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1. Introduction

In order to describe the effect of the microstructure size on the global beha-
viour of a periodic composite a number of what are called length scale models
were proposed (cf [1,2,6,9,16-18]). Models of this kind play an important role
mainly in dynamics of solids with the periodic microstructure. That is why
in [24] and in the series of related papers [3-5,7,8,10-15,19-35] the modelling
of the length scale effect was restricted to the time dependent phenomena
for composite solids and structures. In the resulting models the length scale
effects were described by the extra unknowns called the macro-internal va-
riables (MIV) and the approach mentioned involved length scales exclusively
in the description of non-stationary processes. The aim of this paper is to
generalize the micromechanical approach leading to the MIV-model by taking
into account the length scale effects also in the description of stationary pro-
cesses for solids with periodic microstructure. For the sake of simplicity the
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considerations are restricted to the periodic composites with perfectly bonded
constituents and are carried out in the framework of the small displacement
gradient theory. It is also assumed that all introduced functions satis{y the
regularity conditions required in the subsequent analysis.

Throughout the paper all capital Roman superscripts run over 1,...,N
(summation convention holds) if otherwise stated. Points of the physical space
E are denoted by z, y or z and their distance by ||z — y||. The letter ¢
stands for the time coordinate and t € [to,t7]. By |-| we define both the
absolute value of a real number and the length of a vector. Symbol O(¢)
which in general denotes the set of entities of an order ¢, is used exclusively
in more restrictive sense described in the subsequent section.

2. Introductory concepts

By 2 we denote a region in the Euclidean 3-space FE occupied by the
composite solid in the reference configuration. Setting V := (=[;/2,1,/2) x
(=l2/2,15/2) x (=13/2,13/2) we assume that the solid in this configuration has
the V-periodic heterogeneous structure (is V-periodic) and that the micro-
structure length parameter defined by [:= \/{? + (2 + % is negligibly small as
compared to the smallest characteristic length dimension Lg of (2. We shall
use the denotation V(z)==z+ V;if V(z) C 2 then V(z) will be called the
cell or the volume element of 2. Theset 2y := {z € 2: V(z) C 2}
is said to be the macro-interior of (2. For an arbitrary integrable function
f(+), defined almost everywhere on {2, we define the averaged value of f(+)
on V(z) by means of

SN = o [ Fi2) dola) 2 €

Viz)

If f(-)is a V-periodic function then (f(z))(z) is a constant which will be
denoted by (f). Now we shall recall two important concepts which will be
used in the subsequent analysis.

Let @(-) be areal valued function defined on 2, which represents a certain
scalar field. Let us assume that the values of this field in the problem under
consideration have to be calculated (or measured) up to a certain tolerance
determined by the tolerance parameter £¢, £¢ > 0. It means that an arbitrary
real number @q satisfying condition

|P(z) — Do| < €6
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can be treated as describing with a sufficient accuracy the value of this scalar
field at the point z. The triple (@(.),<¢. () will be called the e-macrofunction
if the following condition holds

(Y(z,9) € 22) [le — 9l| < I = [&(z) - &(y)] < o]

Roughly speaking, from both the calculation and measurement viewpoint,
every e-macrofunction restricted to an arbitrary cell V(z), € 2, can be
treated as constant. Now assume that &(-,1), t € [to,1], is for every t a
differentiable function defined on 2 having piecewise continuous time deri-
vatives. Moreover, let ¥ stand for @ as well as for all derivatives of & and
assume that every ¥ has to be calculated or measured up to a certain tole-
rance given by the tolerance parameter ey. If every triple (¥(-),ey,[) is the
e-macrofunction then the n-tuple (&(-),e¢,ev4.64,...,0) is said to be the re-
gular e-macrofunction. In the sequel we shall tacitly assume that all tolerance
parameters &g,Eva,&4, ..., as well as the microstructure length parameter !
are known and refer &(:) to as the regular e-macrofunction. This concept
will be also extended on vector and tensor functions by assuming that all their
components in an arbitrary coordinate system are regular e-macrofunctions.

