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Transmission can play an important role in mechanical systems of energy
transfer. A theoretical analysis of a special type transmission is presented
in this paper. The analysis is supported by computer simulation results
obtained for the systems with a transmission of this type.
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1. Introduction

The transmission can play a very important role in mechanical energy
transfer systems. By choosing a transmission with certain structures and
parameters, it is possible to achieve optimal conditions for the reception of
energy from engine; the achievement of such conditions may increase the power
output. The problem is relatively simple when energy generated due to work
of a constant force (or a constant moment). In this case, a constant ratio gear
can offer conditions for optimal energy reception. The problem becouses more
complicated in the case when energy is generated due to work of a periodical
variable force, of which depends on the position of loaded element. In such
a case, it can be profitable to use a mechanical transmission and one should
define the structure of transmission mechanism, as well as specify the values
of parameters affecting the transmission ratio.

The biomechanical drive (e.g., a man-powered aircraft, bicykle) is an exam-
ple of the drive, where the moment depends on an angle of rotation (cf Ernst
(1994)). In these examples, application of a transmission other then the co-
nventional one may increase the power output from an engine, and in result,
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the machine motion may stabilize at a higher value of the average velocity (cf
Wéjcik (1992)), or some other optimum value.

2. Formulation of the problem
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Fig. 1.

In the case being analyzed, the active moment (the moment of motor acting
on the drive shaft) is a periodical function of the drive shaft angle of rotation
(Fig.1). The work done by this moment during one drive shaft revolution is

2
Lo = /M(q,/z) & (2.1)
0
where
¥ - angle of rotation of the drive shaft
M - active moment,

The work done by any given moment (for a single revolution) is constant,
an independent of time. However, the average power supplied by an engine at

stable motion is )

Navg = TL(21r) (22)
where T is the time of one drive shaft revolution (period).

Angular velocity of the drive shaft is variable. Using & to represent the
average velocity of stable engine motion, the following dependence can be
defined

T = i (2.3)

w
therefore, the average power is

~

w
Navg = ﬁL(%r) (24)
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Increase in the average velocity causes the power output increase, which
is possible due to a proper configuration of transmission, or adequate ratio
change (without the average ratio change). The transmission ratio 1, i.e.
the relation of the driven shaft velocity ¢ = w’ to that of the drive shaft
¥ = w, is not constant, but is a function of the drive shaft rotation angle and
transmission parameters X,

(Y, A) = % v=1,.,pu (2.5)

where p is the number of transmission parameters.

The velocity of driven shaft w’ can also be variable. Since variable active
moment and variable transmission ratio are periodic (the periodic variable
passive moment can appear). The system motion is stabilized at the average
velocity for which the average power supplied (from the motor) is equal to
the average power absorbed (by the machine). Stable system motion occurs
when the passive moment (or the active moment) is dependent on the velocity,
which is always true in real systems.

Presenting the driven shaft velocity as a sum of constant component (ave-
rage velocity) and variable components, respectively, we have

V(1) =0+ Ad'(1) (2.6)
where
o’ — driven shaft average velocity
Aw'(t) - deviation from the average velocity (variable component)

and the passive moment in a power-series form (for the sake of simplicity, the
function arguments w’ and Aw’, are omitted)

M'(p,w") = M'(@) + 10" + e’ + ... (2.7)

where the series coefficients, respectively, are

OM'(¢,w’)
‘= ow’ w'=0
(2.8)
O?*M'(p,w'")
€2 = awﬂ Iw’:O

the average power on the driven shaft (received from the transmission) is
defined by the relation
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avg —

Tl
Navy = Ti / [M/(0) + e1(@ + Aw') + 2@ + A + .. (@ + D) dt (2.9)
0

where T’ is the period of function in the stabilized motion.
The average power on the driven shaft Eq (2.9) can be shown as the sum
of two components

Nivy = (Niug) s + (Ving) o, (2.10)

were the first one includes the components dependent only on the average
velocity
TI
(M) =L (M) + i + 07 + .| dt 2.11
wg )z = g7 [ [M(@)+ad'+eb” +..]0 (2.11)
0
while the second one includes components dependent on avariable component
of the driven shaft velocity Aw’

