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The infAuence of a medium structure on the propagation of accelera-
tion wave in a fluid-saturated porous medium has been studied. The
medium is composed ol a viscoelastic solid skeleton and compressible vi-
scous fluid. It has been found that the acoustic tensor is non-symmetric
in the considered case. The medium structure influences viscoelastic
attenuation of the longitudinal waves only but does not influence atte-
nuation of the rotational waves.
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1. Introduction

The aim of this paper is to study the influence of the medium structure
on the propagation of acceleration wave in the fluid-saturated porous medium
with a viscoelastic solid skeleton. In the first part of the paper, the following
propagation conditions of the acceleration wave have been obtained

divT? — &) |divT/| = «?[p° - k)plla’
[aivT?] + (1 = 0 [avT!] = *[p° + (1 - 0] o

[diva] = lﬁfuz[af —(1-kK)a’]
K

where
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T°,T/ - stress tensors in the solid skeleton and fluid

p*,p! - partial densities of the constituents

a*,al -~ amplitudes of the acceleration wave

u — speed of displacement of the acceleration wave

K — parameter connected with the medium structure (cf the

first part of the paper).

The derived growth equations are of the form

(2T 1= 25T+ (5] = s - 0P 425 4
1.2

+ {1 (af — a)(ef - )] + (@)

[Dgljj’)] g;; | = prur(ef + 2%) (1= 0yl (e + 255‘;3) 4

(1.3)
(-2 e (@ - @] + 0! ()

The considered medium is described by the linear physical relations proposed
by Biot (1956a), in the form

T =2NE® + (AtrE® + QtrE/N

(1.4)
T/ = (QuE* + RtrE/)1
where A, N, @ are the integral operators
3
- A(O)-/A’(i—r)... dr
0
t
N:N(O)—/N'(t—r)...dr (1.5)
0

however I = R(0) = R =const; A(0), N(0), Q(0) are the initial values of the
stress-relaxation functions and A’(t), N'(1), Q'(¢) are the relaxation kernels.
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These kernels are limited functions of the class C!in the interval (0,00). E*

and E’ are the linear strain tensors

E° = 0.5[gradU® + (gradU*) "]
(1.6)
E/ = 0.5[gradU’ + (gradU/)T]

U® and U’ are the displacement vectors of the solid skeleton and fluid, re-
spectively, and T denotes transposition. Velocities of both the constituents
expressed by the displacement vectors are of the form

., DbU* ;_ oy’

= D v = D (L.7)

2. Propagation conditions

Now we substitute Eqs (1.6) into the physical relations (1.4) and then into
Egs (1.1). The terms [divTS] and [(liva] lead to the jumps of type, e.g.,

[Ndiv gradU?| having the following index notation form

t
[Fuz] = [vowe,] - [/N’(z — YUk T) dr] (2.1)
0

N’() is a limited function of the class C'' in the interval (0,00) and Uf;. is a
limited and continuous function everywhere except for a possible discontinuity
jump at the discontinuity surface. Thus, by virtue of the theorem proved by
Fisher and Gurtin (1965), the integral on the right-hand side of Eq (2.1) is a

continuous function and hence
¢
[/N'(t ~ 1)U (2k, T) d‘r] =0 (2.2)
0

We therefore obtain ~

[Fuz;] = vo[u2,)] (2.3)
Using the relations (1.7), the definitions of amplitudes of the wave and applying
the geometrical and kinematical compatibility conditions, we arrive at the
propagation condition

(A-Du*)a=0 (2.4)
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In the case of propagation of one-dimensional acceleration wave along the
zy-axis, the matrix representation A of the acoustic tensor A is

