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The similarity solution which is invariant under the corresponding syni-
metry group is obtained for fairly general coefficients in the heat equation
with semi-empirical temperature. The heat equation is reduced to a nou-
linear ordinary differential equation and the stability of the equilibrium
manifold is considered. Numerical solutions for some kinds of coeflicients
arc obtained. Further, on the basis of the present numerical solutions
an analysis of initial boundary value problem has been considered.

1. Introduction

In the last years, the group analysis has been intensively applied to non-
linear or semi-linear evolution equations of the type

wy = [fug, w,w,2,1)], =0

in the plane (z,t). The case f = g¢g(u)u, was considered by Ames et al.
(1981) and the case f = g(u,x)u, by Torrisi and Valenti {1985). The case
with  f = g(u,2,t)u, was considered recently by Suliubi and Bakkaloglu
(1991).

In this paper, we express quite a general heat equation of the hyperbo-
lic (wave) type with semi-empirical temperature developed by Kosinski and
Saxton (1993) for a one-dimentional, homogeneous rigid body by means of a
closed ideal of exterior differential forms over a 5-dimensional manifold. Using
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the transport property of isovectors. the components of the isovector field are
constructed for fairly general coefficients of the equation given. A similarity
solution to the differential equation is an invariant solution with respect to a
particular symmetry group. Therefore they can be obtained by determining
the invariants of the group. In this paper the symmetry group is obtained for
general forms of the source function.

2. Basic equations

The heat equation for the semi-empirical temperature [ is described by a
second-order partial differential equation of the form (cf Wosiniski and Saxton

(1993))
— C(B,B)Bu + VBV B+ a3+ H(3,B:) = pot?°r (2.1)

The coefficients in the system (2.1) are
C(3.3,) = poroVecy (V)
H(3,8;) = podev () fo.3(i3)5 (2.2)

= /m’oﬁo b= 1‘{?0/’0

and. according to (cf Kosiiski and Saxton (1993})

1
0= 9(3-5) = 1 exp{ 5 ol ) = 0]}
where the following 3 different forms are (cf Kosinski and Saxton (1993))
folB)=—(8-0° = for or
folB) = 9%log (B8 ) =: for or (2.3)

: L 02
fol ) = =558 = 87%) = fos
24
Here
??  —~  reference absolute temperature
3%~ reference semi-empirical temperature
70 — relaxation time
ko~ thermal conductivity at #°
¢y~ specific heat.

For one-dimensional thermal waves the system (2.1) reduces to

— C(8,w)w + bpuw, + apy, + H(F,w) = pot?’r (2.4)
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where we have introduced new variables p = 3, and w = j4;. In the new
variables we obtain

O3, wyw, + bpwy + ap, + (P, w) = poﬂor
(2.5)
pr— w, =0

Let us consider now a five-dimensional differentiable manifold M = R®
with a coordinate cover (p.w.d,x.!). the exterior algebra A(M) over M
and the following exterior differential 2- and [-forms

w=C(B.w)dw ANde + bpdw A dl + adp AN dl + [H (3. w) = poo’rlda A dt
o =dp — pdr — wdt (2.6)
do = —dp Ndz — dw A dt

where A represents the exterior product and d represents the exterior diffe-
rentiation. By taking the exterior derivative of w, the derived form is found
to be in the ideal I(w,o.do) C A(M). so thal the set is closed (c¢f Edelen
(1985)).

The set is in involution with respect to x and t, and gives back the original
partial equations if we impose independence of these variables, requiring the
sectioned forms to be annuled by elements ol a 2-manifold in which dx and dt

are independent forms.
We denote a two-dinjensional submanifold of M with a coordinate cover

(z.t) by S and define a map &: § — M by
@ 3=51) p=plr.t) w=w(r,t)
¢ induces a map ¢~ : N M) — A(S) under which we find

P*w = —C(8, wyw + bpwy + apy + [H{B.w) — pod®r]de A dl = 0
Qo= (f,—plde+ (3 —w)dl =0
P do = (p, — wp)dae ANdt =0

Therefore the solution manifold of Eq (2.5) annuls the exterior forms (2.6).