T’ T’
1 1
(N‘I“’y)Aw' = F/A/I'(cp)Aw' dt + F/[cl(Aw')2 +
° ° (2.12)
+261Q1Awl + Cz(AUJI)S + 362&12Awl + 362(:)/(Awl)2 + ] dt

The average power on the driven shaft (2.9) depends on the average velocity
of the driven shaft and its variable component Aw’; therefore, the average
power is also dependent on the transmission way. By a proper choice of a
periodical variable transmission ratio (i.e., by modifying the transmission)
one can affect that part of the average power on the driven shaft (2.12), which
depends on the variable component of velocity. In this way, one can change
the average velocity of the stabilized motion of the system. Therefore, the
system motion is stabilized at the average velocity dependent on a periodical
variable transmission ratio (i.e., dependent on tlie transmission parameters),
provided the condition of the equality of average power supplied and received
from the system is satisfied

Nl

avg

= Naug (2.13)

The transmission is modified by changing the values of its parameters
Ay, while the average transmission ratio remains unchanged. The average
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transmission ratio 1 is independent of the parameters A, and can be written

as follows
!

[l
€ &2

2
=5 [iwn) v (2.14)
0

Eq (2.14) allows also the comparison between the systems with variable
transmission ratio and constant transmission ratio, respectively to be made.
This proves the thesis that the increase in power received from the motor
can result from application of a transmission with a variable instantaneous
transmission ratio, while the driven shaft angle of rotation, corresponding to
the revolution of the drive shaft through 360° (average transmission ratio), is
the same as in a system with a constant transmission ratio.

According to Eq (2.14), the average velocity of the drive shaft is also a
function of the transmission parameters

T
1
') == [w(t,A)dt (2.15)
[

1

Proper choice the transmission parameters A, ensures higher values of the
average velocity to be obtained. The necessary condition for reaching the
maximum possible average velocity is

o'(A) B
VR 0 v=1,.,u (2.16)

Then also, by virtue of Eq (2.4) the average power received achieves the ma-
ximum

Nawg = N (2.17)

V9(maxz)

The above represents optimization of energy reception in the system. The
optimal values for the transmission parameters can be calculated using Eq
(2.16) or using numerical methods of optimization. It should be noted however,
that it can be done only when the active moment is a periodical function and
the system can operate at a variable drive shaft velocity.

3. Equation of the system motion

In the diagram of the system shown in Fig.1 there was used an equivalent
moment of inertia concentrated at the driven shaft. Kinetic energy of the
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system in terms of the drive shaft rotation angle 1 (generalized coordinate)
can be written as follows

1 7. . 2
E = ZJ[$,i($,0)] (3.1)
while the generalized force assumes the form

Qv = M) — M'i(y, ) (32)

then the equation for motion, after some simple transformations reads

- 1 0i(¥, ) -, 1 ‘ 1

Jy+ J- P = = M) - ———M' 3.3
W) 09 O LA W (3:3)

In a singular case, the resisting moment acting on the driven shaft, Eq (2.7),
contains a constant component and a component dependent on velocity

M =M.+ co (3.4)
then, after taking Eq (2.4) into account, Eq (2.11) can be rewritten as

1 8i(z/),,\u) 9 1 . 1 L
i(p,A)  OY ¥'= [i(,/,,,\u)]zM(‘/’) ——M.—cp (3.5)

Z("/)a/\u)

Solution to the equation in a generalized form is impossible. It is possible,
however, to arrive at a numerical solution for some functions representing
the transmission ratio and driving moment. Optimization by selecting the
transmission parameters can also be carried out then. An analytical solution
is possible only for selected functions describing the transmission ratio, after
further simplification of Eq (3.4). Basing on the simplified equations, the
optimization conditions can be presented in analytical form as well.

