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A method for numerical simulation of 2D incompressible high Reynolds
number flows with laminar separation and big recirculation zones - re-
gions of vortex formation and wake building — is presented. The paper is
concerned with the case of separation lrom the surface, not from sharp
edges. The calculation method draws on viscous splitting of the vorti-
city transport equation. At each time step, this equation is solved in
three separate substeps — convection (of point vortices and vortex sheet
elements with their local velocities), difflusion (by means of the random
walk technique) and generation (by means of Martensen’s concept of
vortex sheet extended by Lewis). The method does not assume any se-
paration criterton. Locations of the separation points can be roughly
estimated by means of compuler [low visualisation as the stations at
whicl the calculation elements - particles of fluid — leave the vicinity of
the profile and the fluid begins to recirculate. This method of modelling
has been called the cloud vorticity method. The aerodynamic force and
its moment are calculated from the balance of momentum and moment
of momentum equations in the low domain. The flow patterns for a cir-
cular cylinder and NACA profile operating under separating conditions
are presented to illustrate the calculation method. The occurrence of
secondary phenomena in separated flows is also considered in the paper.

Key words: vorticity transport equation, viscous splitting, random walk,
vortex cloud

1. Introduction

Separation is by far one of the most important and interesting fluid flow
phenomena. The location of separation points has a decisive effect on the
profile lift and drag. Usually, the separation involves unsteadiness which can
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not be explained on the grounds of the steady flow theory. In fluid flow machi-
nery the occurrence of separation changes the operating conditions resulting
in efficiency drop, cavitation and stall in hiade-to-blade channels.

Sharp edges and high curvatures are most evidently exposed to the danger
of separation. However, separation occurs also from flat surfaces under the
conditions of adverse pressure gradient. A separated shear layer makes the
division between the recirculation zone and the domain of potential flow. In
some cases the shear layer can reattach to the body at some point downstream,
closing the recirculating zone of extension of the order of a few times the
upstream boundary layer thickness. In other cases the separated shear layer
never reattaches, mixing with the recirculating fluid. The extention of the
recirculation zone is then comparable to the characteristic body dimension.
This option is of strong unsteady nature, ending up with alternate shedding
of vortex structures into the wake.

Despite its importance, the phenomenon of separation has not been sa-
tisfactorily explained so far. The weakest point in the separation theory is
identification of the separation point location provided it is not a sharp edge.
Zero wall shear stress and reverse flow at the wall downstream are known to be
an adequate separation criterion only for steady laminar flow. In unsteady flow
the separation point can wander distances upstream and downstream. Zero
wall shear stress together with flow reversal can appear without breakaway as
well as separation can be found without a trace of flow reversal at the wall.
The velocity profiles of unsteady separation significantly differ from those of
steady separated flow. I'or now. a universal criterion of the occurrence of se-
paration weighty for all kinds of unsteady flows has not been found although
much effort has gone into this question. The progress in understanding the
phenomenon should be certainly attributed to experimental research, most of
which done over the 1970s. This research activity las been suspended since
then due to the lack of satisfactory results which could have paved the way
for the formulation of the separation genesis. However, with birth of new flow
visualisation techniques, it will be to nobody’s surprise if one day the extensive
experimental research is renewed. In the meantime let us recall some existing
criteria of unsteady separation and the scope of their applicability.

e The Moore-Rott-Sears (MRS) criterion (Moore (1958), Rott (1956),
Sears (1956))

The criterion says that unsteady separation is associated with simulta-
neous vanishing of the shear stress and velocity in a coordinate system
convected with the separation velocity, at a point within the boundary
layer some distance away [rom the body. The criterion was positively
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verified experimentally for the separation point moving upstream or do-
wnstream, Ludwig (1964), Koromilas and Telionis (1980), however not
in the case of oscillating boundary layers. Didden and Ho (1985). It sho-
uld be also noted that the MRS criterion is far from being convenient
due to its requirement of a priori knowledge of the separation velocity.

e The Sears-Telionis criterion (Sears and Telionis (1975))

The criterion attributes the separation point to the so-called Goldstein
singularity in the solution of boundary-layer equations. According to
Sarpkaya (1990) the concept of this criterion is based on the reasoning
that if at some location in the course of calculations the boundary-layer
characteristics, for example the displacement thickness, show appreciable
changes there must be also appreciable changes at that location in a
corresponding real boundary layer. This criterion can not be verified
experimentally as the singularities in this class of flows do not carry the
physical meaning.

e The Despard-Miller criterion (Despard and Miller (1971))

The criterion refers to the case of oscillating boundary layers and accor-
ding to Telionis and Mathioulakis (198:4) remains valid for fast oscillating
boundary layers. The criterion says that, although the shear stress and
other boundary layer characteristics lollow the oscillations, the locations
of the separation points remain stable and the recirculation zone begins
at the most upstream location where flow reversal continues throughout
the whole cycle of oscillations.