To the concept of e-macrofunction certain approximations are strictly rela-
ted which will be used in this contribution. Let f(-) be an integrable function
defined almost everywhere on 2 and &(-) stand for the e-macrofunction (the
tolerance parameter ¢ as well as the microstructure length parameter [ are
assumed to be known). Define by O(eg) a set of possible local increments
AP of @ such that |AP| < £¢. Due to the meaning of the e-macrofunction
in the calculation of integrals of the form

/f(z)[(b(z) + Oleg)] dv z€ 0

V()

terms (O(eg) can be neglected. This statement will be called the Macro-
Averaging Approzimation (MAA). Using the MAA we assign to every f(-)
the tolerance relation =~ defined on a set of integrals over V(z) (it is a binary
relation which is reflexive and symmetric), given by

/f(z)[(b(z) + Oeg)] do ~ /f(z)d5(z) dv e (2.1)
V(z) Viz)

Since
[z ava(e) = [ 12)10(2) + Ofea)) o

V(z) V(x)
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where now O(ep) = &(x) — ¢(2) for z € V(z), then Eq (2.1) yields

[1@#) dvs [ 1) av a(a) z€ 2 (2.2)
z) V(z)

It has to be emphasized that terms O(eg) will be neglected only in the course
of averaging procedure, i.e., only in the tolerance relations of the form (2.1).
Using the denotation = in Eqs (2.1) and (2.2) we have tacitly assumed that
every tolerance relation = is assigned to the integrable function f(-) and is
not transitive. It means that in the formulas of the form

/f(z)¢1(z)¢2(z) dv ~ /f(z)¢1(z) doe) x [ f(2) do d1(2)a(0)
Viz) V(z) V(z)

(2.3)
where @(-), @,(-) are e-macrofunctions, the symbols = denote two different
tolerance relations.

In order to introduce the second fundamental concept used in the subse-
quent analysis define by h4(.), A = 1,2, ..., the system of linear independent
continuous V-periodic functions (and hence defined on £) having continuous
first-order derivatives. Let the above functions satisfy conditions

(h*)y =0 (hAhBY = 6482 (¥a) [[h4(2)] < 1]

and constitute a basis in the space of sufficiently regular functions defined on
an arbitrary cell V(z) and having on V(z) the averaged values equal to zero.
Under the aforementioned conditions the system h%(:), 4 = 1,2,..., will be
called the local oscillation basis.

The concepts of the regular e-macrofunction and the local oscillation ba-
sis as well as the macro-averaging approximation (MAA) formulated above
constitute the fundamentals of the micromechanical approach to the macro-
dynamics of composites which will be proposed in this contribution.

3. Kinematics

Let u(-,t)stand for a displacement field deflined on {2 for every instant {.
Define on {2y the averaged displacement fields by means of

U(e,t) = (u(z1))(2) (3.1)

WA(a:,t) = ([u(z,1) — U(z,1)]h*(2))(z)l7? z € 2
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where A = 1,2,.... Moreover, let rz(-,1) be an arbitrary regular vector field
defined on V(z), 2 € 2, satisfying condition

(re(2,1))(z) = (U(z,1))(2) - U(z,1) (3.2)

The form of r4(+,7) will be specified in the subsequent part of this section. By
the local displacement oscillations we shall mean the vector functions wg(+,1)
defined on V(z) and given by

we(y,t) = u(y, 1) — U(y,1) + rz(y, 1) yeV(z) zefp (3.3)

The above fields satisfy conditions (wgz(2,1))(2) = 0 and under the known
regularity conditions can be represented by

[ee]

we(y,t) = Z [(WA(z,1) + (ro(2z, )0 (2))(2)"2]h (y) (3.4)

A=1

The kinematics of the solids with periodic microstructure will be based on the
MAA (cf Section 2) and on two following assumptions.

Truncation Assumption (TA) states that the Fourier series (3.4) can be
approximated by the sum of the first N terms, N > 1, where N has to be
specified in every problem under consideration.

Kinematic Macro-Regularity Assumption (KMRA) restricts the class of
motijons we are to investigate by assuming that the fields U(-,t), WA(-,1),
A=1,2,...,N, are regular e-macrolunctions.

Bearing in mind the aforementioned assumptions we shall refer fields
U(-,t), W2(-,1), A = 1,2,..., N, to as the macrodisplacements and the oscil-
lation variables, respectively. Moreover, functions hA(:), 4 = 1,...,N will
be called the micro-shape functions. In the sequel all capital superscripts
run over 1,...,V; the summation convention holds. The kinematics of the
micro-periodic solids under consideration will be summarized in the following
statement.