Jp+J

4. Kinematics of chain transmission

Realization of the variable ratio is rather easy in the case of chain trans-
mission. One or both gears are replaced with an element of different shape
(non-circular). The considerations presented here in after apply to the trans-
mission in which only the gear on the drive shaft has been replaced with an
element of different shape. It was assumed that there were no deformable ele-
ments in the system and that the active segment of the chain was in rectilinear.
Fig.2 shows a diagram of the transmission.
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Arrows were assigned to segments OA, AB, BC, CO. Taking into consi-
deration that the polygon formed of these vectors is a closed figure

OA+ AB+BC+CO=0 (4.1)

after projecting vectors on the 0Ozy system axcs, the following equations are
obtained

pcosxz)—}-lsina—rcos&—h =0
(4.2)

psiny —lcosa—rsina =0

The active part of the chain remains tangent to the element on the drive shaft
and to the driven gear, from which the following relationship results

j—,’;Sim/"}'PCOS?/)_ cos & (4.3)
d o T T sina :
ﬁcosw—psmd) sin a

Taking into account that the chain length is constant, after describing the
shape of driving element in terms of polar coordinates (p,7), next equation

is obtained -
7
/ 2
—/ ((l_p) +p2dp+l+rAa—-rp =1 (4.4)
J dn

where (see Fig.2)

9 — Mechanika teoretyczna
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7] — vector connecting the drive shaflt axis with the point of
contact of the chain with the driving element

Q/A) ~ angle representing position of the vector g in the Ozy
system (system at rest)

7 ~ angle representing position of the vector p'in the 0zyy,
system (system in motion)

T - vector connecting the driven shaft axis with the point of
contact of the chain with the driven gear

a — angle representing position of the vector 7 in the Oxy
system (system at rest)

Aa ~ increment of angle «

@ ~ angle of rotation of the driven shaft

h — distance between the drive shaft axis and that of the dri-
ven shaft

[ ~ length of the chain segment between the points of contact
with the driving element and driven wheel

lo — initial length of the chain.

The solution is sought as a linear approximation of the solution for the
transmission with a circular driving element. The angle of rotation of the
drive shaft (in the 0z;y, system) denoted as ¢, and following substitutions

were made

A=moten  p=tdo+P+h  @=ao+ca
@ = o+ ey p:R+e(77) l=1lyg+¢el (45)
Aa:a—ao

where

%0, Mo, @0, Yo,lo  — values assumed by the coordinates Q/A), 7, @,
@, lA, respectively, for the transmission with a
circular driving element

en,ea, e, €l — their minor deviations of respective coordi-
nates

R - radius of a hypothetical circular element on
the drive shaft

e(n) — shape deviation of the circular element (in

further formulas, for the sake of simplicity,
the argument 7 was omitted).
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For the transmission with a circular driving element

o = —1/) (46)

Substituting Eqs (3.2) + (3.5) and (4.1) + (4.3) into Eqs (2.15) + (2.17)
and (3.1), we have

(R + e)cos(yo+en) + (lo + el)sin(ag + ea) — 7 cos(ag + ca) —h =0
(R + e)sin(yo + en) — (lo + €l) cos(ag + €a) — rsin(ag + ca) =0
[Z—; sin(tpo + €n) + (R + €) cos(¢ho + 677)] sin(ag + €ar) + (4.7)

+ [Z—f, cos(o + €n) — (R + €)sin(yo + )] cos(ao + ca) = 0

—ten de~2
- / \/(ﬁ) +(R+e)?dn+lo+el+rea—rog—rep =l
J :

The values of €7, €a, €p, ¢/ and e are considered as small ones (of the
order of ¢). The functions in Eqs (4.7) were expanded into power series around
zero values of ¢1, ca, ep, €l, e. After neglecting small components, two sets
of equations of the order greater than zero have been obtained. One of then
contains only large components (without small ones, of the order of ¢) and

describes the kinematics of transmission with a circular driving element
Rcosig + lpsinag —rcosag —h =0
R sin g — l[gcosag — rsinag = 0
Rsin(ypg — ag) = 0 (4.8)
Rp—rpe=0

The second one consists of equations of the order of ¢. It describes the

influence of a non-circular driving element on the transmission kinematics

ecospg — enRsin g + elsinag + ealpcosag — carsinag = 0

esin g + enRcospg — el cosag + ealpsinag — earcosag = 0 (49)
4.9
g—;cos(z/)o — ag) — esin(yp — ag) + €aR cos(yo — ag) — enfcos(Po — ap) = 0
-
—Ren / e(n)dn+el+rea—rep =0
0
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The solution to Eqs (4.8) is straighforward since for a regular transmission