More light is shed on the problem of unsteady separation in review works
of Telionis (1979), Williams (1977), Gad-el-Ilak (1987), Gad-el-Hak and Bush-
nell (1991), Sarpkaya (1990). However, all the authors univocally acknowledge
the lack of the separation criterion meaningful for all kinds of unsteady flows.
This fact is of great importance for modelling the separated flows. The proper
solving procedure must bypass the unsolved problem of the separation origin,
giving at the same time a chance to illustrate the consequence of separation.
It appears that the method put forward by Chorin (1973) is nothing short
of the above mentioned assets. The method has been constantly modified
by Chorin’s followers, see Lewis (1986), Lewis and Porthouse (1983), Cheer
(1989), Chorin (1978), KNudela (1992), Styczek (1987), and is richly represen-
ted in review works, for example Leonard (1980), Ghoniem and Shermann
(1985), Shermann (1990). The method described in the present paper should
be deemed a further modification of that of Lewis (1986), Lewis and Portho-
use (1983). The fact that the calculations can be performed at a reasonably
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acceptable computer cost speaks in favour of the method. Although the me-
thod does not provide means for finding the boundary-layer characteristics,
it allows rough estimation of the separation point location, gives the possibi-
lity of tracing the development of the separation, that is formation of vortex
structures and wake, as well as enables evaluation of the aerodynamic force
acting on the submerged bodies.

The present work is concerned with numerical solving of 2D high Reynolds
number separated flows of incompressible fluids with large recirculation zones
— regions of vortex formation. [t is assumed that the flow remains laminar
in the boundary layer and becomes turbulent no earlier than downstream of
the separation. Ounly the case of separation from the surface, not from sharp
edges, will be considered in the paper.

2. The cloud vortex method

2D incompressible flow is governed by the Navier-Stokes (here in terms of
vorticity) and continuity equations

w
5{—+0-Vw:1/v2w V-v=90 (2.1)
where
v — velocity
w — vorticity
v — kinematic viscosily.

The boundary and initial conditions are as follows:

v(r) = —vg r € profile + its boundary
v(r) =0 T — 00
v(r,t=0)=0 TeR

The above conditions state that the submerged profile moves at a constant
velocity —wg after an impulsive start from rest in a fluid remaining at rest at
infinity and that the no-pass and no-slip conditions are imposed on its surface.

Part and parcel of the cloud vortex method is discrete representation of
the vorticity field. High-Reynolds-number flows are distinct by virtue of the
presence of regions of concentrated vorticity, namely the boundary layer, re-
gions of vortex structure formation behind tlie separation point and wake.
Elsewhere the flow is potential. At cach instant the vorticity will be represen-
ted as a finite set of computational elements, each element described by its
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circulation and location. In our method we will have vortex sheet elements
as the vorticity newly generated at the boundary and discrete vortices as the
vorticity already existing in the flow.

The essence of the method is a sequential approach to the phenomena of
generation, diffusion and convection which in nature act simultaneously. The
process of solving the set of goveruning cquations together with the boundary
conditions will be resolved into three substeps.

The first step is generation. This process takes place at the boundary.
The physical mechanisms of vorticity generation are still a matter of scientific
interest. Sarpkaya (1990) savs about vorticity generation due to the wall pres-
sure gradient and/or body acceleration. The necessity for generation follows
from the imposed boundary conditions. In the present method the vorticity
generation is based on the concept of Lewis (see Lewis (1986), Lewis and Po-
rthouse (1983)) who extended the Marteusen method (see Martensen (1959),
Martensen and Senghush (1960)) ol vortex slieet singularity distributed over
the profile surface, the method applied originally to potential flow calculations.
Unlike Martensen, Lewis does not consider the vortex sheet to be bound to
the profile surface and lets it have convective and diffusive properties, owing
to which vortex sheet elements become [ree to convect and diffuse into the
bulk of fluid. The lost no-pass and no-slip conditions at the surface when
the profile is set in motion or due to the action of diffusion or convection at
the previous time step must be re-established then, which is done by means
of generation of a new vortex sheet. As the velocity field of potential flow
calculated from the Martensen method fulfils the no-pass condition and the
no-slip condition is fulfilled automatically by virtue of a velocity jump across
the vortex sheet, equal to the potential flow velocity, we will think that solving
the potential flow problem that is finding the intensity of a new vortex sheet
means generation of vorticity at the profile surface.