[ P(O)+ (1 —-k)Q(0) O 0 QUO)+(1—-xk)RO) 0 07
0 N{©O) 0 0 00
~ 0 0 N(0) 0 0 0 )
A= Q(0) 0 0 R(0) 0 0| 25
0 0 0 0 00
i 0 0 0 0 0 0 |
The tensor of densities is represented by the matrix
[ £ps 0 0 0 0 0 7
0 £p° 0 0 0 0
a 0 0 &ps 0 0 0
D=1 -1/m)p 0 0 s o o | 26
0 (1—-1/r)p! 0 0 pl/s 0
0 0 (1-1/wp! 0 0§k
where
N ‘
€=1+(1—H)ﬁ—3 (2.7)
and the vector a is represented by the matrix of amplitudes
T
a= [(LT,(L;,(l.g,a.{,(l..‘g,(l.éf] (2.8)

a*(a},a,a3) and af(a{,a{,a:{) denote the vectors of amplitudes in the solid
skeleton and in the fluid, respectively.

a$, a{ are the amplitudes of longitudinal wave in the solid skeleton and
fluid, respectively; a3, @ and (L.{, a..g are the amplitudes of rotational waves
in the solid skeleton and fluid, respectively.

In the case of two-parameter description of a porous medium structure
the acoustic tensor (2.5) is non-syminetric. If this structure is described by
one parameter f, then x = 1 and the acoustic tensor (2.5) is symmetrical.
The acoustic tensor is formally the same as in the paper by Dziecielak (1995).
However viscoelastic properties of the solid skcleton cause that the material
constants of a medium are replaced by the initial values of stress-relaxation
function. Therefore the propagation conditions of acceleration waves in the
fluid-saturated porous viscoelastic solid with a structure are formally identical
as in the case of elastic solid skeleton (cf Dziecielak (1995)). The propagation
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condition (2.4) leads to the propagation conditions of two orthogonal rotatio-
nal waves and two longitudinal waves. A detailed discussion of the medium
structure influence on the speeds of propagation of these waves is presented in

section 6 of this paper.

3. Growth equations

More information about behaviour of the acccleration wave in the linear
fluid-saturated porous medium will be obtained from the growth equations
(1.2), (1.3). The force = of internal interaction appears in these equations,
thus the constitutive relation for = is required. IL'ollowing Biot (1956a), we
assume this constitutive relation in the form of Darcy’s law

T = b(v/ — v°) (3.1)

The coefficient b is related to Darcy’s coellicient of permeability k& by
b = uf?/k, where pis the fuid viscosity.

To obtain the growth equations describing the changes of amplitudes of
the wave in the considered fluid-saturated porous medium we substitute the
constitutive relations (1.4) and (3.1) into Eqs (1.2) and (1.3) using the Eqs
(1.5), (1.6) and (1.7). Applying the aforementioned Gurtin and Fisher theo-
rems and the known geometrical and kinematical conditions of compatibility
we arrive at the growth equatious of the form

20" + (1 fc)]u"’%s — bu*(a = a®) + [A(0) + N'(0) + (1 - £)Q'(0)](a*n)n +

+N'(0)a® 4+ [Q'(0) + (1 — k) R'(0)](a’n)n + p°a’(a’n) + (32

+ 1 ; "pf(af — aS)[(af —a’)n] = [A0) + N(0)+ (1 - H)Q(O)](Csn)n +

FN(0) +[Q(0) + (1 — x)R(0)](/ n)n — W2[5° + (1 — x)p’]e?

257 u* [%ati —(1- n)%] + bu(a! — a®) + kQ'(0)(a*n)n +
+&R'(0)(a/n)n + pfus{af(afn) - 5(12—;};)(af —a®)[(df - as)n]} = (3.3)

= kQ(0)(n)n + kR(0) e/ n)n — pluled + (1 — k)p*u%c®
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We confine our study of the acceleration wave behaviour to the one-
dimensional plane wave. Additionally, we assume the induced discontinuities
¢ and ¢/ to be right proper vectors of the acoustic tensor A (cf Chen (1976)).
In this case the right terms ol Eqs (3.2) and (3.3) vanish. The propagation
condition (2.4) allows us to introduce the following vectors ol amplitudes

a’ = aa’ af = ad (3.4)
where:
a ~ scalar parameter, which in general can vary with space
and time
a*,a’ - vectors collinear with a® and a/.

