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A comparison between two approaches to a problem of geometrically
nonlinear shells theories has been performed.

The shell strain tensors and equilibrium equations obtained by Duszek
[1 + 3] and Schmidt and Weichert [4] were investigated and compared.
It was shown that three of the theories derived by Duszek [1 + 3] are
particular cases of the theory proposed by Schmidt and Weichert [4].
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1. Introduction

In this paper we shall compare the approach used by Duszek [1 + 3] with
that employed by Schmidt and Weichert [4] to the geometrically nonlinear
problem of plastic shells.

Although the aims and methods of both approaches are different, it will
be shown that in certain cases of shell deformation strain tensors assume the
same form. Moreover, the equilibrium equations in the rate form can also be
compared, and as we will see, they also coincide. Such a coincidence occurs in
the case of moderately large displacements in the sense of [1 + 3] and moderate
rotations in the sense of [4]. Both in [4] and [1 + 3] it is assumed that the
strains are small, however, the displacements are finite.

The essential feature of these approaches is the fact that the authors desist
from certain assumptions of the Kirchhoff-Love theory. As it is known they
say that rectilinear material fibres orthogonal to the undeformed midsurface,
remain rectilinear and orthogonal to the delormed midsurface and do not
change their lengths.

Duszek [1 + 3] deals with thin and rigid plastic shells only. In the paper
by Schmidt and Weichert [4] the shell thickness is not required to be thin.



750 A .SLAWIANOWSKA

The geometrical relations for the shells considered in [1 + 3] are classified
depending on their initial shape and assumed deformation modes.

In [4] a mathematically consistent description of the deformation of elastic-
plastic shells has been proposed. The rotations which are assumed to be
moderately large, are the rotations of the normals to the midsurface only [4].

2. Assumptions and notations

When formulating equations of the shell theory, both Duszek [1 + 3] and
Schmidt and Weichert [4], use the Lagrangian description, i.e. all quantities
are referred to the undeformed shell configuration. Tle state of deformation
is then defined by the Green strain tensor E and the state of stress by the
second Piola-Kirchhoff stress tensor S.

In [1 + 3], [5] and [4] 3D problems for shells have been reduced to the
corresponding 2D forms. Such a reduction is possible provided that the stress
resultants, which are the integrals over the shell thickness of certain stress
functions are introduced. To perform this reduction, the Green strain tensor
E is decomposed into Era, Fas, Faz; IA =1,2.

It will be useful here to make a comparison of the corresponding notations
applied in [1 + 3] and [4]. Below, Latin indices run over 1,2,3 and Greek
indices take values 1,2.

Table 1
[1+3] Meaning (4]
X1, X% X3 material curvilinear coordinates 601,0% 03
U shell displacement vector V = (V,, V)

{Ga,G3} local base of the undeformed shell {94, 93}
Ga-Gp = Gyp | metric tensor of the undeformed | g;-g; = g;;
shell space

AuB metric tensor of the misurface (o " A8 = Qug
Bra second fundamental surface tensor bap

of the undeformed shell surface
SKL second Piola-Kirchhoff stress ten- P

sor
Exr Green strain tensor E;;
Ur,Us displacements referred to the base Vo, U3

vectors of the midsurface




COMPARISON OF TWO THEORIES... 751

(1+3] Meaning [4]
h(2H) shell wall thickness h
2L length of the deformation wave of the shell -
R minimum radius the shell curvature -
0
Aar extension tensor of the midsurface Eop
1
KAI change of curvature tensor of midsurface Eap

of the shell

0.. 1.
NAT Q4; MAT | stress resultants of the shell: normal force, | L*7; [
shear force, bending moment

Vo, W tangential and normal displacements of a | v, 7?3
point on the middle surface
T 11
Br, B3 inclination of the external normal to the | vq,v3

reference surface), the normal strain di-
stribution over the refcrence surface

3. Approach applied by Duszek [1 + 3]

In [1 + 3] several classes of nonlinear geomectrical relations for thin rigid-
plastic shells are listed. The classification was performed with regard to the
initial shape of the shell (shallow, moderately shallow or deep one) and the
deformation mode (displacements: small, moderately large or large ones).

