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We consider a mass point moving on a n — I dimensional manifold with
a wedge. To avoid a product of distributions in the equations of motion
we regularize the wedge by smooth functions with a small parameter .
Then the question arises whether there exists a limit for the velocity
vector after passing the smoothed wedge. In this paper we will give a
class of regularizations for which the mit exists and is independent of the
special choice of the regularization itself. Furthermore. we give estimates
for the quality of approximation depending on the parameter ¢

1. Introduction

The description of a rigid body motion under a constraint by the position
of its center of mass in general results in a nonsmooth admissible manifold.
Especially we are interested in modelling a train on a rail (c¢f Frischmuth et
al. (1994)). In the case of rail-wheel contact the center of mass of the wheel
is passing a wedge when the contact point is jumping from the thread to the
flange. By a wedge we denote in this context a n— 2 dimensional submanifold
where the gradient of the admissible manifold has jump discontinuities. A 2D-
cut through the admissible manifold for realistic rail and wheel profiles is
plotted below for illustration.

Having in mind the system of Lagrange’s equations for this motion we
immediately see that it can not be fulfilled in the classical sense when the
mass point is crossing the wedge. This analytical difficulty also afficts the
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Fig. 1. Admissible manifold

numerical treatment of the problem forcing a small integration step size and
therefore takes much more computing times.

The aim of this paper is to find a class of sinooth regularizations of the
wedge depending on a small parameter ¢ in such a way that as ¢ — 0
the wedge is reestablished and that the corresponding solutions to Lagrange’s
equations converge to a unique limit. To this end we use a small parameter
technique which has approved to be a powerful tool to handle, e.g., self similar
structures (cf Sanchez-Palencia (1980)) and irregular boundaries (cf Maz’ya
and Hanler (1993); Frischmuth et al. (to appear)}. In the latter context this
technique is also referred to as the homogenization method. For a variety of
applications of the method see Nayfeh (1973).

In the next section we will specify our model assumptions. The regulari-
zation procedure and the resulting limit problem as ¢ — 0 will be treated in
Section 3. In Section 4 we will show with the help of error estimates that there
exists a right limit of the velocity vector v+(0) = f(v™(0)) which is uniquely
determined by the left limit for a certain class of regularizations. We show
that f depends on local geometry data of the wedge only.
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2. Model equations

We consider as a model of a wedge a constraint of the following type
2a = p(2) = ale') + b e(x") = e(2h)] | (2.1)

with 2 = (2, 2,) € R™, a,b,c € C*IR"™') (cf Frischmuth et al. (1994)).
Further we assume that the mass point hits the wedge at the point
vy € ™ with Ve(af) # 0.

Remark 1. We want to emphasize that the above smoothness assumplions
on a.b,c are the only essential suppositions we put on the wedge. The
non-vanishing gradient for c(2') al x{ ensures thatl (here is a real wedge
at this point excluding lhat way the trivial case.

We introduce a new coordinate svstem in IR""! originated at 2§ in such
a way that e; points in the direction of Ve(r() and that Va(z() lies in the
plane epep. [na é-neibourghood of 0 the constraint can be described in the

form
7(q) = a0 + a1q1 + @22 + Jolqi] + O(6%) (2.2)
where
da
ap = alzy) a = %(arg)
da 1)(70)
o= 2% 3
2= 5,0 7= v etayl

For the motion of the mass point we have the system of Lagrange’s equations
A { & ]

%Lq- -L,=Q (2.3)

with the notations

T~ kinetic energy. T(q.q) = sm{¢* + [V7(q)q]*}

{’  — potential energy. U(q) = mgvy(q)

L Lagrange function, L(q,q) =T(q,¢) — U(q)

v~ velocity vector, v = [4,7(g)]"

R~ [riction forces, R = —umx|v|v

@ — generalized forces, Q = —ums|v|A4q

and
A =T+ [Vy(g)][Vrig)"
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Then the system (2.3) takes the form
AG+dTH(7)dV7(9) + ¢V 1(q) = —uwlv]Ag, (2.4)

with H(v) denoting the Hessian matrix of «. It is immediately seen from
the form of ~ that H(v) includes a é-distribution and V«{g) includes a
Heaviside-type function for ¢; = 0. So a product of distribution is involved in
the middle term on the left-hand side of {2.4) (c¢f Schwartz (1950): Colombeau
and Roux (1988): Biagioni (1988); Berg and Frischmuth (1994)).