Now we form a scalar product of Eq (3.2) and a@*® and then Eq (3.3) and
a’/, summing then these equations; which gives us the growth equation

QC,uQ‘;—‘: + [bul(a® — al )@t — af) + CL0)]a + Caula® = 0 (3.5)
where
C,=[p*+ (1 -r)pllae + plla’al — (1 - K)a*a’] (3.6)
C1(0) = [A(0) + N'(0) + (1 - #)Q"(0)](@"n)* +
(3.7)
+N'(0)(@a%) + (1 + #)Q'(0)(a n)(@’n)
Cy =2 ;“ﬁf (@ —a*)(a° - gzzf)][(af —&%)n] +
(3.8)

+p!(af &l )@ n) + p*(a°a°)(a’n)

Eq (3.5) allows us to calculate the parameter o that describes the changes of
amplitudes of the acceleration wave in the considered medium.

In the case of plane wave propagating in the positive direction of xj-axis
the solution of the growth equation (3.5) is

Aexp [“ﬁ(ml - -’L'O)]

OA L aoc2u2{l - e,\'p[—ﬁ(ﬂ:] - _7;0)]} (3.9)

o = o

where

A =ba - alyas - al)+ Ci(0) (3.10)
and ag = a(zg) is the initial amplitude being the value of « at a distance
2o < ITj.
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The term C7{(0) represents viscoelastic properties of the porous solid ske-
leton in the solution (3.9) affecting additional attenuation of the amplitude.
The influence of viscoelastic properties of the nedium on attenuation of the
wave depends on the structure ol medium as it is seen in Eq (3.7). This for-
mula indicates that the structure of mediunm influences only attenuation of the
longitudinal waves but does not iufluence attenuation of the rotational wave.
It is worth to note that the term C; disappears for the rotational waves.

The solution (3.9) implies that according to the value and sign of the
initial amplitude «g, the amplitude « of longitudinal wave is decreasing and
becomes arbitrarily small or is increasing and becomes infinite within a finite
distance zj. The last conclusion, of course, suggests the formation of a shock
(cf Chen (1976)); it is always A > 0, thus the condition «yC, < 0 must be
satisfied. The shock is formed at the distance

2C,u agChu

=z 1 3.11
1 *o + A ! A+ O‘OCQ’IL ( )
The formula (3.11) leads to the additional condition
A+ oapCou <0 (3.12)

In the case of elastic fluid-saturated porous solid the solution (3.9) reduces
to the results presented by Dziecielak (1995), where one can find a detailed
analysis of the influence of medium structure on the behavior of acceleration
wave. If the medium structure is described by one paramecter only we obtain
the results presented in of Dzigcielak (1980).

4. Results and discussion

Now, to discuss the influence of medium structure on the speeds of displa-
cement and amplitudes of acceleration waves we restrict our considerations to
the linear fluid-saturated porous medium with an elastic solid skeleton. In this
case the initial values of stress-relaxation functions become material constants
of the medium: A(0) = A4, N(0) = N, Q(0) = @, and the relaxation kernels
A'(t), N'(t) and Q'(t) are equal to zero.

The propagation condition (2.4) leads to the propagation conditions of two
orthogonal rotational waves and a longitudinal wave. In the considered case
the amplitudes of rotational waves in the [luid are equal to zero. From the
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propagation conditions of rotational waves we obtain the speed of displacement
of these waves
AT

7t (L= mp (41)

uR =

The dimensionless speed of displacement may be written in the form

Ur(K) = Z‘Zg’l‘)) =1+ (1~ n)f;—i (4.2)
10 ;

. —

0.8

07} i)

Fig. 1. Dimensionless speeds of displacement up of the rotational wave as functions
of the structure parameter & for various ratios of partial densities

It results from Eq (4.2) that the dimensionless speed of displacement of
the rotational wave depends on the parameter ~ that describes the medium
structure and on the ratio of partial densities of both the medium constitu-
ents. This speed is always less then in the case of one-parameter description.
In Fig.1, the dependence of the dimensionless speed of displacement of the
rotational wave on the structure parameter k for various media is presented.
The curves in Fig.1 indicate that for increasing ratio of partial densities of the
fluid and solid skeleton, the speed of displacement of rotational wave decre-
ases. The influence of a medium structure on the speed of displacement of
the rotational wave is insignificant for (luid-saturated rocks and soils (curve 1
and 2, p//p* ~ 0.1) and is becoming considerable for media with greater
ratios of partial densities (p//p* = 0.3 = 1.0).