The vortex sheet intensity can be evaluated from a set of two Fredholm-
type integral equations of the second kind, see Martensen (1959)

1 1 . ,
—57(5) + Sy YN (€, V) ds(P) = —[v:(&) + vo(£)]:
7 .

1
27/7(0) ds(9)y= -y T
7 7

(2.2)

The first equation is the no-pass and no-slip condition whereas the second
substantiates the requirements ol conservation of circulation in the flow. The
symbol v stands for the vortex sheet intensity. €, 8 are points along the profile
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surface L, v, is the velocity induced by the vorticity in the flow, 57, I is the
sum of discrete vortices circulations, the symbol []; denotes the tangential
component and the kernel A’ is given by the following formulas

—ye(ay — vg) + o (ys — ve) 1

K,(€,0)= —
(&, 7) (1-19—_7;5) + (y9 — ye )? /"7224'?/&2

III

A L
2 /(xd +y)*

LEVEL E#Y
(2.3)

]\"t(f’f) =

where ¢, ye are Cartesian coordinates of a vector (point) & @, y,zf,y/ are
their derivatives with respect to a profile parameter.

The system of Iqs (2.2) has a unique sohition which is found in a numeri-
cal way by solving a corresponding system of linear algebraic equations with
respect to an unknown array of vortex sheet intensities in selected approxima-
tion nodes distributed evenly along the profile

“"’T(fj)‘*‘ : i’) DR U&G, Di)hi As(Vi) = —[v:(&5) + vol(€;)]e
(2.4)

e
=1

1 & ,
5— Z’)’(’l?i)/i.,‘_"_\,s‘(?),-) = — Z I
1
The trapezoid rule was applied here to transform the integrals into sums. The
weight coefficients are h; = L for 7 =2, m~ 1,y = hy, = 1/2. It is supposed
that the profile can be given in an analytical form (a parametric function) or
interpolated with parametric spleen {functions - either a spline function with
distinguishable ends where the second derivative is imposed or a closed /cyclic
spline function without distinguishable ends. The appropriate formulas can
be found in Yamaguchi (1988).
The second step is diffusion. The {ollowing equation will be solved

Ow )

— = vVw 2.5

ol (2.5)
The method is based on the analytical solutions of this equation for a single
point vortex and vortex sheet:

e Point vortex of circulation " at the origin of the coordinate system

.].'2

w(r,d,1) = exp(—m) r € (0,00) J€(0,2r) (2.6)

mit



VORTEX CLOUD MODFLLING OF SEPARATED FLOWS 291

e Vortex sheet of constant intensity v lying in the axis 2

2

y
CXP(_LJJVI) y € (0,00) (2.7)

w(y,1) = \/7—,
Nz

The above solutions show certain similarities — in botl cases at any instant
the flow vorticity decreases with the distance {from the origin exponentially
as in the Gaussian distribution. It is also seen from Eqs (2.6) and (2.7) that
the share of the initial vorticity of the point vortex or vortex sheet found at
longer distances increases with time. In the case of the diffusing vortex sheet
its ’gravity centre’ drifts away [rom the wall in the course of time. For a
large number of computational elements I2q (2.5) can be solved by means of
random displacements, see Cheer (1989), Chorin (1973), Sherman (1990). For
the point vortices we have

Av; = Ay =m2 (2.8)

where 7y, 172 are independent random variahles of Gaussian distribution with
zero mean and the standard deviation of ¢ = /2vt. The vortex sheet elements
can also undergo random displacements normal to the wall

