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In the present paper, the inlluence of initial conditions on the occurrence
of regular and chaotic vibrations of the system with backlash, descri-
bed by a non-linear differential equation with a periodic coeflicient, was
investigated. For specified parameters, using the Lyapunov exponent,
intervals of the initial conditions leading to chaotic motion were deter-
mined. The effect of external excitation amplitude on the character of
motion was analysed. For the initial conditions determining regular and
chaotic motion, Poincaré maps, bifurcation diagrams, phase trajectories
and time hislories were compared, respectively.
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1. Introduction

In problems concerning mechanical vibrations, it can be isolated a wide
class of systems with parameters periodically changing, which one simulta-
neously subjected to external excitation. These are; e.g., gear transmissions,
rotating shafts with different principal intersection moments of inertia and pi-
ston machines. Such vibrations one can meet in power transmission systems
with belt transmissions, universal couplings and suspension of vehicles using
variable radial rigidity of solid type and in many other mechauical systems

Szabelski and Samodulski (1985).
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Influence of the self-excitation in this class of systems, was examined by
Szabelski and Warminski (1995). As mechanical systems are exploited, con-
structional backlashes increase, which may lead not only to quantitative chan-
ges, but also to qualitative ones in vibrations description. The influence of
backlash on chaotic vibrations occurrence in the system with one degree of
freedom and external excitation was presented by Kleczka et al. (1990). In
Dyk et al. (1994), Hongler and Streit (1988), Litak et al. (1995a), Sato et al.
(1991), the influence of different parameters (e.g. interteeth backlash of single-
stage gear transmission) on the possibility of chaotic vibrations occurrence was
analysed.

The Lyapunov exponent is one of factors characterizing chaotic motion.
It represents sensitiveness of the system to the influence of different factors
affecting regular or chaotic motion. Chaotic vibrations may affect correct
operation and durability of the mechanical system.

The present paper aims at investigating the influence of initial conditions
on cliaotic vibrations occurrence in mechanical system with backlash, being
simultaneously excited parametrically and externally.

2. Mathematical model

In the present paper, a vibrations of the system are represented by a non-
linear differential equation with a periodically changing coefficient and external
excitation. In the considered model, non-linearity in the form of backlash
has been assumed. The following differential equation of vibrations has been
analysed

d’z  2Cdz  k(r)
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(2.1)

where:

— frequency of external excitation
— amplitude of external excitation
constant component of excitation
- damping ratio
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- phase angle
7) — periodic function
— dimensionless time, 7 = wt.
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Function g(z,n)is defined as follows

z x>0
glz,n)=< 0 -n<z<0 (2.2)
r+7n < -7

where 7 denotes the backlash.

Eq (2.1) represents, e.g., the single-stage gear transmission vibrations (cf
Sato et al. (1991)). This model was derived basing on two non-homogeneous
differential equations, describing motions of the system wheels at a periodic
change of meshing rigidity and backlash existence also under other input and
output moments. These equations were reduced to Eq (2.1) by variables chan-
ging. Eq (2.1) is a general one, it describes vibrations of parametric systems
with backlash external excitations. Let us assume, that the periodic function
k(7) generates polyharmonic parametric excitation. In order to attain that we
assume that the function £(7) is expandable in the Fourier series and takes
the following form

0.6+ 7/(0.37) 0<7<0.127
1 0.12r <17 < 1.087 .
MT)=9 46-7/(03r) 108r<r<lor (2.3)

0.6 12r <7< 27

3. Analysis of the result obtained

Eq (2.1) has been solved numerically using the Runge-Kutta-Gill method
of the fourth order. For assumed system parameters the values of Lyapunov
exponents were calculated using the method by Wolf et al. (1988).

For the two values of initial conditions 29 = —12.0, v, = -—-0.5,
2o = —12.0,v9 = —3.5 and the assumed parameters of the system w = 1.5,
n=0.08, B =1 B =8, n7=10, @ =0 the maximal Lyapunov exponents A;
apart from the one which is always equal to zero versus time specified by the
number N of excitation cycles is presented in Fig.1.

After about N = 600 forced cycles the system reaches a steady state. In
Fig.2 the exponent ); is show schematically for different initial values zg, vg,
where zg € (—15.5,0.5), v € (-15.5,0.5), and for the two values of external
excitation amplitude B =4 (Fig.2a) and B = 8 (Fig.2b).

The distribution of A for regular and chaotic solutions has complica-
ted structure. The structure is richer for larger value of parameter B. For
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Fig. 1. Time dependence of the maximal Lyapunov exponents A, (N denotes the
number of forced cycles) for the system parameters w =1.5,n =0.08, By =1,
B =8, 7 =10, © =0 and different initial conditions: z¢ = —12.0, vp = —0.5 (the
upper curve) and zq = —12.0, vp = —3.5 (the lower curve)

Fig. 2. Lyapunov exponent A; as a function of the initial conditions for B =4
(Fig.2a) and B = 8 (Fig.2b). Other parameters were taken as in Fig.1
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Fig. 3. Cross-sections of the plot 2a (B = 4) for xp = —4, =8, —12, respectively
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Fig. 4. Cross-sections of the plot 2b (B = 8) for zg = —4, -8, —12, respectively
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better illustration, the intersections of those figures by parallel planes, at
ro = -4, -8, —12 (Iig.3) for B = 4 and (Fig4) for B = 8, respecti-
vely, have been presented.