Lemma. Under TA, KMRA and using MAA it can be assumed that the
displacement fields u(-,?) are related to the macrodisplacements U(-,1)
and the oscillation variables W4(-,¢) by means of the formula

u(z,t) = U(z,1) + b (2)W4(2,1) z € (3.5)

which has to hold for every time 7.

8 — Mechanika teoretyczna



114 C.WoiNIaK, M.Wo07ZNiaK

In order to prove this lemma let us specily rz(-,1) to the form
ra(y,1) 1= AW A(2,1) - WA(y, )] yEV() zef0 (36)
By means of Eqs (3.2) and (3.1); we obtain
(u(z,1) — U(z,1) — RA(2)WA(2,1))(z) = 0 z € { (3.7)
From Egs (3.3), (3.4) and TA it follows that
u(y,0) = U(y, 1) + AAWAW, 1) + (ra(2, WA (@)PhA(y)  (3.8)
for y € V(z), £ € 2. Similarly
Valynt) = VU0 + VR GWA 0]+ (el 00 N TR )

Mu(y, 1) = W (y, 1) + b4 (y) WA (y.1) + (a2, )hA(2)) (2)12h4 ()
n=172

where the superscript (n) stands for the nth order time derivative. Using
MAA in the form given by Eq (2.2) we have

(ra(2, ORA(2))(2) = (WA (2)hB (2)[WEB (z,1) — WB(2,1)])(2) ~
= (h(2)hP(2))(z)[WB(z,1) - WPB(z,1)] = 0

Because of the KMRA and definition (3.6), in the {framework of MMA the
terms (rg(2z,1)h4(2))(z) in Eqs (3.8), (3.9); and their time derivatives in
(3.9); can be neglected. It follows that Eq (3.5) holds true and hence condition
(3.2) is identically satisfied, which ends the proof.

4. Dynamics

Let s(-,t) stand for the Cauchy stress tensor field defined for every time
instant 1. Define on {2 the following averaged fields

S(z,1) = (s(z,0))(z)

HA(z,1) := (s(2,1) - VRA(2))(2) (4.1)
RA(z,1) := (s(z,1)h"(2))(2) z € (X
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The passage from micro- to macrodynamics for the solids with periodic micro-
structure will be based on the macro-averaging approximation, on the lemma
formulated in Section 3 as well as on the following assumption.

Stress Macro-Regularity Assumption (SMRA). The stress distribution in
the problems under consideration is restricted by the condition that the fields
S(-, 1), HA(-,t), R*(-,1), A = 1,..., N, are regular e-macrofunctions.

Let p(-) stand for the mass density field (which is a V-periodic func-
tion defined almost everywhere on ?) and assume that the body force b is
constant. Let us denote by n(y) the unit normal outward to 9V (z) at y.
The starting point of the proposed micromechanical procedure will be the
weak form of equations of motion of micromechanics. Taking into account the
symmetry of the stress tensor these equations can be assumed in the form of

conditions
[stw: V) do = §s(0,0-n(@)]-5w) dat [ pe)lo— iy, ) 7y) do
Viz) OV (x) V(z)

(4.2)
which have to hold for every z € 25 and for an arbitrary test function u(-).
By means of Eq (3.5) we assume that

@(y) = U(y) + b (1) W' (y) yen (4.3)

where U(-), WA(-) are arbitrary linear-independent regular e-macrofunctions.

Now we shall formulate the fundamental assertion of the micromechanical
approach to macrodynamics proposed in this contribution. For the sake of
simplicity we shall also assume that the micro-shape functions h?4(:) satisfy
the extra conditions {ph4) =0, A =1,...,N. We also assume that the piece-
wise constant (discontinuous) distribution of heterogeneity is approximated in
the vicinity of interfaces by a continuous one. Hence, in the subsequent ana-
lysis the stress continuity conditions across interfaces will be not taken into
account.