A& = |l (2.9)

where 7 is also an independent random variable of Gaussian distribution with
zero mean and the standard deviation of o = +/2vt. The symbol |-| denotes
the absolute value. However, the number of vortex sheet elements generated at
the surface is relatively small. compared to the number of discrete vortices in
the flow and it seems reasonable not to attempt the stochastic way of modelling
the diffusion of the vortex sheet. It is decided in the present method that all
vortex sheet elements will be given equal displacements corresponding to the
distance between the wall and the 'gravity centre’ of the diffusing vortex sheet

[e e] [ee)
_ w _ 2 ' y? o \/5 _ [4vt
E—o/y; dy—o/yamcw(—:ﬁ) dy = o —7;—\/7 (2.10)
The third step is convection
P
S +v-Vw =0 (2.11)

This equation has the following solution

dr = vdt (2.12)
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All computational elements (vortex sheet clements and discrete vortices)
undergo displacements with the local ficld velocilies

AL, = v(E,) Al Ar; = o(r;) At (2.13)

The convective velocity of a vortex sheet element can be found from the pro-
perties of the Cauchy-typeintegral in Eq (2.16). This velocity is tangent to the
surface and is half the potential flow velocity at the surface in the coordinate
system attached to the body

1
v(§;) = —tz"Y(fj)i(fj) (2.14)
The convective velocity of a discrete vortex is as follows
v(r])_ /V]n X kv (7' ds' +——ZVln+Xka (2.15)
l 2 1\.# ‘T_] - rk'

where k is a unit vector perpendicular to the plane of the flow. In order
to eliminate difficulties with point vortex singularities, the cut-off radius is
introduced, see Chorin (1973). ‘I'he circumflerential velocity of a vortex with
a cut-off radius is

~—
o

L L T—r;| >0
eyl roml> (2.16)

[r—rjf<o

olr) =

31 5

s 1
o

and remains constant within the circle of radius . The cut-off radius has a
smoothing effect on the calculations, however it is a source of artificial viscosity.
Its value is usually selected Dy the trial-and-error method.

Vortex sheet clements and point vortices have different properties. Ho-
wever, they are sometimes combined into one method of calculations, see for
example Cheer (1989), where vortex sheet elements are used to simulate the
boundary layer and outside the houndary layer they are replaced by point
vortices. In the present method vortex sheet elements will be replaced after
they are generated then diffused and convected once only. The point vortices
will enter the flow at the gravity centres of the replaced vortex sheet elements
and will carry their circulations.

The accuracy and convergence of viscous splitting with random walk were
the subject of many papers, only to mention Bacle and Majda (1981), Good-
man (1987), Marchioro and Pulvirenti (1982). It was found that the rate of
convergence of viscous splitting {or the case of an unbounded domain (without
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generation) increases with the increasing number of computational elements
and increasing Reynolds number. The accuracy ol smoothing techniques in-
cluding cut-off was investigated by Hald (1979). ITald and del Prete (1978),
Baele and Majda (1982).

3. Aerodynamic force and the moment of force

A compact 2D/3D theorv of force and moment of force on solid bodies,
submerged in a viscous flow, exccuting a prescribed motion after an impul-
sive start from rest in the fluid remaining at rest at infinity, is presented in
the paper of Wu (1981). Wu does not employ any simplifying assumptions
and stands on the grounds of the Navier-Stokes equations, making use of the
principle of conservation of momentum and momeut of momentum in a large
region bounded externally by a large circle. The final formulas express the
force and its moment in terms ol time-cvolution of the first and second mo-
ments of vorticity. The applicability of the theory hinges on knowledge of the
vorticity field development.

In a similar way the formulas can be derived in the case of the model with
point vortices and vortex sheets, what was accomplished in Lampart (1993),
(1995), Burka and Lampart (1996). The force and its moment about the
gravity centre of the profile have the following lorm

do

F—-——p— 3.1
P (3.1)

)
ch:er+v0xF:—§¥+pvoxa (3.2)

di

where a is the first moinent of vorticity
a:/rxk*,'d.s+2rk><kfk (3.3)
k

L

and B is the second moment of vorticity with respect to the gravity centre of
the profile

ﬂcz/cx(cxk)'y ([.5'+ch X (e X kYT (3.4)
i k

where the vectors r, ¢ are defined in the coordinate systems fixed and moving
with the profile, respectively.
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4. Results of calculations
4.1. Flow past a circular cylinder

Numerical calculations were performed in a wide range of Reynolds num-
bers Re = 102 = 10%, where Re = 2Ruv../v. The results presented in the
paper concern Re = 1000.