In Fig.3 and Fig.4 one can notice stronger oscillations of the Lyapunov
exponent Aj versus the initial velocity when it is positive, i.e. in the cases of
chaotic vibrations.
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Fig. 5. Bifurcation diagrams for the same system parameters and initial conditions
as in Fig.1. In Fig.5a vo = =3.5. In Fig.5b v = -0.5

For the same values of 7, w, n, By, O like in Fig.1, T'ig.2 and for two
different initial conditions assumed, ie., 29 = =120, v9 = —0.5 and
zg = -—12.0, v = —3.5, (see Fig.1), the bifurcation diagrams are shown
in Fig.5a. For the initial value vy = —0.5 we observe additionally the interval
of regular motion, which does not occur for the velocity vg = —3.5.

Fig.6a,b show the Poincaré maps for the same, initial conditions
zo = —12.0,v9 = —3.5(lig.6a)and 2o = —12.0,v9 = —0.5 (Fig.6b). The
assumed amplitude of external excitation equals B = 8. Fig.6a shows, on the
Poincaré map, only three points, proving that the motion is regular. I'ig.6b
presents chaotic attractor. ['ig.6b,c,d exhibit the fractal structure of chaotic
attractor, what clearly testifies to chaotic motion of the transmission. Fig.6c
is the enlargement of the subdomain A, marked in Fig.6b, whereas Fig.6d
presents the subdomain A; marked in Fig.6c. Taking Fig.6b,c,d into acco-
unt one can draw the conclusion that the self-similarity coeflicient of strange
attractor amounts approximately 10.
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Fig. 6. Poincaré sections for the same initial conditions and system parameters (but
B = 8), as in Fig.5. Fig.6a shows the regular motion, while Fig.6b the chaotic one
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Fig. 7. Phase portraits for the same parameters and initial conditions as in Fig.6.
Fig.7a shows the regular motion, while Fig.7b the chaotic one
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For the same parameters of the system, like in Fig.7, the phase portraits
are presented. For the initial conditions z¢ = —12.0, vg = —3.5 (Fig.7a), the
closed trajectory of regular motion with threefold period has been obtained,
which agrees with the results presented in Fig.6a. For the initial conditions
zo = —12.0, vg = —0.5 (Fig.7b) the trajectory of chaotic motion has been
obtained.
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Fig. 8. Time histories for the same system parameters and initial conditions as in
Fig.6 and Fig.7. Fig.8a shows the regular motion, while Fig.8b the chaotic one

Time histories of those two motions are shown in Iig.8 plotted for the
values of the system parameters and the initial conditions discussed earlier.
Fig.8a illustrates the regular vibrations, conformable to the results presented
in Fig.6a and Fig.7a, whercas Fig.8h shows the chaotic vibrations.

4. Remarks and conclusions

In the present paper, the results of numerical simulation of the system
vibrations with backlash, under parametric, external excitation, were descri-
bed. Applying the Lyapunov exponents to assumed system parameters, the
initial conditions leading to claotic solutious were determined. The initial
conditions in the considered system appeared to the additional bifurcation
parameters. For the assumed system parameters, occurrence of regular and
chaotic motion was checked using Poincaré maps, phase portraits and time
histories. The influence of external excitation and initial conditions on the
character of vibrations was illustrated in the bifurcation diagram.
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Though the analysis shows the essential influence of the initial value inte-
rvals leading to regular and chaotic motion, in the actual systems characterized
by the noise occurrence (cf Kunert and Pleiller (1990); Litak et al. (1995D)),
the structure of regular and chaotic states appearance (Fig.2) may change
fundamentally.

Estimating the values of model parameters and the values of initial con-
ditions at which chaos was detected, one should state unreality of chaotic
vibrations occurrence in the case of a real gear system.

Agreement of the investigation results, concerning the occurrence of regular
and chaotic motion, with application of different diagnostic methods should be
emphasized. It was found that the Lyapunov exponent, according to the initial
conditions, was described by discontinuous function. At the discontinuity
point, vibrations of the system are characterized by a sudden transition from
a regular motion to the chaotic one and inversely. Such a property of the
system may have important practical meaning.
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Wplyw warunkéw poczatkowych na wystepowanie drgail chaotycznych
ukladu z luzem, pobudzanego parametrycznie i zewnetrznie

Streszczenie

W pracy zbadano wplyw warunkéw poczatkowych na \vystepowame drgan
regularnych i chaotycznych ukladu nieliniowego z luzem, opisanego réwnaniem
rézniczkowym z okresowo zmiennym wspdlezynnikien, Dla okreslonych parame-
tréw, stosujac wykladniki Lapunowa, wyznaczono przedzialy warunkéw poczatkowych
prowadzqcych do ruchu chaotycznego. Przeprowadzono analize wplywu amplitudy
wymuszenia zewnetrznego na charakter ruchu przekladni. Dla warunkéw poczatko-
wych, determinujacych regularny i chaotyczny ruch ukladu, poréwnano mapy Poin-
carégo, diagramy bifurkacyjne, trajektorie fazowe i przebiegl czasowe.
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