We now find the isogroup by requiring that the Lie derivatives of w, o and
do with respect to a vector field V should be in the ideal 7. An isovector
field of Iis a vector V € T(M) given hy

Vo= Vi(pow, B )0+ Vipow. e )0 + 17”(/). w3 o, 1)dy +
+ V¥p w. doe )0, + VP(pow. 3 0.1)0,
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where V& VI VB Vw Ve e A% M) are smooth functions over M, such that
[ remains invariant under V., ie., Va € [ we have fyo € I where £y
denotes the Lie derivative operator with respect to V. The Lie derivative has

the explicit evaluation
Lya=V]da+dV]|a) (2.7)

where | represents the interior product operator between a differential form
and a vector field.

The vector field V is an isovector field of the ideal I if and only if there
exist appropriate 0- and 1-forms such that the following relations are valid (cf
Edelen (1985))

£Lyvo = Ao AE /10(/\/1)
(2.8)
Lyw=pw+vy Ao+ vdo v € AYM) e ANM)
Indeed, the relation
dfvo = Lydo =d Ao+ Ado
shows that £ydo remains in [ if Eq (2.8); is already satisfied.
Let us now define a smooth function F € A% M) by
F=V]e=V;-pV® - wi! (2.9)

Using the relation (2.7) we obtain for Eq (2.8);
Vido + dF = o
or

(=VP 4 Fo)da + (V7 4 F)dp + (=V 4+ Fdt + (V4 Fy)dw +

(2.10)
+Fyd3 = Mdid — pda — wdt)
Comparing both sides of Eq (2.10) we find immediately
A= Fy V¥=—-F, Vi=—F,
(2.11)

V¥ = F, + wFy VP = F, + pFs

and Eq (2.9) yields
VP = F—wF, - pF, (2.12)
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Therefore all components of an isovector field are derivable from a single func-
tion F(p,w,B,z.1). After expanding of {2.8); and equating coefficients of all
2-forms we obtain

pAy + p(H — rpe?°) — wA, — VaHp — Vi Hy + po0°(Virg + Very) +
—aVpxr — (H = rpod®)Vy + CViyy — bpViz — HVyp + 7pe9°Vey = 0

A, —aVig=0

Ap +pAg — (H —1pg?°)Vig + CVyp = 0

Ay = bpVig — CVopg =0

A+ wApg + aVpp + bpVis + (H — 7*p0190)V1.g =0

—pC + pAy + VgCs + Vi Cu — (H — 7po?° )WV, + bpVie + (2.13)
+CVw + CVir = 0

—v+ pbp — bV, — wA, — aV,, — bpViy — bpViy, — C'Vo +
—(H = rpo¥°)Vyy = 0

v+ pA, — (H —rpo?°)Vip + aViy + CVypp = 0

—bpVip + aViy, = CVep = 0

—ap+ wA, +alV,, +aly + bpli, + (H — 'l'po'(?O)VI.p =0

where Ay, A,, Ag. A, Ay are components ol the linear form <. Eliminating
Ap, Aw, Ap, Az, Ay v, from the above equations and after that substituting
Eqgs (2.11) and (2.12) into the resulting expresions we finally obtain four linear
second order partial differential equations to determine the single function F
for given coefficients

aFCg+ awC,Fg — apCsF, + aC'yFy — awCF,, — p(2a + bw)C' Fg, +
—a(bp® — 2Cw) Fp + (H — 1po?°)CF,, — bpCFy, + 2aC Fpy +
+a(H — TpOﬁO)Fww - 'Z(LCFIP —abpli, =0

—abpfiz — abF, + (abp? + 2aw( + bzpz'u))Egp —ap(2a + bw)ks, +
—bp(H — 7*/)0190)17,,,, + (2aC + b2p2)FLP —abpF, + 2a( H — 7'/)0190)pr +
+abpFyy, — 2a*F,, =0

(2.14)
—afgl —aH,F, +a(H - rpot)® — wH ) Fs+alwHp - po'dor't)Fw +
+a(pHg — poﬁorr)Fp — af (Lp2 + bpzw — C'wQ)F/;/; + (2apH — Qa])v‘poﬁo +
+opwH — bprpo?°w) Fg, + (— H* + 2Hrpo?° — r2pld®)F,, +
+a(—bp? + 20w)Fy + (bpH — bprpoﬁo)FLp + aCFy — ap(2a + bw)F.5 +