It was assumed that the time step was At = 0.2, cylinder radius R =1,
number of vortex sheet elements n = 50. The cut-off radius for the discrete
vortices was o = 0.06. Whenever the vortices crossed the boundary they were
put back into the flow region. Randoin walk as a rule breaks the symmetry of
the flow, however in order to speed up the process of alternate vortex shedding
an asymmetric disturbance was introduced. Between ¢ =4 + 7 (20 + 35 time
step) all vortices shed from the upper surface of the cylinder were slightly
moved by

1 0.35 -

35
As a result, for ¢ = 4 the flow iz symmetric, at { = 10 the first vortex struc-
ture (a cluster of discrete vortices shed from the upper surface) is formed. The
shedding of subsequent vortex clusters is two times faster. Configurations of
vortex clusters in selected instants, velocity vectors and streamline patterns
in the same instants are shown in IYig.1. The obtained flow patterns resem-
ble those of van Dyke (1982), the velocity vectors agree well with the flow
visualisation carried out by Cantwell and Coles (1983) (Re = 140000). The
convective velocity of vortex clusters at distances 8 - 16 from the cylinder
is 0.77. The length of a single stretch of the wake is 8.5 + 8.6, which also
agrees well with the experiments; for a review of experimental records see
Fraczak (1993). The Strouhal number St = 2R f/vy, where [ is the frequ-
ency of vortex shedding, is 0.2 — the same value is observed experimentally.
A separated flow past a cylinder was solved without prior knowledge of where
the separation occurs. One can roughly estimate the locations of separation
points if one applies an appropriate image magnification in order to find the
stations at which tlhe thickness of a layer near the cylinder taken by vortex
elements rapidly increases or streamlines next to the cylinder upstream of the
separation points start breaking away from it (in the coordinate system fixed
to the cylinder).

Drag and lift characteristics are also presented in I'ig.1. The calculated
average drag is 1.54 and excecds by about 50% that of the experiment. It is
highly probable that if vortex sheet elements had been allowed to convect and

Az =0 i =20,...35 (i — time step) (4.1)
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Fig. 2. Secondary vortex formation in a symmetric llow past a circular cylinder
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diffuse longer within the boundary layer, as in Chorin (1978), Cheer (1989),
instead of their early replacement with point vortices, or computational ele-
ments had been split whenever they induced too large velocities, as suggested
by Szumbarski (1993), then the drag characteristics might have been closer
to those of the experiment. Perhaps, increasing the number of vortex sheet
elements at the surface by one order of magnitude, for example up to 500
and decreasing the time step can be beneficial. However, these ideas were
relinquished in view of increasing computational cost.

A note is required to what extent the results of calculations depend on the
Reynolds number, suppose that the range of Reynolds numberis 10%+10°. In
calculations the Reynolds number. or more so the kinematic viscosity, has an
effect on the average length of random displacements. On the other hand the
cut-off radius is a source of artificial viscosity, the amount of which is difficult
to evaluate. It is also difficult to recognise which of these effects outweighs the
other. In fact, the calculated flow patterns and aerodynamic characteristics
undergo minor variations with the Reynolds number and the same can be le-
arned about flow patterns, Stronhal number and aerodynamic characteristics
from experimental data (van Dyke (1982), Fraczak (1993)). Therefore, it is
not surprising that calculated and experimental results referring to different
Reynolds numbers are compared, provided they do not fall beyond the con-
sidered range. Perhaps, one important parameter that considerably changes
over this range of Reynolds numbers is the length of the recirculation zone. In
the experiment of Bloor (1964) it decreases from 3.5+ 4.0R behind the cylin-
der for Re = 1000 down to 1.0R for Re = 100000. A somewhat decreasing
tendency is also found in numerical calculations, however without quantita-
tive agreement with the experiment. The calculated length of the recirculation
zone changes from 1.5 for Re = 1000 to 1.0R for Re = 100000.