In this manner, simpler formulas of the nonlinear geometrical relations are
obtained. Both in [1 + 3] and in [4] it is assumed that the components of the
displacement vector Uy are linear functions of X3 - the coordinate normal
to the shell midsurface

Ur =Vr(X4)+ X38r(Xa)
(3.1)
Us = W(Xa)+ X°B3(Xa)
Here Vp, W are the tangential and normal displacements of a point on the

midsurface, Gr stands for the inclination of the external normal to the midsur-
face and f3 specifies the normal strain distribution over the reference surface.
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The Green strain tensor can be written in the form

2Ear = Uallr + Urlla + Usl|aU®||r + Us||aU3||
2Ea3 = Uslla + Ualls + Us|laU®||a + Us||3U%|| 2 (3.2)
2F33 = 2Us||s + U<15H3U¢H3 + Us||30%5

where || denotes covariant differentiation with respect to the metric of the
undeformed shell space.

In papers [1 + 3] only thin shells are examined, i.e. h/R < 1.

It is assumed that no volume changes take place during the plastic defor-
mation. The incompressibility condition is expressed by Ezz = —EarGAT
(in the case of rigid-plastic material of the shell). The shear strains are taken
as negligible, i.e. Fa3z = 0.

For thin shells the covariant spatial derivatives of space vectors are expres-
sed in terms of the covariant surface derivatives of the surface representation
of these vectors as follows, [1 <+ 3], [5]

VA”F =Valr — BarW
Wlla =W,a+B5vr (3.3)
Vallza=Va,s

where | denotes covariant differentiation with respect to the metric of the
midsurface of the undeformed shell.

Making use of the kinematic assumption (3.1) and the rules (3.3), for the
Green strain tensor (3.2) we get the formulas

1
Ear = Vialry - BarW + 5(W|AW|r + BEBorW? + V| (aVelry +
+ )t et X3{Bialry = BarBs + V®aBolry = BlBolryW +

+ B?ABq;[‘)W,B:} + }
(3.4)

1
Eas = 5([34 + Wla+ BYVe + VO aBo + W|afs — BRBsW +.) +

1
+ 5 X°{Bala + BABs +5%|aba + BEBESrW — BBV |a+ .}

Ess = ot 5(8%Ba +(5:)%) - X*{BEBrs")
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Obviously we have [2]

Ear = Xar + X°kar
Eaz=Aaz+ ,Xalidg (35)
Es3 = A3z + X ka3

An order of magnitude of the particular components in the above formulas
depends upon the state of deformation and the geometry of the shell. To
formulate approximate theories several detailed cases have been considered by
Duszek [1 + 3] for the following four quantities: L/R, h/R, W/R, Va/R.

We shall now consider three representative models studied by Duszek
(1 + 3]

(a) Shallow shells: moderately large W and small Vj;i.e.

w_, Ya_, LA L.
h h R R
where ¢2 = O(h/R), €2 < 1 and
1
Aar = V(All") — BarW + §VV|AI’V r
kar = Balry = =Wlar
(b) Quasi-shallow shells: moderately large W and small Va;i.e.

w Va h 2 L
h ot R-° R

and

Aar = Vialry — BarW
kar = =Wlar = B&|rVe — B{sValr) + BAF(V¢|¢ - B‘%W)

(c) Deep shells: moderately large W and small Vj; i.e.

w Va h 5
—h—_l h—E R—E

=
o | =

and

Aar = Vialry = BarW
kar = =Wlar — Bar BgW
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In order to obtain all above relations; i.e., the cases (a), (b) and (c), an
evaluation of the order of magritude of each term in the adequate expressions
for Aar and Kar has been performed.

In the formula for Asr the terms smaller than, or equal to, £% as compa-
red with the greatest linear term are neglected while all the linear terms are
retained.

As what concerns the change of curvature kar for nonlinear theory, the
linear expression has been complemented by nonlinear terms of the same order
of magnitude as the greatest linear term. Moreover the linear terms which are

sufficiently small are neglected.