6 — Mechanika Teoretyczna
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+2a(H — 7'/)0190)F$p —abpF,, — W’Fo, =0

CL(CVF»,)p + prwp - a'Fww) =0

3. Determination of the vector field

If we wish to exclude the higher-order symmetries we have to impose the
condition that V* i V! are independent of p and w. This, in view of Eq
(2.14), leads to the equations

Fpp = pr = Furu.' =0,

which has a solution of the form

Fip,w,B.2.,1) = &(F.a. U)p+ (3, . t)w+ 2(8.0.1) (3.1)
Then the components of isovector lollow [rom Eqs (2.11) and (2.12)
V7= ¢ V= -y V=0
VY = wp®p + w¥y + p®, + w(¥, + 24) + 1, (3.2)

Ve = ])245/3 + wp¥p + p(P, + 23) + w¥, + 2,

In order to determine @, ¥ and [2 we should substitute Eq (3.1) into Eqs
(2.14)1-3. We first consider Eq (2.14), which is written as

(b‘zp'2 + 2¢C) P + wPs) — [2apla + bw)¥s + abp¥; + albw 4 2a)¥, | +

(3.3)
—ab( 2, +pflp) =0
that can be satisfied if and only if
D+ wbs =0 2.4+ p23=0
2apla + bw)¥p + abp¥, + a(bw + 2a)¥, =0
The solution to this equation is
¢ = Plx) ¥ = () = consl 2= 21) (3.4)
IPurthermore Eqs (2.14); and (2.14)3 become, respectively
a( =20 P 4+ Q(1)Cy + 2(1)C3) = 0 s

a[—apP"(x) + 2(H — pod?®r) P/(x) + C 1) — Q1) Hy — 2(1)Hp +
—Qpo°r — poﬁOP(J;)'r'r] =0
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From (3.5); we have
=0 ¢ = P = const
and if we substitute it into (3.5)y we achive
po?(Qr, + Pr.) =0, (3.6)
which is a condition for the source function
r(z,t) = r(Qx — Pt) (3.7)
From the above calculations we finally have
Flp,w,3,2,1) = pP + w@ (3.8)

The form of the function F clearly indicates that Eq (2.1) with the function
r given by (3.7) does not admit higher-order symmetries. According to Eq
(2.11) the components of isovector are

VE=_p Vi=-Q Vi =0
(3.9)

4. Similarity solutions

The similarity solutions to the heat equation are invariant solutions under
the appropriate Lie group. Therefore they are obtainable through the inva-
riants of the group which satisfy

g0l al oI

I
o1 Vt?—+V —+VY—+VP—=90

[ A T T R TR

the solution to which can be formed by its characteristic fields

dr di ds dw d_p

(EE T A i

Solving the equation we have the similarity variable

N =1 — Apt {11
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where Mo = P/Q, and the similarity solution
B =p5(n) (4.2)

If we introduce Eq (4.2) into Eq (2.1) we obtain an ordinary differential equ-
ation in the unknown function /3

3 (n)la = A5C(3,5) = brod () + H(3.3) = r(n) (4.3)

This time the coefficients (2.2) for Eq (4.3) are

C(B,3) = porodev ()
H(P,F) = =dopoder (9)fy 57 (4.4)
a = ko° b= koo
where
— 1 —
9 = 9(B.B') = 0" exp{ 551 fo(B) + Moo}
5. Stability of the equilibrium manifold
We shall consider the system in the {form
vy =g, ) vy = ga( Xy, 1) (5.1)
where (-) :=d/dy. @y := 3. 1y := 3" and
gi{ry.ry) 1= g
(5.2)

“ﬁ(l.lﬁIZ)
a@? — ALZ)F( T, ry) — bQ% Ao,

galxy, a0) i=
The system has a manifold M., of equilibrium solutions defined by
M, = {(Il,me}z‘z: r1 € R\ S,, 12:0} (5.3)

where 9 denotes possible singularity of the function g.
If we put
T =2t u
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we can reduce the question of the stability of x. € M, to the question of the
stability of the solution « = 0 of the variational syvstem (cf Cesari (1971))

uw = Au (5.4)

where matrix A consists of the elements «;, := J;¢:(z.22) and is of the form

o]