The process of formation of vortex structures behind the cylinder is ac-
companied by secondary cffects. Tracing secondary vortices in periodic flow is
very expensive in terms of CPU time. Therefore, secondary flow calculations
were limited only to the case of symmetric flow for short times, which refers
to the situation before the real flow impulsively set in motion loses its stabi-
lity and turns periodic. The number of vortex sheet elements was increased
to 100, time step decreased to At = 0.05, the Reynolds number was assumed
Re = 5000. The streamline pattern bearing resemblance to the so-called «
phenomenon observed experimentally for Re = 800 + 5000, see Bouard and
Coutanceau (1980), is depicted in I'ig.2. The phenomenon occurs when a large
main vortex is already formed and its stream separates from the rear surface
of the cylinder, giving rise to a couple of counter rotating secondary vortices
which fill the space between the primary separation and the back of the main
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vortex itself. For the most recent results of numerical calculations, using vor-
tex methods, concerning impulsively started symmetrical flow past a circular
cylinder one should refer to the paper of Koumoutsakos and Leonard (1995).

4.2. Flow past a NACA 23012 profile

The first group of results presents the flow past a NACA 23012 profile
inclined at 45°. It was assumed that Re = 10000, At = 0.2, n = 50, ¢ = 0.06.
Configurations of cloud vortices, velocity vectors and streamline patterns at
selected instants in an impulsively started flow are presented in Fig.3. The
obtained average drag can be estimated at 1.1, the average lift 0.75, the
Strouhal number St = ¢f/vs = 0.25, where ¢ — chord length.

The second group of results presents a NACA 23012 profile inclined at
30° for Re = 1000. Configurations of cloud vortices, velocity vectors and
streamline patterns at selected instants in an impulsively started flow are
presented in [ig.4. The calculated average drag is 0.75, lift is 0.6, the
Strouhal number St = 0.3.

The authors do not know the experimnental data concerning lift /drag cha-
racteristics for NACA profiles under separating conditions. However, one can
have the flat plate measurements of I'age and Johanson (1927) as a reference.
Let us recall that at Re = 150000 for a flat plate inclined at 45° ¢p = 1.2,
cr, = 1.2, St = I f/vs, = 0.25, whereas at 30° attack ¢p = 0.65, ¢ = 1.1,
S5t = 0.3. A NACA 23012 profile which has certainly better aerodynamic
characteristics should have lower dvag and higher lift than the flat plate even
for the conditions under discussion. However, this is clearly not the case of
our calculations. Once again, bearing in mind the calculations of a circular
cylinder, the method presented in the paper predicts accurately the Strouhal
number, or frequency ofl vortex sheddiug and [low patterns but overestimates
the drag and underestimates the lift on the profile.

5. Conclusions

2D separated flow has been solved with the help of viscous splitting of the
Navier-Stokes equations, including convection (of point vortices and vortex
sheet elements), diffusion (by means of the random walk technique) and gene-
ration (by means of Martensen’s concept of vortex sheet extended by Lewis).
The method does not assume prior knowledge of wlere the flow separates. The
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Fig. 4. T'low past a NACA 23012 profile at 30° angle of attack

aerodynamic force and its moment are calculated from the balance of momen-
tum and moment of momentum in the fiow domain. The method yields correct
flow pictures, velocity vectors, streamline patterns. The frequency of vortex
shedding, the Strouhal number, gcometrical parameters of the wake remain in
agreement with the experiments. However, the method overpredicts the drag
and underpredicts the lilt on the profile. More thought and computational
cost is required before calculated drag/lift characteristics get anywhere near
those of the experiment.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

VORTEX CLOUD MODELLING OF SEPARATED FLOWS 301

References

. BaeLE J.T., Maipa A, 1981, Rates of Convergence for Viscous Splitting of

the Navier Stokes liquations. Aaths Comp., 37, 243-258

BaeLe J.T., Maipa A, 1982, Vortex Mcthods 11, Higher order Accuracy in
Two and Three Dimensions, Maths Comp., 39, 28-52

BLoor M.S., 1964, The Transition to Turbulence in the Wake of a Circular
Cylinder, J. Fluid Mech., 19, 290-304

Burka E.S., Lamprartr P., 1996, Modclowanie przeplywéw z oderwaniem
metoda chmury wirowej, Zeszyly Naukowe 1JP PAN, 460/96

BouarD R., CouTanceaU M., 1980, The Farly Stage of Development of the
Wake Behind an Impulsively Started Cylinder for 40 < Re < 10, J. Fluid
Mech., 101, 3, 583-607

CANTWELL B., CoLEs D., 1983, An Experimental Study of Entrainment and
Transport in the Turbulent Near Wake of a Clircular Cylinder, J. Fluid Mech.,
130, 321-374