The six unknowns of the problem: Ar, 83, W, Vr have thus been redu-
ced to the following three ones: W and Vp. To derive these models the
assumptions Ea3 =0 and Esz3 = —EarGA7 were accepted.

4. Approach used by Schmidt and Weichert [4]

After Schmidt and Weichert [4] the Green strain tensor E;; may be expres-
sed by the formula

1 _ r r 1 r
Et’j =ni; + 5-0”'-0]' + 5(771'1’-0]' + 771‘]'Qi)+ 5777'1'77]' (41)

where 7),; are components of the linearized strain tensor and f2;; are the
linearized rotations given by

s = %(Villj + Vills) 2 = %(Villj - Vill:) (4.2)
The assumption of small strains means that
E; = 0(9?) V<1 (4.3)
In [4] the rotations are restricted by
Q45 = O(V?) Qa3 = 0(9) (4.4)

Relation (4.4); means that rotations of the normals to the midsurface are
moderately large; consequently

Ny = 0(172) (4.5)

Retaining in Eq (4.1) the terms of the order not exceeding O(63) only the
following relations are obtained
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1 1
503003ﬁ + 5(7730103ﬁ + m38234) + O(9Y)

1 1
E.3 =103+ 59,\39;\ + §(T7Aa9_§\ + M33823,) + O(9) (4.6)

1
E33 = n33 + §QA39{;\ + 323 + O(9)

Eop = nap +

The kinematical hypothesis assumed by Schmidt and Weichert [4] is given

by

Vo :’80 +@3 ’ll)a V3 :’83 +63 ’11)3 (47)
Eqs (4.7) mean that the displacements, referred to the base vectors of the
midsurface are distributed linearly across the shell thickness.

Making standard calculations and taking into account the order of ma-
gnitude of particular terms occuring in Eqs (4.6), the following 2D strain-
displacements relations for shells undergoing small strains and moderate ro-
tations of the normal are obtained

E;(0',0%0 2(63 £ (61,07 (4.8)

where

0 0 10 o0 4

Eaﬂ:@aﬂ +§ Pa'Pp +0(0 )

11 L/, 0 \ 0 1,0 1 0 1 91

Eap=0ap —5(1?0 @ap +0j3 (19/\01) + 5(‘1909% + ‘Pﬁ‘%) + O(T) (4.9)
,04

i‘aﬂz —%(b{; ‘119,\ﬁ +b3 (110/\01) + % J’a‘flgﬁ +O(h_2)

0 1,0 1 0
EM=5@0+%)+§P¢m+M+OWﬂ
1 11 11,1 91
Eay= 3% la+5 0" 03 |a + 4 O(5) (4.10)
0 1
E33=?113 +§ b 11),\ +0(0)

l%o,gz 0 for n>3

R* Eaz= O(9%) for n > 2 (4.11)

™ Egg= O(9%) for n> 1
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and for n=0,1

n 1 n n

Oap= E(ga ls+ vg |a) — bop v3

n

Pap=Va | — bap O3 (4.12)

n n AT
Pa=V3 |a + ba V)

5. Comparison of the geometrical relations derived by Duszek
[1 + 3] and Schmidt and Weichert [4]

As we have noticed before there are common pointsin the papers by Duszek
[1+3] and by Schmidt and Weichert [4]. Obviously, some assumptions coincide.

Now we shall demonstrate that under suitable conditions imposed on the
theory of Schmidt and Weichert [4], the results obtained by Duszek [1 + 3] are
recovered. Let us first list these assumptions:

(A1) FEa3 = 0 (transverse shear strains)

(A3) Plastic incompressibility
(A5) [Wir[ = 0(*f), [valr| = 0(*2)
(A B =0(%)

(As) B3=0 — Us=W(X2)

(Ag) 03 =0 (Cauchy normal stress).

The assumptions (As) and (Ag) will be applied in Section 7.
There are six quantities describing the mathematical problem in [4]: 80,

1 1 . . . -
Vs 83, vz and corresponding to them in [1 <+ 3] six quantities: Vr, fr, W, 5.