R—r

h
lo = h2 - (R - 7‘)2 (410)

Py = Qg = arccos

R
Yo = —1
T
while the solutions to Eqs (4.9) assume the following forms

_Lde(=9) e(=¥)

1= "R dyp o
ca = - SCY)
0 (4.11)
__de(—9¢) e(=)
el = —W—(R—T)—lo—
-
£p = —ﬁ/e(n) dn
0

Thus, the relation between the drive shaft and driven shaft rotation angles,
respectively, being sought after is

-
o=[o 3 [ eln)dr] (4.12)

r
from where the transmission ratio, bu virtue of Eq (2.14), is
. R 1
i) = — [+ Ze(=v)] (4.13)
The transmission ratio was obtained as a sum of two components. The first

one constant and depends on the value of a hypothetical radius R; the second
one depends on a shape of the driving element, i.e., varies with the function

e(n).

5. Sample mechanical system

A mechanical system with an elliptical driving element (Fig.3) will be used
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as an example. In the general, the equation of an ellipse, in the 0z1y; system is

2 2
i Yi
717+ﬁ_1 (5.1)

¥

Fig. 3.

The values A = R4 a and B = I — a are assumed for the semimajor
and semiminor axes, respectively, where a is the parameter defining the shape
(oblateness) of the ellipse.

The polar coordinates z; = pcosn, y1 = psinn were introduced. After
taking into account Eq (4.5), on the assumption that the parameter a is
small (of the order of ¢), the equation of ellipse (with components less than
€ neglected) has been obtained in the form

p=R+acos2y (5.2)

Eq (4.12) can be therefore rewritten as follows
R a
@ = ?(1/1-{— 7 50 21/1) (5.3)

while the transmission ratio Eq (4.13) is

. R a

i(y) = 7(«/) e cos 2¢)) (5.4)
and the average transmission ratio Eq (2.14) is the same as that for the trans-
mission with a circular driving element with the radius R

2w
i:i/§(¢+%cos2¢) dop =

0

: (5.5)
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It was assumed that the driving moment is a periodic function with the har-
monic component

M) = My [1 -~ ﬁ—i‘) cos(¢) — »/)] (5.6)

where Mgy, M, are coefficients defining constant and variable parts of the
moment, respectively. The parameter < represents the angle of phase shift
of the driving moment in relation to the angle of rotation of the driving shaft
(coordinate ). This parameter depends on a position of the driving motor
shaft (the source of moment) relative to the driving element; consequently,
this parameter can be considered as a parameter of the transmission A,. By
substituting Eqs (5.4) and (5.6) into Eq (3.5), an equation for motion was
obtained in the form

. a 1 . o
Ti+ (2 p T e 2V =
(5.7)
T\2 M M, T M, ;
={—= 1] — — — - - °c _
(R) 2[ 7, 0 AV 7)] R1+ &cos2y ey

(1 + & cos 21/})

6. Analytical solution

It is impossible to arrive at an analytical solution to IEq (5.7). A numerical
solution, however, does not give general information about the characteristics
of the system. For this reason, an approximate analytical solution to the
simplified equation has been used. This solution, together with the numerical
solution, allows one to recognize real properties of the system. Simplified
solutions have been obtained for two extreme values of the moment of inertia
(i.e. at zero and tending to infinity). The remaining solutions, for finite values
of the moment of inertia, would be located between the two extremes.

The first case represents the system where the moment of inertia was omit-
ted J = 0. Thus, it is easy to identify the drive shaft velocity as a function
of position (angle )

.1 2 M M
w o= ¥= Z(%) (1 + %CZSQ¢)2 [1 ) TI:JCOSQ(w_v)] F
(6.1)
1r M,

ZE1+ %cos?d;
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However, the solution is sought in the form of a function of time, for only
such a solution allows one to find the average velocity, sce Eq (2.14). The
solution assumes the following forms (cf Gierulski and Wéjcik (1995a,b))

w = wo + Ew) +€2w2

(6.2)
Y = o + ey + 2%y

where, as before, the symbol ¢ denotes the order of magnitude of successive
elements.

