.

In the computer data structure the set of points P and the set of curves
C are introduced

P = {ij : ]'21,....1\7;, kZl,...,Np}

where
N; - number of loops
N, — number of points in the jth contour
C:={C; :i1=1,...,N.}
where
N, - number of curves

Theﬁfollowing types of curves are available: a straight line segment, an

arch of circle, a B-spline curve.
The computer code is open, so any new type of curve can be introduced.

It is assumed, that the curves do not intersect, i.e.: Vi,j = 1,..., N,
i£7,CinC; =0.
An additional assumption about the curve is: Vi = 1,...,N,

3 integers ly,l3, 1 < l1,l5 < N,, such, that P, P, are the endpoints of
the curve C;.

For the boundary 0f2 of the domain (2 it is assumed, that there exists a
set of numbers ki, ks, ..., ks, such that

o0 =) (2.1)

s=1
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On the other hand, Vi, 1 </ < N, 37,1 <7 < N, such that point F; is an
endpoint of the curve Cy.

It is not necessary to assume, that every curve of the set C must be a piece
of 0f2. It means that it is possible to define the curves lying in the interior of
{2 and to generate points on it before generation of internal points.

3. Generation of points on curves

In this section the algorithms of generation of points on curves with a given
mesh density function are presented. Particular algorithms correspond to the
type of the curve. In the case of a straight line segment the technique after
Lo (1991) is applied and for an arch this algorithm is adapted as well. In the
case of B-spline curves a technique based on points generation on a control
polygon and then projection of them on the curve is worked out.

3.1. Generation of points on a straight line segment

The problem of points geuneration with a mesh density function is not new
and was a matter of interest of many authors (cf Knupp (1991), Lo (1992)).
In this paper the procedure of points generation on a straight line segment
follows the technique presented by Lo (1991). The only difference between
the non-uniform points generation and the present algorithm lies in the fact,
that there is a value dz defining the length of the increment dz partitioning
the considered straight line segment into pieces of equal size to interpolate
the mesh density function with piecewise linear function. It means, that the
increment dr must be given. The procedure of the paper is simplified in
comparison with that given by Lo (1991), since the uniform grid has been used
to the mesh density function approximation over the straight line segment.

Consider the straight line segment [a,b] (Fig.1). Let us introduce the

following notations

bd_ “+0.5) (3.1)

z

m.:E(

where FE(2), means the integer part of =z,

Az =

- (3.2)



MODELLING AND TRIANGULATION... 373

—
-

a b

Fig. 1. The interpolation of the mesh density function

where a, b are the endpoints of the straight line segment,
P =a+iAx i1=0,1,...,m (3.3)

Additionally, it is assumed that, the mesh density function p : [a,b] — R is
given. Then the algorithm of points gencration looks like follows:

the first point of the considered grid is Fp. Let us assume, for an induction
step, that A is just generated, the next point B should satisfy the
following condition
(A B
plA) + p(B) (3.4)

|AB| = 5

Consider the following cases:
e Case (i)
A, B lie in the same interval [P,_y, Pi], (see Fig.2), let

A=P_1+ pu(P - PF_y)
(3.5)

B=P_,+ AP —-Piy)

where
0<A p<1 (3.6)

The condition (3.6) is satisfied by B if and only if B € [Pi—1, P]. The
problem is how to find A.
Taking into account Eqs (3.4) and (3.5), the following equations are sati-
sfied
A B
p(A) + p(B) (3.7)

|AB] = (A = PPl = 25
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|

Py, A B P

Fig. 2. Case (i)

On the other hand, the linear interpolation h(z) of the mesh density function

15
/7,1' - hi—l

P, — P4
where h; = p(F;),i=0,1,...,m. Substituting of Eq (3.5); into Eqs (3.8) we
have

h(z) = (x = Py)+ hiy (3.8)

h(B) =h;_ + /\(h,' — hi—l) (39)

Introducing Eq (3.9) into Eq (3.7) and the formula for A(B) instead of p(B),
the following equation is obtained

A —{-hl’_ + A hi—hi_
(- Py p) = AR M hiy) (3.10)
From Eq (3.10) by introducing the notation r; = |P;_yF;| we obtain
2Ari = 2ur; = p(A) 4+ hiy 4+ A(hi — hiq) (3.11)
then
A2r; 4+ hioy — hy) = p(A) + hiq + 2pur; (3.12)
hence (A) )
4 + i+ 2pr;
A= 3.1
ST - (3.13)
The number A should satisfy the following condition
0<AL] (3.14)

if it does not satisfy the inequalities then the next case should be considered:
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e Case (ii)

e

~
e
Oalr

LB By

Fig. 3. Case (ii)
Points A, B are not lying the same straight line segment (see Fig.3).