Basic Assertion. Under TA, KMRA, SMRA and in the framework of MAA
the equations of motion (4.2), (4.3) imply the following interrelation between
the fields defined by Eqs (3.1) and (4.1)

divS(z,t) — (p)U(z,1) + (p)b =0
(4.4)

—divRA(z,1) + (ph* hBYW P (2,1) + HA(2,1) = 0

which holds for every z € {25 and every ft.
In order to prove the above assertion let us combine Eqs (4.2) and (4.3).
Since
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/s:V_U_dvz /sdv:VU(z)z §:VU dv =

Viz) Viz) Viz)
—/divS-Udv+ j{(s-n)-ﬁda
V(z) aV(z)
/hAs YW do ~ /shAdv YW () ~ /RA VWA do =
V(z) Vi(z) V(z)
- —/divm WA dv 4+ }f(RA n) W da
Viz) oV (z)
/(s-VhA)-WA dv =~ /HA W dv
Vi) Viz)
/p(b—il)-ﬁdv: /((p)b—(p)U) U dv
Viz) Viz)
/hAp(b — 1) - W dv = - /(phAhB)WB W dv
V(z) V(z)

then using the MAA we have

/(divs-<p>0+<p>b) U dv - jé[(s_s).n].ﬁda:o

Viz) aVi(z)
/(—divR,A (BT L B W o (4.5)
Viz)

+ f [(RA —shA)-nJ Whda=0
3V(z)

Bearing in mind that V(z) = V + £ and introducing the local coordinate
y € V we also obtain

f (s-n) -Uda= /div(s V) dv = /divz[s(z +y,t)-U(2)] do(y) =
aV(x) v v

div,/S(z +y,1)-Uz) do(y) = /divz[S(z +9,1) Uz +y)] dv(y) =
1% v

- /div(S T) dv
Vi)
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}{ h4(s-n) W da = /div(les -WA) dv ~
aV(x) Vi(z)
~ /div,[hA(z + y)s(z + y,1) - WA(I)] dv(y) =

- div,/RA(x +y,0) - W(z) do(y) ~

z/div,[RA(z+y,i)-W (z+y)] dv(y /dlv (R

and by virtue of the MAA the surface integrals in Eqs (4.5) can be neglected.
Hence formulae (4.5) imply Eqs (4.4), which ends the proof.

5. Constitutive relations

It has to be emphasized that Eqs (4.4) have been derived without any
reference to the material properties of tle solid under consideration. In order
to obtain the complete set of the field equations for the description of solids
with microstructure on the macro-level also we have to derive the constitutive
equations. It can be done for an arbitrary simple material but for the sake
of simplicity we shall confine ourselves to the composites made of the linear-
elastic constituents. Setting s = C(2) : e, where e = 0.5[Vu + (Vu)T] and
C(-) is the V-periodic piecewise constant elasticity tensor field, under the
denotation

_ %[vu +(V0)T] (5.1)
from Eqs (4.1) by using the MAA we obtain
S(z,t) = (C): E(z,1) + (C - Vh*Y - WA (z,t) + (Ch*) : VW4(z,1)

HA(2,1) = (VR - C) : E(z,t) + (VA" - C - VAB) . WB(z,1) + 52)
5.

+(VRA - ChB) : VWB(z,1)

RA(z,1) = (Ch*) : E(z,1) + (hAC - VABY - WB(z,1) +

+(hARBCY : VWB(2,1)
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The equations of motion (4.4) together with the constitutive equations (5.2)
and the denotations (5.1) constitute the model of the linear-elastic compo-
site solid with periodic microstructure. Since the underlined material moduli
in Eqs (5.2) as well as the inertial moduli (ph*h®B) in Eqs (4.4) depend
on the microstructure size (since h#(z) € O(l)) then we have obtained the
class of length-scale models the form of which is determined by the choice of
micro-shape functions h4(.), A =1,..., N. These models constitute a certain
generalization of models with the internal variables (MIV-models), in which
the underlined terms in Egs (5.2) (and hence also the term divR* in Egs
(4.4)) are absent, cf [23] and the related papers quoted in Introduction.

6. Passage to MIV-models

Let us assume that every function h4(-) satisfies the condition

(Vz € AA)[ILALW(I) = 0| A=1,2,.. (6.1)

where A4 is a certain V-periodic discrete lattice of points in  FE. Such
situation takes place, e.g., for the Fourier expansions (3.4) given by the trygo-
nometric series. Now we are to show that if all microshape functions satisfy
Eq (6.1) then the model given by Eqs (4.4), (5.2) reduces to the model with
macro-internal variables. The proof of this statement will consist of two inde-
pendent parts.