Additionally, such proportions were established between the components
of the driving moment that M; /My is small, of the order of ¢. After using
expansion into power series and neglecting minor components of an order
greater than €2, Eq (6.1) can be rewritten as

:—Mo( ){1—2—c0321/)+2——£c052(1/) v)cos2y +

R My
(6.3)
ay? RM
+3(—E) cos? 2¢p — F cos2(¢p —y) — [1 - —cos2y + ( ) cos? 21/)]}
The first approximation step is
1 R M,
wo = Z(%)Z)M ( Mo)
(6.4)

Yo = wot

the velocity is constant, therefore it is at the same time the average velocity.
The next approximation step (of the order of ¢) yields the following solution

1 r\21.a M, R M.
Ewy = _EMO(E) [QE cos 2wot + A_IO- cos 2(wot — ) — Mo R
(6 5)
_ 1 T\2 a . Ml . R Mc a
6’(1)1 = —ZMO(E) [QE sin 2&)01 + VO sin 2((.4}01 - ')’) Alo R — sin 2“’01] 20-’0

which allows one to find the next component of series (6.2); being of the order
of e?

ey = %M()(l)z [3(—(1—)2 cos? 2wt +

R R
+2E% cos 2(wot — ) cos 2wot R 1150 (E) cos” 2wt + (6.6)
1, 2
__1_;_ (AJZO sin 2(wot —v) + 212— sin 2wot — RA/TOE sin 2w01) ]
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Substituting Eqs (6.4) and (6.5) into Eq (6.2),, the average velocity, Eq (2.15),
of the drive shaft is calculated

- R M,
S(\) = —Mo( )’ {1—71\—[0

M
_—1 — IRMO [%(A/I(l))z-*- %(%)2 &—cos?y]}

r

(6.7)

where the transmission parameters Ay, Ay are a/R and <. The average
velocity attains maximum for those values for parameters A;, A2 which meet
conditions (2.16), that is when

o a M,
T=3 R~ M, (6:8)
From the above, the maximum average velocity is
1 r M,
~ _ Ly M. .
Wmax CA 0(R> (1 - Af()) (6 9)

For comparison, in the case of transmission with a circular driving element
with a transmission ratio equal to the average one Eq (2.15), the average
velocity is

RM. 1 1 (A11>2]

o = cio(g) 1= T - a—m (i (6.10)

Fig.4 and Fig.5 show the average velocity versus the transmission para-
meters courses for different values of M_./Mg, i.e. the figures show varying
contribution of the constant component ol transmission load. It is possible to
attain a higher average velocity, than that given by Eq (6.10), when the angle
of phase shift 7 is greater than =/4. Tle second case relers to the system
in which the moment of inertia tends to infinity J — oo. Then, the velocity
of the driven shaft is constant, ¢ = const. There is no need to integrate Eq
(5.7) in order to calculate the average velocity.

In accordance with Eq (2.1), work of the driving moment (5.6) in one
revolution of the drive shaft is

2T
M
Lizn) = /Mo[1 - Ml)cos-zw - 7)] dyp = 21 M, (6.11)

Work of the resisting moment (3.4), including both the constant component
and that dependent on the velocity for one revolution of the drive shaft, and
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taking into account the value for average transmission ratio (5.5), is as follows

2 B
=

R
L= [ (Ot op) dp =202 (M. + ) (6.12)
0

On can see that Ly,) = Lay,, thus

R
Mo = —(M. + ¢) (6.13)

Taking into account the following relationship between the average velocity of
the drive shaft and that of the driven shaft

b= o (6.14)

the average velocity of the drive shaft is as follows

1 T2 R M.
o=~Myl=) [1-——= 6.15

v ¢ O(R) ( TMO) ( )
This value of velocity is depends necither on the shape of the driving element,
nor on the harmonic component of the driving moment. The value of average
velocity of the drive shaft is equal to the maximum velocity for a system where
the moment of inertia is equal to zero.