Strictly speaking the point A lies in the interval [P;_y, P;], but the point B
lies in [P}, Piy1].

Introducing the following notations
l; = |AP| 7y = higr — hy (3.15)
then for some 0 < A <1
|P;B| = hi + AMhiz1 — hy) (3.16)
The point B should satisfy the condition
|AB| = %[h,(A) + h(B)] (3.17)

where h is defined by the piecewise linear approximation of the mesh density
function p, so we have

h(B) = hi + A hiyr — hy) (3.18)
Then by the inserting Eq (3.18) into Eq (3.17) we obtain
h(A) + hi + Mhig1 — hi) = 20 + 2 + 2h, (3.19)
From the last equation the value A is

CR(A)Y+ R — 2

Ty

A (3.20)



376 J. Kucwal

If A > 1 then the next segment to P;P;4, is considered, and so on.

If all the straight line segments are taken into account and all values of A
are greater than 1 then the last point of the mesh is just A, and the length
of the interval [A, P, 41], where m is the number of generated points, is
proportionally distributed among the previously defined segments according
to their lengths. Let us introduce the following notation

A;, 7 =0,1...,m — the generated set of points,

b; = |A;Aj4l,7=0,1,...,m— 1.

A new set of points A}, 7 =0,1,...,m — 1 is defined by using the recursive
formula as

Af = Ao

Al = AT+ 63 j=0,1,....m—1

Let r = |[APmn41[, and §; be the length of the ith line segment, then new
lengths of the straights line segments can be defined by the following formula

N d; .
6]-:5]-+7'?] 7=0,1,...,m=-1 (3.21)
where
m—1
§=>4; (3.22)
j=0

3.2. Generation of points on an arch of circle

A circle as every curve in the computer data structure is defined by its
ends and, additionally, by the center of the circle containing the arch. Let us

introduce the notation
S — centre of the circle

R ~ radius of the circle
A, B - ends of the arch.
The idea of the points generation on the the circle is as follows:

1. The arch is mapped onto the interval, the length of which equals to the
length of the arch

2. A new mesh density function is defined by using the density function
given on the arch

3. The points on the interval with the newly given density function are
generation
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4. The obtained nodes are remapped onto the curve.
The introduced interval is equal to [0, M], where
M =|AB| (3.23)
The mapping of the arch onto the interval is defined as follows
K :AB-— [0, M] (3.24)

where for every point P GAVB, K(P)=| AP |. The mesh density function on
the interval [0, M]is defined as

pu(a) = p(K () (3.25)

The points of the interval [0, M] are defined by the technique presented in
the previous section.

3.3. Generation of points on the B-spline curve

Fig. 4. Control polygon

A B-spline curve is defined by a set of control vertices Vo,V1,..., Vo,
(see Fig.4) and the formula below (cf Bartels et al. (1989), Dierckx (1995)).
The set of control vertices forms the control polygon. The B-spline curve is
defined by the formula

C(t) = SViBiy(1) (3.26)
=0
where B, are B-spline functions of order p, defined by the recursive formula
— 1) B p- itk = 1) Doy,
Bi,p — (t )B P l(t) + (i +k t)B +1vP(t) (327)

Ligp—1 — U Livp — tig1
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for p > 0, and

. _ 1 ift, <t< tiv1
Biolt) = { 0 otherwise

if p=0.
The B-spline functions are defined on the following knot vector (cf Bartels
et al. (1989), Dierckx (1995))

V={to,---st0,t1, - s by tug 1y e - s tng1} (3.28)
p+1 p+1
where
o <t1 <...< 1y <lnpi (3.29)

and m=n+2p+ 1.

The generation of points on the B-spline curve starts with the generation of
points on the control polygon and then the generated grid points are projected
onto the B-spline curve to obtain the final grid. The projection is done by using
a parametric equation of the curve, where points at first are generated on the
interval, and then mapped onto the curve.