The matrix A has been evaluated at z = z.. The characteristic roots of the
matrix A are v; = 0 and vy = «, where «a can be evaluated lor different
functions fy; Eq (2.3)

exp (J—S) Aopo?Vey (V)

Gy 1= — 3 . —
aexp(f,%g)Qz - exp(g—(?))\époroﬁocv(ﬂ)
/30)\0/)01902(‘\/(5)
Qg 1= — ‘ = (5.5)
aQ?x? — 30N ooz cv (V)
2 —
exp[%(%@) }/\opowecv(‘ﬁ)
g 1= —

eexp[3(55) 02 ~exo[3 (%) TA8pomooer)

where 9 is the value of ¥ on the manifold M.,. The equilibruim manifold is
stable if v, < 0 {cf Cesari (1971)).

6. Numerical results

The numerical solutions to Eq (4.3) have been derived for two materials;
Bi and NaF for which we take the following material constants (cf Frischmuth
and Cimmelli (1995))

W J l\g - -7
k0:36an4 C0:55m3—1(4 pQIQSOOE TOZD'].O S

W% . J _ kg . -6
kO = ]_Om Cy = ZBW PO = 27905 0 = 1-107"s

respectively, and 9% = 1K, 3° = 1 K for both materials.
The numerical calculations are made for the same initial values
Bo = B(0) = 0.103K and B'(0) = 0.01Ks~! for both materials. The initial
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value for f, was calculated from the eqiulibrium condition f(BO,'ﬁo) = 0,
for ¥o9 = 1.64K, where f is the function from the kinetic equation for [ (cf
Kosifiski and Saxton (1993)). The numerical calculations were carried out for
f03 only and for /\0 = 1.

We present here only results for the specific leat expressed by
cy = covi/4.

Bi

SO D E . S S
0.005  0.017

Vi
0.1F
0.05f NaF
PP PRSPPI R .
0.1 00270.04
-0.05
.0.1F

Fig. 1. Semi-empirical temperature & versus 7

7. Wave motion

Consider the problem of one-dimensional nonlinear propagation
- Cv(/js B)Bu + b8P + aBry + H(SB, ﬁt) =0 (7.1)

with the prescribed boundary conditions

o
—(0,1) = h(t 1>
@t( ) = h(1) >0
Sr,0)=0 x>0
At the wave front displacement is zero, therefore {2z = X(1);1) = 0, where

X () describes the wave-front. From the condition at the wave front we have
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[o4]
=1

B(1,) = 0. where 7, is the value of the similarity variable at the wave front
to be determined (cf Seshadri and Singh (1980)).

From the numerical calculation (Fig.1) we can see that 5 can be approxi-
mated by

3 = A(n)*sgn(n) . (7.2)
where * denotes the convolution of two functions and
PRI B Tl AR Y |2 — K3l < K2
= AN
If we use Eq (7.2) we may calculate the second conditon for 3
B(0) = 24(0).
The conditions
Bli) =0 A0} = 24(0)

with Eq (4.3) for the similarity representation of the semi-empirical tempera-
ture 3 lead to the wave propagation problem Eq (7.1) with the prescribed
boundary conditions above, where

h(1) = —2XoA(~ Aol)

8. Remarks

The similarity solution in the paper has been derived only for one similarity
variable. Using parabolic regularization of the heat equation may lead to
further groups and further similarity solutions. That will be the subject of
future work.
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Wiasnosci grupowe 1 samopodobne rozwigzania dla réwnania
przewodnictwa cieplnego z semi-empiryczng temperatura

Streszczenie

W pracy zbadano wlasnosci grupowe réwnania przewodnictwa cieplnego z semi-
empiryczng temperatura. Dla znalezione] grupy symetrii znaleziono samopodobng
reprezentacje dla semi-empiryczne) temperatury. Przeprowadzono analize stabilnosc
rozmaitosci polozen réwnowagi dla rownania opisujacego rozwiazanie samopodobne.
Uzyskano rozwiazania numeryczne dla rozwiazania samopodobnego i na ich bazie
rozwazono pewne zagadnienie brzegowo-poczz}t.kowe.
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