Let the notation < refer to the corresponding quantities of both approa-
ches. We pass to proving that

0 1
Eaﬁ‘:::’ /\aﬁ Eaﬂ‘:::’ Kaﬁ (5.1)

We have (cf [4])
0 0 100 4
Eaﬂ:Oaﬂ +§ PaPp +O(19 )
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0 0
where Qop, o are defined by Eqs (4.13).
It is easy to see that

0
Oape Valr — Barv (5.2)

which is the linear term of (t)heostrainotensor.
The nonlinear term 3 ¥a%9g of Eag is to be compared with IW|aW|r
of Duszek [1 + 3]. Then we have

0 O
Pap & (Wla + BoVN)(Wlg + B3Vs) = 53)
5.3

= W|aW|g + BAVAW g + BIVsW] + BAVABSV;

Now we shall examine the terms appearing in Eq (5.3) for the three cases
of the “order of magnitude” specified by (a), (b), (c), see Section 3.

All components of A,5 which are smaller than &? are omitted. A corre-
sponding simplification has to be performed within the theory developed by
Schmidt and Weichert [4]. Accordingly, we have to impose

W Va . ho

—=0(1) = =0(e) 7 = 0() (5.4)
and L L L 1

Z=0() o £=00) o E:OQ)

Then 2
1
BV, = O( )/zs = O(E—slz) = 0(&?)
see also assumtion (Ay).
Thus we have to omit the second, third and fourth terms, respectively,

on the right hand side of Eq (5.3). In this way only the first term is to be
retained, i.e. W|,W|g. Let us estimate this remaining term. We have

#1e] = 0() =0(3)

L L
The following three cases are possible:
h
() L=Re=— Wla| = 0(e)
h
(b) L=R=5 |wh:ow) (5.5)
R h 3
(¢) L:?:s_f‘ Wia| = 0(e”)
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From Eqs (5.5) we infer that in the case of moderate deflections of shells,

0
i.e. for w = h, the nonlinear component of FEsg& Asg, should be taken
into account for thin shallow shells only, i.e. in the case (a). And so it is

0
formulated in [1 + 3]. So, in general we have E,3& Aag.
In the cases (b) and (c) the term 1W|,W/|g has to be neglected.
Now we may pass to the comparison of the curvature tensor Kar used by

1
Duszek [1 + 3] with its corresponding quantity E,g applied by Schmidt and
Weichert [4]. In accordance with [1 + 3] we make two assumptions

h 3

h
Eaz =0 -550°<3 (5.6)
o h 3 _h oo -
E33 = —E4p9 ~3 <O° < 5 (plastic incompressibility) (5.7)

From Egs (5.6) and (5.7) for ©3 = 0 we have

0

Fa3= 0 (58)
0 0 -

Eas=—FEap g (5.9)

Following Schmidt and Weichert [4] we write
0 1.0 1 0
Bas= 5(%a + Vo) + 5 0 Par +on (5.10)

Taking into account the linear part of Eq (5.10) we get

0 1 0 0 0
Pa + 11)01: 0 — V4= —@Pa= — 13 |cx - bé VA (511)

Now we shall consider the three cases of delormation, specified as cases (a),
(b) and (c), (see Sections 3 and 5). For each of this cases we have

(a) Vs Bo = ~Wl, Wla = O(e) (5.12)
(b) Ve By = —W|o — BV Wlo = 0(e2)  (5.13)
(¢) Vot Bo=~W|,— B2V W,=0@%)  (5.14)

Let us pass to the determination of 11)3@ B3. From Eq (5.9) we get

0 1 11,1 0 0 100
E33=03 +§ 02 vy= — Eap 9% = — Oap 9°° - 5 Patp ¢*P+ ... (5.15)
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Similarly as 11)0,<:> Bo the quantity 11)3:11)3 (g,\,gg) should also be estimated
for our three cases studied. We have to evaluate Va|r in the cases (a), (b)
and (c).