The proposed approach may be summarized as follows:

1. Define the interval [0, M], where

m—1
M=) ViV (3.30)
=0
Let C* denote the control polygon defined by V;, i = 0,...,m. Then a
mapping

K :C*— [0, M] (3.31)
is defined as follows:
let P € C* then
k-1
K(P)=) |ViViul + |PVi| (3.32)
=0

where k is such that P € V. V4. It is easy to show, that K(P) € [0, M].
2. The knot vector
V:{O,...,O,tl,...,tn,tn+1,...,tn+1} (333)
——— ——

~——
p+1 p+1

where
0<ty <...<ty <Ipp1 (3.34)
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is defined as
. = K(V;) i =0,...,n+1 (3.35)

3. Assume that a mesh density function
p:Dr— IR (3.36)

is given, where D is a 2D domain containing B-spline curve C, and control
polygon C*. Then the mesh density function

par 1[0, M]— TR (3.37)

is defined by
o) = p(C(1) L0, M] (3.38)

Finally, the points of the interval [0, M] are generated using the algorithm
given in Section 3.1. In this way a set of points Fy, Py,..., P is obtained.

4. The points F;, i = 0,...,{ are mapped onto the B-spline curve
C = C(1) by using Eq (3.26). It is recommended that the obtained po-
ints be projected orthogonally on the control polygon, and then again onto
the interval [0, M] by using the transformation K (P). In such a way a new
set of points P!/, ¢ =0,...,!is transformed on the B-spline curve.

77

In the algorithm it is assumed, that the control polygon is close enough to

the B-spline curve.

4. Generation of internal points

As in the proposed approach the advancing front technique (the Delaunay
advancing front technique, Lo (1989)) is applied to the triangulation of the
domain, the same approach is applied to the internal points generation. A ma-
jority of methods (cf Lo (1991), Morgan et al. (1994)) use the advancing front
technique to both grid generation and triangulation. In this paper the idea of
internal points generation and then the Delaunay triangulation is preferred.
The advantages of this approach, in author’s opinion, are as follows:

o A possibility of situating the points on the front in the way enabling
the mesh density function requirements to be satisfied, which is impos-
sible in the case of the advancing front approach with simultaneous grid
generation and triangulation.



380 J.Kucwal

e In the case when a newly generated point is very close to the front an
ill-conditioned triangle may appear, when advancing front technique per-
forms triangulation while points are inserted (in Fig.5 both the meshes
are obtained on that same grid points), what is avoided in the case of
Delaunay triangulation performed after the grid generation.

(2) (®)

Fig. 5. (a) — Triangulation during points insertion, (b) — Delaunay triangulation
after grid points are generated

One may consider the method using two runs of the advancing front pro-
cedure to be more time consuming. However there are two reasons, for which
such an approach is more effective than tlie method with simultaneous point
generation and triangulation.

The first approach is shorter because no triangles are formed. The second
is the Delaunay triangulation on the given set of points. It is well known (cf Lo
(1989)) that this is a very fast algorithm because there is no need to check the
intersections with the so called Delaunay part of the front, which decreases as
the number of triangles increases. It is rather difficult to decide, which method
is faster, but the previous subsections indicate that the approach (in author’s
opinion) presented in this paper is superior.

It is assumed, that the mesh density function

p:— IR (4.1)
is given. It should satisfy the condition
p(A) >0 VAe (4.2)

where {2 denotes the closure of (2. The algorithm starts with the front, which
is a sequence of straight line segments positively oriented with respect to the
domain. The set of such segments is obtained by points generation on the
curves consituting the boundary of the domain. The novel idea we propose is
to prescribe to every straight line segment of the front a value of 0 or 1 (what
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is interpreted as marked or not marked), at the beginning all the straight line
segments will be marked as 1.

Starting with any straight line segment AB of the front a new point C is
added if it lies on the left hand side of the segment AB and the sides of the
triangle ABC satisfy the following conditions

AC| = p(4) BC| = o(B) (4.3)
As a matter of fact the point C should satisfy the following conditions

p(A) + p(C)

5 = dist(A,C)

(4.4)

M — disi(B,C)

A ! B

Fig. 6. Illustration of the conditions (4.6)

The point C satisfying Eqs (4.3) is an approximation of the point which
should satisfy Eqs (4.4). In our first approach the point, that is obtained from
the conditions (3.38), (4.1) is taken into account. In the further approach the
point C will be treated as a good approximation of the point satisfying Eqs
(4.3), which can be solved by the Newton-Raphson method. The presented
approach works correctly, when the numbers |AB|, p(A), p(B) can create a
triangle. Using the notatjon