3. Regularization

First of all we notice that a change in v(¢) by a constant has no influence
on Eq (2.4). So for the sake we will put o = 0 from now on. Since we are
interested in regularization near ¢; = 0 it is enough to consider the following
linearized version of the constraint + for any fixed § > 0

~ 8 [y (8], LTS 3 7]
Pl = 1= (3] () ern + ez +Bolal) . (13.0)
where \ € ("(IR) is a cut off function with
(o) = 1 for Je] <1
W= for |e|>2
Without loss of generalitv we assume that ¢y > 0. Let » € ("?(IR) such that

eda) = ep(<)

be subject to the following conditions

e(2) — |2 VeelR A €—0
i) — sgn(z) Vi#0 A €—0 (3.2)
0<l(z)—0 Ve#£0 A e—0

Remark 2. As a standard example for ¢ we may consider the function

I

plz) = %/arcta.n(.s) ds (3.3)
0
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Fig. 2. g, oh. @ for e = 0.0!1

For the following confine ourselves to a é-neighbourhood of ¢ = 0. Here
we replace the modulus by .. i.e., we consider a constraint of the form

5 01 .
7 (q) = arqn + oq2 + .'50€¢<7> (3.4)
To get rid of the ¢ we introduce new coordinates and a new time variable as
follows

Denoting by { the derivative with respect to T we observe that

£=4 £=cq
The constraint (3.4) now reads
() = &y + azbe + Pop(&y) (3.5)

The dependence on ¢ is now included in the ¢&-variable and 6 is fixed so
we omitted the indices of v above and in the following to keep the notations
simpler. From the form of ~, see Eq {3.5), we immediately obtain that the
Hessian matrix H(v) has just one entry, i.e.

1.
1 (3(6)) = ~dov(&r)ere]
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Using the abbreviations
n(&1) = [Vy(£)] K = eklo|,

and upon the fact that

1
-1 _ 75 _ - T
AT == s V)T

we can rewrite the system (2.4) in the new coordinates as follows

() = —uRé (3.6)

., ! !
£+ Boy S n mv

2o
T&)&V,(E}-I-ég]

By standard calculations we find

2

(€24 (M) T [€2 + (V7. &02] - 660+ MENT7.6)

[ A
&+ (vr.62]

where

N(E) = B (€0 + (V7.€)
As usual in small parameter methods we introduce the formal expansion

[v.e)

iy =" e (3.8)

n=0
Comparing the terms with respect to powers of ¢ we can get the resulting
equations for each £U)(7).n =1..... For our aim it is enough to establish
the equation in the zero order approximator £(©)

. 1 - )
£+ ﬁo@”(&)H—QEva(é) = —pR€ (3.9)

n*(&1)
We will show in Section 4 that the difference € — €9 is O(¢) as ¢ — 0.
For the case p = 0 solution to the system (3.9) is obtained immediately

( (' cosp i
Cly — Cr—22—sin ¢
V14 o3

E=v(é) = Ca (3.10)

('n -1 i
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where 1(£;) denotes the angle

ny + Joy!
V(&) = arctan at Jort) . (3.11)
1+ as
and the constants C; are determined by the initial velocity v_s(q)at ¢ = —6.