First, let us observe that by means of V(z) = z + V and denoting by
y € V the local coordinate, we obtain

divR*(z,1) = div(s(z,1)h*(2))(z) = divy(s(z + y,1)h"(z + ¥))(0) =

= (divg[s(z + y,t)hA(z + 4))(0) = (div[s(z, t)hA(z)])(z) = (6.2)
1
= I_V—l j{h"‘s-nda V| =llals
oV (zx)

Since h?(-) satisfies Eq (6.1) then the conditions divR*(z,2) = 0 hold
for every z € Ay N 5. At the same time from the SMRA it follows that
divRA(-,1) is the e-macrofunction. Hence, for every z € V(z)

/[divRA(z,t) — divRA (%, )] dv % 0 ze
Viz)
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Setting z € A4 into the above relation we obtain divR?(z,1) = 0 for every
z € {). Thus, we have arrived at the conclusion that Eqs (4.4) in the frame-
work of MAA reduce to the form

divS(z,t) ~ (p)U(z,1) + (p)b =0
(6.3)

(o RBYW (2,1) + HA(z,1) = 0

which coincides with that of the equations of motion and the dynamic evolution
equation of the MIV-model.

Second, we shall prove that under (6.1) the following formula holds for an
arbitrary sufficiently regular V-periodic tensor field F(-)

(F.-V(hAW ) (z) = (F-Vh*) @ W(z) (6.4)
To this end let us observe that
1 .
(F-Vh4)(z) = mp({)ﬁf*upn -1 da - (hAdivF)(z) (6.5)

where [F] is a jump of F across all interfaces [I'(z), oriented by a unit
normal nin V(z). At the same time for every A we obtain (no summation
over A!)

(F- V(hAWA))(::) = (div(F @ WAhY))(z) — (divF @ WAhA) =

IVI ]{ WA(F-n) @ WA da + (6.6)
lVl /h" - da — (W divF)(z)) © W(z,1)

For every z € AA the value of the first from integrals on the right-hand side
of Eq (6.6) is equal to zero. At the same time this integral represents a certain
g-macrofunction defined on 2 (since W#(-,1) is the e-macrofunction) and
hence bearing in mind Eq (6.5), we conclude that Eq (6.4) holds true. Using
this result we also have

(F-VhAY -WA(z,1) + (FhY : VWA(z,1) =~ (F - Vh) - W4 (z,1)
and hence Eqs (5.2) in the framework of MAA reduce to the following ones

S(z,1) = (C) : E(z,1) + (C- VR - WA (z,1)
(6.7)

HA(z,t) = (Vh* - C) : E(z,1) + (Vh* - C - VhBY - WB(z,1)
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The above equations are the macro-counstitutive equations of the linear-elastic
composites for the MIV-model.

7. Conclusions

The main conclusion is that if all micro-shape functions — h4(-),
A = 1,.., N, satisfy conditions (6.1) then the generalized model of com-
posites derived in this paper and given by Eqs (4.4), (5.2) reduces to the
known model with internal macro-variables determined by Eqs (6.3), (6.7). If
conditions (6.1) do not hold then we have to use more general equations (4.4),
(5.2) in which the length scale effect on the global body behaviour takes place
also in the stationary problems. Since the choice of micro-shape functions
(i.e. the choice of the local oscillation basis and the truncation assumption)
determines a class of micro-motions which are assumed to be relevant in the
problem under consideration, then the effect of microstructure size also de-
pends on the micro-motions we are to investigate. It has to be emphasized
that if conditions (6.1) do not hold then in formulations of the boundary value
problems for Egs (4.4), (5.2) the boundary conditions have to be postulated
not only for U but also on the extra unknowns W?#. Such situation does
not take place for the boundary-value problems analyzed in the framework
of MIV-models where we deal only with three boundary conditions for three
components of U. The detailed discussion of the models presented in this
contribution as well as their comparison will be given in a separate paper.
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Uogdlnienie modelu z wewnetrznyimi zmiennymi w dynamice cial

o periodycznej mikrostrukturze

Streszczenie

W pracy przedstawiono nowe mikromechaniczne podejscie do dynamiki cial o pe-
riodycznej mikrostrukturze. Otrzymany model jest pewnym uogélnieniem ulepszonej
makrodynamiki mikroperiodycznych kompozytéw, [24], uwzgledniajac efekt wielkosci
mikrostruktury w opisie zaréwno inercjalnych jak i materialowych wlasnosci ciala.
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