A necessary condition for non-vanishing amplitudes in the propagation
conditions of longitudinal wave leads to the biquadratic equation of the form

u [n+ Q=8 ug{[ﬂn +(1- '{)(.'2512 + B2z

K ¢ K

+ ‘/1[322} +
(4.3)

+611822 — Bl =0
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where the dimensionless densities and material constants are defined by

7 nf _s —
n=%g m=% p=p+p Bu=14x
(4.4)
Brza=% Pu=L N=P+20+R P=A+2N
and satisfy the relations
Mmtr=1 B+ 2812+ B2 =1 (4.5)

The dimensionless speed of displacement u, = u/V, is related to the charac-
teristic velocity V. = /H/p. For our further considerations it is useful to
introduce the ratio (%)

- ue(r

Us(K) = 4.6

o(*) us(1) (4.6)
that informs us about the relation between dimensionless speeds of displa-
cement u.(x) resulting from two-parameter and one parameter descriptions,
respectively.

Numerical calculations have been made for dimensionless material con-

stants presented in Table 1.

Table 1. Dimensionless material constants

B B12 B2 Yi v | PP
0.904 | 0.041 | 0.013 | 0.919 | 0.081 | 0.088
0.846 | 0.063 | 0.027 | 0.900 { 0.100 | 0.111
0.610 | 0.043 | 0.305 | 0.800 | 0.200 | 0.250
0.610 | 0.043 | 0.305 | 0.700 | 0.300 | 0.430
0.610 |} 0.043 | 0.305 | 0.666 | 0.333 | 0.500
0.610 | 0.043 | 0.305 | 0.500 | 0.500 | 1.000
0.740 | 0.037 | 0.185 | 0.500 | 0.500 | 1.000
8 | 0.500 | 0.000 | 0.500 | 0.500 | 0.500 | 1.000

Data in the first row concern the water-saturated Berea’s sandstone and
were calculated on the base of data given by Yew and Jogi (1978); data in the
second row describe mechanical properties of the the oil-saturated sandstone
(cf Fatt (1958)); data in lines 3 + 8 have been taken from Biot (1956b).

The results of numerical calculations are presented in Fig.2 and Fig.3. The
curves in Fig.2 show the change of displacement speed of the longitudinal wave
of the first kind (fast wave) for dilferent parameters x and for various media
(the curve number of corresponds to the number of a medium in Table 1). I'ig.2
indicates that material constants and the parameter pf//p% have fundamental
meaning for the position ol these curves. The influence of medium structure

~N OO LN
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Fig. 2. Dimensionless speeds of displacement ! of the longitudinal wave of the first
kind (fast wave) versus the structure parameter x for various media
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Fig. 3. Dimensionless speeds of displacement #!! of the longitudinal wave of the
second kind (slow wave) versus the structure parameter x for various media
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on speeds of displacement of the longitudinal wave of the first kind is less
than 20% and for sonme media (1,2,8) can be omitted from the practical point
of view. The curves in I'ig.3 indicate that the medium structure influences
strongly the speed of displacement of the longitudinal wave of the second kind
(slow wave). This conclusion holds true for all mnedia with the mechanical
properties presented in Table 1.

Let us pass to the study ol influence of the medium structure on amplitudes
of the longitudinal and rotational waves. Numerical calculations were made
taking the data given by I'att (1959) for oil-saturated sandstone:

A=4419 MN/m? N = 2755 MN/m?  Q = 743 MN/m?
=326 MN/m2 p* = 2600 kg/1113 pl = 820 kg/n13
f=1026 pp=2-10"3Ns/m?* k=79-10"13 m?