Te = p(A) ry, = p(B) [ = |AB| (4.5)
the numbers r,, 7y, ! form a triangle is if the following inequalities are satisfied

g+ 1 > 1 e +1> 1 Ty > T, (4.6)
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Fig. 7. Sample case of the condition (4.6); not satisfied

If the condition (4.6); (see Fig.7) is not satisfied (if r,, 7, ! are positive
both the conditions (4.6); 3 are automatically satisfied), then the point Cis a
midpoint of the straight line segment AB proportionally distributed according
to the values r, and ry. It leads to the following formula

C =M+ uB (4.7)
where
A>0 w>0 Adp=1 (4.8)
A and p are found from the proportions
A _n b _n 49)
[ ra+ry L re+ 1y ’

The violation of Eq (4.6); means, that 7, +1 < 7, (see Fig.8). In this case
it is proposed to fix the point C on the line perpendicular to the straight
line segment AB at the point A and lying on the left-hand side of AB, and
satisfying the proportionality

% = % (4.10)
Introducing the following vectors
AB = [a,l] v =[-b,a] (4.11)
and using the orthogonality of » and AB we obtain
C=A+Xv (4.12)
where
) = 14C] (4.13)

o]
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As it is shown in Fig.8
|AC| = |AE| + |CE| (4.14)

On the other hand, from equation (4.14) and Fig.8 we have

|CD| + |CE| = |AD| - |AE| (4.15)

|AD| = \/r? — 12 |AE| = r, (4.16)

and

&

Fig. 8. Mlustration of the violation of condition (4.6),

From the last two equations and Eqs (4.22) and (4.16) it is obtained

|AD| — |AE]

oDl = == (4.17)

and eventually
rE— 12—,

/ b

In the case 7, + ! < r, (see Fig.9) by the symmetry we obtain analogous
formulas for C
C =B+ (4.19)

where

/72 2 —
A=yfrzopp o Ya T T (4.20)

a g
l+Tb
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Fig. 9. NACAO0012 airfoil, 1384 triangles and 736 nodes

4.1. The algorithm of internal points generation by the advancing front
technique

As it was said in the previous subsection the advancing front method is
used to the internal points generation and then the Delaunay-advancing front
technique is applied to the triangulation.

Let {2 be the considered domain, and
p be the mesh density function

p:R——M  p>0 Y(z,y)€NR (4.21)

Let I’ be the generation front.
Then the algorithm of internal points generation can be summarized as follows

1. I' — 0492, (provided, that ¢{2 is represented by a sequence
of straight line segments determined by the points
generated on it)
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2. IF (I’ #0) THEN
find the last straight line segment AB belonging to I
ELSE
finish the points generation
ENDIF

3. IF (p(A)+ p( B) <|AB|) THEN
find the point C lying on the left-hand side of AB
according to Eqs (4.3)
ELSEIF (p( A)+|AB| < p( B)) THEN
find the point C according to Eq (4.7)
ELSEIF (p(B)+ | AB]) < p( B)) THEN
find the point C according to Eq (4.12)
ELSE
find the point C according to Eq (4.19)
ENDIF

4. TF (Y point P of the front disi(P,C)> ALCUe(P)y ypy
IF (ACNI'#0 and BCN I #Q THEN
- add the point C to the set of internal points,
remove AB from the front,
add AC and CB to the front,
go to 2,
ELSE
mark the front segment AB as inactive,
go to 2,
- ENDIF
ELSE
mark the front segment AB as inactive,
go to 2
ENDIF

The condition ()4 p(P)

p(C)+p

—_—t 4.22
’ (4.22)

is different from the condition presented by Lo (1991) i.e., for every segment

EF of the front

dist(P,C) >

p(C) +p(P) (4.23)

dist(P,EF) > ;

12 — Mechanika Teoretyczna
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When the grid generation process is maintained together with the triangu-
lation, then the violation of condition (4.6); generates degenerated triangles.
This will not happen in the case when the Delaunay triangulation is done after
the grid generation process on the previously fixed set of points.

5. The algorithm of triangulation

The algorithm of triangulation is similar to the algorithm presented by
Kucwaj (1992), (1993), Lo (1989). The only difference lies in the procedure of
searching for the candidates for the given straight line segment of the front to
form a triangle. In the previous case there was given one real value D defining
the mesh density factor in the whole domain. The set of candidates was the
set of the points lying in the interior part of the front or on the front and
belonging to the appriopriate circle of the radius D. In the present algorithm
this radius varies for different segments one straight line segment to another.
It is equal to the length of the current straight line segment. Let us introduce

the following notation:
02 - boundary of the domain 2

I' - peneration front
I'y - non-Delaunay part of the generation front
I'; - Delaunay part of the generation front.