(a) Valr= o(ﬁ) = 0(e2)
(b) Valr=0(*2) = 0(e?) (5.16)

(&) Valr=0(22) =0(")

We are going to examine Eq (5.15) in each of three cases. In the case (a) we
have
1o
- =
2

Using the notation of Duszek [1 + 3], making an obvious contraction we get

1 1o 0

vs +5 U3 [a U3 1 = = Vo 19 + bap v3 g7 3 lo V3 |g°" + ... (5.17)

B3 = —V®p+ BIW — W|sW|? (5.18)

Now, we can estimate [ <:>11)3 in Iq (5.18)

1 0 0 0 0
vg= — v/\|,\ + b‘; v3 — V3 |y U3 |/\ (5.19)
—— ~— SN—————
2O(e2)  =O(e?) =0 (£2)

According to the argumentation put forward at the and of Section 3, we neglect

1. . .
all three components of v3 in the above expression. I'inally for the case (a)
we arrive at

1 11 1 1
Eap® kap & 5(Va |t 05 o) & =5(Wlap + Wlpa) = =Wlag  (5.20)

Let us pass to the cases (b) and (c).
From formulas (5.13), (5.14) and (5.17) we can derive and estimate all

terms of 03 (11)341) B3). Let us first calculate B(4|g) for the cases (b) and (c).
Not specifying yet the order of magnitude for both cases we may write

1
Blalgy = §(ﬂa|ﬂ + Bpla) =

1
- 5(_W|(,[3 — Bl|gVy — BiValg — Wlga — B3laVa — B3Vala) = (5.21)

) 1
= —5(Wlag + Wliga) = 5VA(BIls + Bjlo)
= —Wlap — BalgVa = B, Valp)

1
- §(B§VA|;3 + B3Vala) =
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For the cases (b) and (¢) the condition of plastic incompressibility expres-
ses as follows
1 lo 0 0 o 0
V3 +§ V3 |/\ V3 |/\ = — v(a |ﬁ)g p + baﬁ (%] gaﬁ (522)

as from the expression for v A 11),\ (see Eqs (5.13) and (5.14)) we take into

0 1,0
account one member: v3 |* v3 |y only, because three further ones are very
high order of magnitude. From Eq (5.22) we obtain

1 0 a0 lo 4,0
V3= — Vqu |01+ba V3 —5 3| (%] |o1 (523)

or in the notation used by Duszek [1 + 3]
Bs=-VI|r+ BfW - %erWh

Now, one has to distinguish between the cases (b) and (c). The conditions
concerning the order of magnitude from the end of Section 3 are still compul-
sory.
The case (b)
0,0
v3 |% v3 |y = O(e")
0%, = O(c®) (5.24)
b2 va= O(e?)
Omitting the last term of Eq (5.23) we get the formula for the change of

curvature

1 1
Eaﬁ = 9(1] = ’Ulalﬂ - bo(g V3=
o Tedd) (5.25)

0 0 0 0 0
= 03 |ap = balp Va =0, Vx |g) = bap(v]a — bS v3)
The case (c)
0 0
V3 Ia V3 |a = 0(56)

%], = O(c) (5.26)

0
b% v3= O(e?)
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(see Egs (5.5) and (5.16)). Thus we can neglect two terms of Iq (5.23), hence
Ba & ba= bS 03 (5.27)

Further, because of the order of magnitude, we can omit two terms of Eq
(5.21) and obtain then

1 1
Ko S Eap=0ap= — V3 |op — bagh? V3 (5.28)

In all three cases (a), (b) and (c) the higher order terms of 1130,[3 have to be
neglected.

6. Equilibrium equations (cf Duszek [1 + 3])

In contrast to the kinematics, where three models of shells could be com-
pared, the equilibrium equations will be examined only for the case (a). Such
a limitation is justified by the fact that in [1 + 3] for the cases (b) and (c) the
equilibrium equations have not been discussed.