CHEER A.Y., 1989, Unsteady Separated Wake Behind an Impulsively Started
Cylinder n Shightly Viscous I'hnad, J. Fluid Mech., 201, 485-505

CHoORIN A.J., 1973, Numerical Study of Slightly Viscous Flow, J. Fluid Mech.,
57, 4, 785-796

CHORIN A.J., 1978, Vortex Sheet. Approximation of Boundary Layers, J.
Comp. Phys., 27, 425-442

DeEsPARD R.A., MiLLER J.A., 1971, Separation in Oscillating Laminar
Boundary-Layer lows, J. Fhad Mech., 47, 1, 21-31

DippeEN N., Ho C.N., 1985, Unsteady Separation in a Boundary Layer Pro-
duced by an Impinging Jet, J. Fluid Mech., 160, 235-256

FAGE A., JoHANSEN I°.C., 1927, On the Flow of Air Behind an Inclined Flat
Plate of Infinite Span, Proc. Roy. Soc. A, 116, 170-197

Fraczak J., 1993, Modelowanie niestacjonarnego oplywu walca kolowego z
uwzglednieniem warstwy przysciennej i $ladu wirowego, Prace IMP PAN, 95,
147-178

GAD-EL-HAK M., 1937, Unsteady Separation on Lifting Surfaces, Appl. Mech.
Rev., 40, 441-452

GAD-EL-HaK M., BusunNELL D.M,, 1991, Separation Control. Review, Trans.
ASME, J. Fluids Engng., 113, 5-25

GHONIEM A.F., SHERMAN F.S., 1985, Grid-Free Simulation of Diffusion Using
Random Walk Methods, J. Comp. Phys., 61, 1-37

GooDpMAN J., 1987, Convergence of the Random Vortex Method, Comm. Pure
Appl. Maths., 40, 189-220

HaLp O.H., 1979, Convergence of Vortex Methods for Euler’s Equations,
SIAM J. Numer. Anal, 16,5, 726-755

Harp. O.R., DeL PreTE V.M., 1978, Convergence of Vortex Methods for
Euler’s Equations, Maths Comp., 32, 791



302

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

E.S.Burka, P.LAMPART

KoromiLas C.A., Teruronis D.P., 1980, Unsteady Laminar Separation: an
Experimental Study, J. Fluid Mech., 97, 2, 347-384

KoumMouTsarkos 1”., LEoNaRD A., 1995, High-Resolution Simulations of the
Flow Around an Impulsively Started Cylinder Using Vortex Methods, J. Fluid
Mech., 296, 1-38

KupeELa H., 1992, Modelowanie przeplywdw w kanalach o zlozonej geometrii
metoda kropel wirowych. X' Krajowa Nonferencja Mechanik: Plynéw, Gdarisk-
Sarnéwek

Lampart P., 1993, Evaluation of Acrodynamic Force and Moment Acting
on a Solid Body Submerged in Incompressible high Reynolds number Fiow,
Zagadnienia Maszyn Przeplywowych, 446-459, Wydawnictwo IMP PAN

LaMpART P., 1995, Numeryczne modelowanie przeplywow z oderwaniem,
Ph.D. Thesis of IMP PAN, Gdaiisk

LEONARD A., 1980, Vortex Mcthods for Flow Simulation, J. Comp. Phys., 37,
289-335

Lewis R.I., 1986, Keynote Address. The Vorticity Method - a Natural Ap-
proach to Flow Modelling, Prace Naukowe Instyiuiv Konstrukcji i Eksploatacyz
Maszyn Politechniki Wroclawskicy, 46, 3-36

Lewis R.I., PorThouse D.T.C., 1983, Recent Advances in the Theoretical
Simulation of Real F'luid Flows, Trans. N.E.C.1., 99, 3, 88-104

Lubpwic G.R., 1964, An Experimental Investigation of Laminar Separation
from a Moving Wall, AIAA Pap., 61-06

MaRrcHIORO C., PuLvIRENTI M., 1982, Hydrodynamics in Two Dimensions
and Vortex Theory, Comm. Math. Phys., 84, 483-503

MARTENSEN E., 1959, Die Berechnung der Druckvertellungen Dicken Gitter-
profilen mit Hille von Fredholmschen Integralgleichungen Zweiter Art, Mitte:-
lungen aus dem Maz-Planck Instilul fir Minchen

MARTENSEN E., SenGBuscH K., 1960, Uber die Randkomponenten Ebener
harmonischer Vektorfelder, /31D, 5, 46-75

Moore F.K., 1958, On the Separation of the Unsteady Laminar Boundary
Layer, Boundary Layer Research. edit. H.G. Gortler, 296-310, Berlin-Springer
RoTT N., 1956, Unsteady Viscous Flow in the Vicinity of a Stagnation Point,
Q. Appl. Mech., 13, 444-151

Sarpravya T., 1990, Brief Reviews ol Some Tiume-Dependent Flows, AJAA
Pap.