Then the algorithm of triangulation can be written as follows:
1. Fl — (9.()
2. 112 — @

3. IF (I #0) THEN
find the last segment AB belonging to Iy
ELSE
IF (I'; #0) THEN
find the last segment belonging to I
ELSE
finish the triangulation
ENDIF
ENDIF

4. Rg «— the length of the segment AB
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5. R— Ry

6. Specify the set S of all points belonging
to AU U T, 1lying in the interior of the circle defined by
radius R and the centre in the midpoint of segment AB

7. Find the point C* € AU I'' U I';, which satisfies
ABXx BC >0, and C*¢c Cupec ¥YC<c S

8. IF (there is no intersection with [I';) THEN
form a triangle ABC” and add it to the list. Update Iy,
r,, A
ELSE
S— §-{C"}

IF (S #0) THEN
go to 4

ELSE

R+ R+ Ry
go to 3

ENDIF

ENDIF

6. The mesh density function in the interior of the domain

In various problems of mechanics it is necessary to define meshes which
vary gradually from one piece of the boundary to another due to a nonuniform
distribution of grid points on the boundaries. Following Lo (1991), the formula
defining the mesh density function in the domain may be given as

N
pi

i=1 4

p(z,y) = N (6.1)
Lz
=1
where
p: = |A:Bi] i=1,....N

(6.2)
d; = |PA;|

and {A;B;; i=1,...,N}is aset of boundary segments.
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7. Numerical examples

In this section some numerical results are presented. In Fig.10 and Fig.11
the NACAOI12 airfoil is presented.

Wi
Iy
A
A AVAYAY

\ 7
NEKT
%:V'}ivL

Fig. 10. A half of NACA0012 airfoil with 1678 triangles and 902 nodes

The mesh density function for the mesh shown in Fig.9 was assumed as

0.4y/x2 + 92+ 0.2 if (z,y)e FL
plz,y)= ¢ 0.05/(x +0.01)24+ 32 if (z,y)elL
Fq(6.1) if (z,y)eD
where F I - external loop, /LS - internal loop and D - domain.
Thus the mesh density function for the mesh shown in Fig.10 is of the form

|} 0.1v/2% + y2 4+ 0.007 if <05
p(z,y) = - TI365 12 1 12 - ;
0.1y/(z — 1.008930411365)% + y% + 0.006 otherwise

The mesh density function for the meshes in Fig.11 was taken as

0.2/x2 + y? + 1.4 if = <50
(z-73)+(y+13)2+1.1 if 50<2 <78
(z—88)24+(y+20)2+1.1 if 78 <z <100

0.2¢/(x — 111)2 4 (y + 36)2 + 1.1 otherwise

plz,y) =
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Fig. 11. NACAQQ66, 1740 triangles and 939 nodes

8. Final remarks

The paper presents the algorithm of points generation with a given mesh
density function in 2D multiconnected domains. The algorithm based on the
advancing front approach is worked out for both the grid generation and trian-
gulation. The characteristic feature of the algorithm is that triangulation fol-
lows grid generation. It allows one to perform the Delaunay triangulation on
the obtained grid points.

The computer code was developed and tested, and a variety of numerical
tests were run. The results prove effectiveness and usefullnes of the presented
method and the computer code.

The code is written in FORTRAN and the examples were run on a worksta-
tion. The generated meshes were used for solving the Navier-Stokes equations.
The results show effectiveness of the proposed approach being considered as
an initial step for adaptation.
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Modelowanie i triangularyzacja ptaskich obszaréw o zlozonej

geometrii 1 pewne zastosowania w mechanice plynéw

Streszczenie

Praca przedstawia modelowanie geometryczne obszaréw plaskich oraz ich
triangularyzacje. W celu uwzglednienia szerokiej klasy obszardéw plaskich
zostaly odpowiednio zdefiniowane cechy topologiczne obszaru oraz ich wza-
jemne relacje. Krzywe reprezentowane sa poprzez wykorzystanie funkcji typu
B-spline. Opracowany zostal algorytm generowania punktéw w obszarze
z zadana gestoscia. Punkty wewnetrzne generowane sa metoda postepujacego
frontu. Praca ilustrowana jest przykladami numerycznymi.
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