The stress resultants for thin shells (pf ~ 6%, pf-shifter) are defined as

follows

h
2
SAF dX3 — NAF //\rSSAF dXS — ]WAF

\,w:r

|
NEs
MBS

(6.1)

SA3 d)(S — QA

\,w:—

.y
2

In the case (a) (shallow shells undergoing moderately large deflections and
small strains) the equilibrium equations in the rate form are

NAT|r = BRQT + (B2QD)r + (B2QN)|r+ PA =0
BarNAT 4+ QT |r + (W[aNAD)|p 4+ (W|rNAD)r+ P =0 (6.2)
MAT = Q4

where
Ba=-W]|a (6.3)

6 — Mechanika teoretyczna



762 A .SLAWIANOWSKA

and
+h/2

-h/2

ar +h/2
—h/2

pr=5 P=(5%+ WlASM)i (6.4)

are the external loads applied to the mid-surface of the shell.
A superposed dot denotes the derivation with respect to time.

7. Equilibrium equations (c¢f Schmidt and Weichert [4])

To compare both approaches let us start by recalling the general form of

the rate equilibrium equations derived by Schmidt and Weichert [4].
From the variational principle 6I(v) = 0, where v = (80,83,11)0,11)3) and

the variational functional [(@) in its 2D form given in [4], the six nonlinear
rate equilibrium equations were obtained. Neglecting body forces we get the
following set of equilibrium equations

0 0 0
§va: S™Plg—05 5%+ po=0

0 0 0
§03: SP|g+bop S+ p3=0

1 1 1,5 1
§va: S5 =03 5%+ R*+p =0

1
1 A 1 1
603: SPg+bas SP+ RP+p3 =0

where (see Eqs (4.13))
g'a’a 2205 — b5 11",/\5.{_ b Eﬁ3+ 11-)0 253
§902imy §,0004 3,004 biboy 1
§90 _jes + e LAY 1] Y.
;‘wﬁ :}'aﬁ — b3 z,\g (7.2)
B0 Lo @19y 1 by - 188 Loy

1 o ! 0 1 1 2.4,
S = L4 o LM + (2L
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1 .
RQSZ_La3+

}1233:—L33—

(7.3)
n= \/g g = det(gi;) a = det(ayp)

0 0
In Egs (7.1) the quantities P, p3, are 0-order couples of the surface loads
defined below (in the case of thin shells) as follows

0

pcx — *t3a 33 +h/2

+h/2 05
—h/2 pr=t —h/2 (74)

where *37, %33 are the boundary values of components of the first Piola-

Kirchhoff stress tensor, balancing the applied to the upper and lower faces of
the shell external surface loadings. In the papers [1 + 3] the external loadings

1
of first order do not occur, so we put p* = 0.
In order to compare the quantities (6.4) with their counterparts (7.4) we

should take into account that b = g—g%sba, where [%] is a placement of

the mapping
(61,6%,6% — {21(6",07,6%),2%(6,67,6°),5%(0",6%,0°)}
Moreover, it is possible to show that

ozt

oz = V1(0) + 1 (0,2(0)) [ed] =1

For thin shells we obtain

36 — ggissa o ggissa o 536

3 .3 .3
t33 — aa;asiia — ggasi}a + %533 o 533 1 SSF‘/V“‘
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Involving the estimations (5.5); and (5.16) one arrives at the equivalence
0 0
Pl & peand P & p3.
Let us notice that in [1 = 3] the equilibrium equations (6.2) have been
obtained for f3 = 0, ¢f [5]. In the notations of [4] it means that

V3= 0 (75)

With regard to this dependence the set of substitutions (7.2) is a simplified
form of the corresponding original relations given by Schmidt and Weichert [4].
Obviously, all the assumptions (A;) + (Ag) listed in Section 5 are com-
pulsory here.
Now, we pass to deriving a particular case of the Eqs (7.1) which is consi-
dered here as the case (a) and has been studied by Duszek [1 + 3].

2
First, we evaluate a few quantities appearing in Eqs (7.2). We put [ =0
1
and [#% = 0 because in [1+3] these moments (bending 2nd order and torsional
1
1st order) do not occur. Formulas (4.13) and (5.12) imply that ®,= 0 and

0 o
Pa=V3y0 = 0(5)
Let us recall yet the evaluation BY = b = O(1/R) = O(e?)h, cf [1 + 3],
[5]. With regard to this dependence, the second component in the expression
0
for §°° may be omitted.