The relative amplitudes of: longitudinal wave of the first kind (fast wave)
al, longitudinal wave of the second kind (slow wave) alf and the rotational
wave alt
a™ (k)
a™(1)
have been calculated. These three amplitudes are related to the values of
respective amplitudes for & = 1 (one-parameter description). The dimension-
less amplitudes ol /g, afl/ay, a'l/ag related to the initial value aqg are
determined as well. The results of these computations are presented in Fig.4.
The influence of the medium structure on the wave amplitudes with increasing
distance from a source of disturbance is shown in Table 2.

a* (k) = m=1,1IR (4.7)

Table 2. The influence of the medium structure on the wave amplitudes
with the distance from a source ol disturbation
zy — xo[m] ol ol alt
10-8 0.999998 | 1.00000000 | 1.000723
10-7 0.999984 | 1.00000002 | 1.007356
10-6 0.999844 | 1.00000024 | 1.076045
103 0.998437 | 1.00000239 | 1.081213

The wave of the first kind is not very sensitive to the change of structure
parameter &, which is seen in Iig.4a,b. The amplitude ol this wave decrca-
ses with the increasing parameter s and reaches the minimum at ~ = 1.
This wave is weakly attenuated like in the case ol one-parameter description
(k = 1). The medium structure influences strongly the amplitude of the wave
of the second kind, see ['ig.dc,d. The amplitude of this wave increases with
the increasing parameter x and its greatest value is reached at « = 1. This
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Fig. 4. Relalive amplitudes o and the dimensionless amplitudes «™/aq of the
waves as [unctions of the structural parameter s

wave is highly attenuated. The amplitude of the rotational wave is greater
than in the case one-paramcter description. This amplitude rcaches minimum
at & = 1, sce Fig.de,f. The influence of considered description of a medium
structure becomes stronger with the increasiug distance [romn a source ol di-
sturbance. This is seen particularly in the case of longitudinal wave of the
second kind and in the case of rotational wave.

5. Conclusions

Basing on the results obtained we can draw the following conclusions:

e The acoustic tensor is non-symmetric il the influence of a medium struc-
ture is taken into consideration.

e Description of a medium structure by two parameters causes that the
speeds of displacement depend on a relative motion of both the consti-
tuents; this influence is neglegible in such media as fluid-saturated rocks
or soils.

e A medium structure influcnces strongly the speed of displacement of
the longitudinal wave of the second kind. Tlhe rotational wave and the
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longitudinal wave of the first kind are less sensitive to the medium struc-
ture. For the longitudinal wave of the first kind the influence of medium
structure is so weak that it can be omitted in some cases.

o The speeds of displacement are always smaller than in the case of struc-
ture description by one parameter (volunietric porosity) only.

e A medium structure inflluences the attenuation of the longitudinal waves
due to viscoelastic properties of the solid skeleton but does not influence
the attenuation of the rotational waves.

e A medium structure influences slightly the amplitude of longitudinal
wave of the first kind; this amplitude is greater than in the case of one-
parameter description. This inflluence is considerable {or the longitudinal
wave of the second kind (the amplitude is less) and the rotational wave
(the amplitude is greater).

e The influence of the medium structure becomes stronger with the incre-
asing distance from a source of disturbance.

This research was supported by Poznain University of Technology under the grant
No. BW 21-684/94.
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Zachowanie si¢ fali przyspieszenia w lepkosprezystyin osrodku
porowatym ze strukturg. Czesé II — Liniowo lepkosprezysty os$rodek
porowaty nasycouy clecza

Streszczenie

W pracy bada sie wplyw stuktury osrodka porowatego nasyconego ciecza na
propagacje fali przyspieszenia. Osrodek sklada sie z lepkosprezystego szkieletu i cieczy
lepkiej $cisliwej.

W rozwazanym osrodku tensor akustyczny jest niesymetryczny. Struktura
osrodka wplywa na tlumienie lepkosprezyste fali podluzuej, natomiast nie wplywa
na tlumienie fali poprzeczne;.
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