SEARS W.R., 1956, Some Recent Developments in Aerofoil Theory, J. Aero-
nautical Sci. 23, 490-499

SEArRS W.R., TtrLioNis D.P., 1975, Boundary Layer Separation in Unsteady
Flow, STAM J. Appl. Math., 28, 215-235

SHERMAN F.S., 1990, Viscous Flow, Mc Graw-Hill Publishing Company, Me-
chanical Engineering Series

Styczek A., 1987, The Vortex Blob Method of Simulating the Viscous Liquid
Motions, Archiwum Budowy Maszyn, XXXIV, 2, 225-241



VORTEX CLOUD MODELLING OF SEPARATED FLOWS 303

39. SzuMBARSKI J., 1993, Ph.D. Thesis of the Warsaw University of Technology

40. TevioNIs D.P., 1979, Review — Unsteady Boundary Layers, Separated and
Attached, Trans. ASME. 1. Fluds Fngng., 101, 29-43

41. TeLloNIs D.P., MaTniouLakis D.S., 1984, On the Shedding of Vorticity
at Separation, Unsiecady Scparated Flows, edit. M.W. Luttges, US Air Force

Academy, Colorado Springs

42. VAN DYKEe M., 1982, An Album of Fluid Motion, The Parabolic Press, Stan-
ford, California

43. WiLLiams J.C. 111, 1977, Incompressible Boundary-Layer Separation, Ann.
Rev. Fluid Mech., 9, 113-144

44. Wu J.C., 1981, Theory of Aerodynamic [Force and Moment in Viscous Flows,
ATAA J., 19, 4, 432-441

45. YAGUCHI F ., 1988, Curves and Surfaces in Computer Aided Geomelric Design,
Springer-Verlag, Berlin, Heidelberg 10

Modelowanie przeplywow z oderwaniem metoda chmury wirowej

Streszczenie

Praca zawiera opis metody obliczeniowej dla numerycznego rozwiazywania dwu-
wymiarowych przeplywdw niescisliwych laminarnych o duzych liczbach Reynoldsa
z oderwaniem z duzymi strefami recyrkulac)i - obszarami formowania si¢ struktur
wirowych 1 §ladu splywowego. Praca dotyczy oderwania z gladkich powierzchni. Me-
toda obliczeniowa opiera si¢ na seckwencyjnym rozwiazaniu réwnania transportu wi-
rowosci. W kazdym kroku C7ZAasSOWyM rozwiazywane sa oddzielnie trzy zagadnienia
- konwekcja (konwekcja wirdw punktowych 1 elementéw warstwy wirowej), dyfuzja
(za pomoca metody stochastycznej) i generacja wirowosci (za pomocy rozszerzonej
przez Lewisa koncepcfi Martensena warstwy wirowe] na powierzchni profifu). Me-
toda nie wymaga stosowania kryterium dla wyznaczenia polozen punktéw oderwania.
Przyblizone polozenia punktéw oderwania stanowia element rozwiazania, a otrzymuje
sig Je za pomoca komputerowej wizualizacji przeplywu jako miejsca, w ktorych ele-
menty obliczeniowe — czastki plynu opuszczaja sasiedztwo profilu i zaczyna sig strefa
recyrkulacji. Powyisza metoda rozwiazywania przeplywu zostala nazwana metoda
chmury wirowe]. Obciazenia aerodynamiczne profilu (sila reakcji 1 jeJ moment) wy-
znaczane sa na podstawie bilansu pedu i momentu pedu obszaru, w ktérym odbywa
sie przeplyw. Jako przyklady obliczeniowe zaprezentowano oplyw cylindra kolowego
1 profiltu NACA pracujacego w oderwaniu. Podjeto takze problem zjawisk wtérnych
w przeplywie z oderwaniem.
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