7. Computer simulation of the transmission work

As a part of a computer simulation, Eq (5.7) was solved for a variety
of values assumed for the transmission parameters and taking the moment of
inertia into account (cf Gierulski and Wdjcik (1994), (1995a)). Only the states
of stabilized motion were analysed. Fig.6 + Fig.12 illustrate the results of
simulation, with the moment of inertia neglected, for different values assumed
for the parameter a/R, at different values for the angle 7. Fig.13 + Fig.18
show the results of simulation with the moment of inertia included. Results
were obtained for the following values of the parameters: My = 10Nm,
M,/My=04,r/R=1/3,c=0.3Nms, M. = 0. The time-dependent courses
are shown in figures. Table 1 shows the set of results obtained.
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Table 1
w — average velocity
J Yy |§=04]|5=02| 5=
0 0 2.57 3.04 3.41
0 |[n/4 3.11 3.33 3.41
0 |[n/2 3.72 3.63 3.41
0.04 | m/2 3.79 3.67 3.55
0.1 | /2 3.81 3.69 3.66

Fig.19 shows the dependence of the average velocity on the value of para-
meter a/R, for angle ¥ = /2, and various values of the inertia moment.

Fig.19 presents the results of numerical solutions. Comparing them with
those obtain by means of analytical methods a good agreement can be found.
Consequently, it is possible to make generalized conclusions regarding the
properties of the transmission.

8. Practical applications

The proposed transmission offers adventages which can be evaluated by
comparison with a transmission containing a circular driving element. A
transmission with a non-circular driving element enables one to attain a hi-
gher driven shaft velocity at the same velocity of the drive shaft. This can be
brought about by proper selection of the transmission parameters. For exam-
ple, for a transmission with optimal parameters, Eqs (6.8), the drive shafts of
transmissions being compared, will rotate at the same average velocity when
a transmission with a circular driving element has a driven gear with a greater
radius. On the assumption that the moment of resistance does not include the
constant component Af. = 0, the value of this radius 7 is

T — (8.1)

2
1( M
1= ()
from where the average velocity of the driven gear &' is

L/A N2
~1 ~1
O =01 - —(——) 8.2
2\ My (8:2)
The radius of driven gear and the average velocity of driven shaft are expressed
as functions of the same quantities as for the transmission with a non-circular
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a/R=02, J=0.04kgm?, p=m/2

M
A

A\ [/

AN

16

12

%)

N
i
0
8.0 8.5 9.0 9.5 , 100
Fig. 14.
a/R=0, J=0.04kgm?, p=m/2
16
M
/ \o
12

/RN //

VANV
S J U

)

4 N ~
AN Z AN P
Z N\ Z AN
~— N . S
!
0
8.0 85 9.0 9.5 10.0

Fig. 15.



OPTIMIZATION OF ENERGY RECEPTION... 825
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10 — Mechanika teoretyczna
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driving element (7,&'). The reduction in the driven shalt velocity depends on
the harmonic of the driving moment. The above statements apply to average
values of the velocity. In Igs (8.1) and (8.2) the quantities (7,0') apply to
the transmission with a circular driving element.

9. Final notes

The transmission with a periodical variable transmission ratio contributes
to the optimization of energy reception in systems with a periodical variable
driving moment. As a result, the average velocity can increase due to creation
of the environment conducive to an increase in power received {rom the motor.
The smaller the reduced moment of inertia in the system in motion, the greater
the effect of using such a transmission. One possible application of this kind
of transmission is a biomechanical power transmission system. Transmissions
of this kind can be found in bicycles; however, there is a lack of literature
describing the theoretical analysis and conditions of optimization.

It might be particularly advantageous to use this type of transmission in
man-powered aircrafts, considering the small values of the moment of inertia
found in such systems.

Application of the transmission with a periodically variable transmission
ratio in power transmission systems is subject to many limitations. Such a
transmission may cause an unbalance in the motion of the machine or one of
its elements; it may also cause additional unwanted vibrations in the system.
Finally, in real systems, it is not always possible to implement the transmission
ratio which ensures optimal operation of the system as determined by the
theoretical analysis.
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Optymalizacja odbioru energii w ukladach napedzanych okresowym
moinentem

Streszczenie

W mechanicznych ukladach przenoszenia energii wazina role moze spelniad
przekliadnia. W pracy przedstawiono analizg teoretyczna przekladni specjalnego typu.
Analize poparto wynikami sumulacji komputerowe]j pracy ukladu zawierajacego tego
typu przekladnie.
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