Let us analyse now the quantity ,Sqw appearing in Eqs (7.1). We realize
that .
Bor 3 (8,09
In such a form it occurs in Eq (7.1)2 but in Iq (7.1); only the first component:
19/53 remains, as in the expression b3 fs)' 38 the second one has the order of

magnitude O(e3). Now we estimate the second term, i.e. byg ,g“’ﬂ, occuring
in Eq (7.1);. We have
0 0 1 0
baﬂ Saﬂ = baﬂ Laﬂ + baﬂgaa va[/ﬂs =
0 0 0 0
= bog Lo+ 05 0,153 = bog L°F + 0(2)0(c) L7

It is shown here that only the first term of the above expression should be
preserved in Eq (7.1),.

1

1 L
Let us pass now to Eq (7.1)3. Obviously we have: §%# =L %, The second
component in this equation, i.e. 0§53 = O(¢?)O(e) ought to be neglected.
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1
The last quantity we have to estimate is 2. It is easy to notice, see Eqgs

0
(4.13), that ©¢ = O(e?). So the second and third terms in the expression for

0
1 1 )
R 3 are negligible. Then we obtain: 3 = — [°3,
Now we have already completed the analysis of equilibrium equations. We
can compare only first three equations of the set (7.1), with regard to the

condition 11)3: 0, see Igs (7.4); hence also § 1113: 0.

We put in Egs (7.1) P = 0 because in [1 + 3] such an external loading
does not occur.

Now, after the above evaluations of many quantities of the formulas (7.2)
and Eqgs (7.1), we can write down the equilibrium equations derived here from
the result obtained by Schmidt and Weichert [4] in the case (a) considered by
Duszek [1 + 3], as follows

0 0 1, 9 s 10, 0 0
§va: LPp+ (00 L)+ (0 L) — b5 LB+ p* =0

0 0'3ﬁ 0 q/\ﬁ 0 0\ 9 93
§v3: L%|g+ (03 L )]s+ (3,0 LY)|g + bap L%+ p2 =0 (7.6)

1 1 0
60 LYPlp— L =0
where 11)a= - 83,(,.

Nowadays, it is clear that the equilibrium equations (7.6) derived here from
the results which were got by Schmidt and Weichert at moderate rotations of
shells are the same as the equations obtained by Duszek at moderate deflec-
tions. It was possible to prove this equivalency for shallow shells, because for
such a kind of shells these equations were given by Duszek [1 + 3] explicitly.

It is possible to verify that static boundary conditions, obtained by Duszek
[1+3] from the principle of virtual work, are identical with those ones presented
by Schmidt and Weichert [4].

8. Concluding remarks

Two approaches to geometrically nonlinear plastic shell problem have been
compared. The kinematical hypotheses assumed there are weaker than the
assumptions of the Kirchhofl-Love theory.
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Under appropriate simplifications imposed on the kinematical and statical
quantities, involved in the model studied by Schmidt and Weichert [4], the
three classes of geometrical relations for shells at moderate deflections, obtai-
ned by Duszek [1 + 3], are derived here {from the theory of shells at moderate
rotations, [4]. In what concerns equivalent equations the coincidence has been
demonstrated for shallow shells only.
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Porédwnanie dwu tcorii geometryczuic nicliniowych powlok

Streszczenie

W pracy dokonano poréwnania dwu sformnulowaii problemu geometrycznie nie-
lxmowych powlok. Rozpatrzono i poréwnano tensory odksztalcenia powlok oraz réw-
nania réwnowagi otrzymane przez Duszek [1+3] oraz Schmidta i Weicherta [4]. Wy-
kazano, ze trzy sposrdd wielu teorii uzyskanych przez Duszek [1+3] sa szczegolnymi
przypadkamn teorii zaproponowanej przez Schriidta i Weicherta [4].
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