For the case with friction, i.e., p > 0 we presume a solution of the lorm
f' — o unld )u(f) )

where v is the solution in the [rictionless case. Substituting into Kq (3.7) we

get

. expl—2u oo , . 2
c pl //p(fl)]z{,/zl/H (150\;,(51),/12+,/[(\—7‘]/,)> .
[1/2 +(VH.0)?
)
— [1/](1/'.1/) + (.i()g”(fl Wi+ 1/](T7,1/'))(T7‘1/)} } - (3.12)

<f3o~ﬁ”(§1) 2)2 |+ n?
L+n2 ' v2 4 (Vy,0)?

From Lq (3.9) we obtain the following equation in p

. A30|99”(51)1U 1 B
V14 n? ! VI (Vo)
v ' (3.13)
('1 l-f—?lZ' ’ o CJ v
o=V 1+ a2 yeosy = ‘/L7_|1’

Here we used again the ¢ angle introduced in Eq (3.10) and the fact that
PE) > 0. & € IR, Further we notice that the speed lor =10

07 = 2 (Vo2 = O+ (14 a3)CE+ (24 + L

is independent of &; and therefore equal to the initial speed |v_g| at ¢ = —6.
This states simply the fact that in the frictionless case the speed remains
unchanged after passing the wedge. Let us denote by

rq + /30

\/l—l-a'%

(/>i = arctan
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the limit angle for & — doc. With the help of Eq (3.13) we find the solution
to Eq (3.9)

. LS R
€= gy (3.14)
Now we are able to impose the limit on the zero order approximator £+ as

&1 — o

C'y cos it

. C o« i
§+:exp(—uﬁ('¢+—¢_)> C Hagcls‘w (3.15)

C
Here C denotes an 7 — 3 dimensional vector of constants, see Eq (3.10). For
the initial velocity '
E=q

we calculate straightforward the constants

4 - Qg SN
= .- Cy =gy + ———=tan(y")g
cos = I /1+Q% 1
(3.16)
Ci=q;~ Vie{3,....n—1}

Combining Eqs (3.15) and (3.16) we obtain for the components of the velocity
of the mass point after passing the wedge

COSs l()+ e
i+ cos i~ !
T =t — ; o
i | —exp(- P VN o ap singt —sing”
e |v=| cos \/1 + ol cos
ql._

(3.17)

Remark 3. It is easily seen from Eq (3.17) that the velocity vector after pas-
sing the wedge is independent of the special choice of the regularizing
function . We only consider the fact that @' is monotonic increasing
and has the above required approximation properties.

Further we want to emphasize that a change of velocily while passing lhe
wedge happens only in the two directions ey. ey which are determined
by the gradients of ¢ and a al .

In the following Section we will give error estimates depending on ¢ and 4.
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4. Error estimates

First of all we want to define the class of regularizing functions in a more
straighforward way. Let » € C"?(IR) be subject to the [ollowing conditions

(i) |<,91 lz| | < C|z|t~e Ve e R
() 1¢le) - sea(o) < Claf Vo £0
(iii) 0<"(z) <Clz|7177 Va #0

for fixed ¢ > 0. Further we denote by £ = v(&) the solution to Eq (3.6)
with the initial values w(—6/€) = ¢~ and by £© = p(0(&) the solution to
Eq (3.9) obtained in Section 2 with the same initial data.

We will estimate the error produced by our regularization technique in two
steps. In the first lemma we will find bounds on the difference between the
exact solution to Eq (3.6) and its zero order approximator. In the second one
we estimate the error produced by the cut off function.

Lemma 1. For any () subject to the above conditions and any € > 0 it
holds

(0) : J

(€)= vVO(E)] < Clega + 4] -2

m | O

<& < (4.1)

with a constant (' = C'(@) if 6 is sufficiently small.

e Proof: First we remark that the solution v(&) to Eq (3.6) remains
constant in the components 3,...,n — 1. Thus it is enough to estimate v,
and 9. As before we start with the frictionless case, i.e., g = 0. We find
that vy is a solution to the Bernoulli equation

1 1 _
1 + Boy’ (fl)l el Bo' )1 = —9TT 3o + Bo" ! (4.2)

Straight{orward we compute the solution

. 3
(&) = \/CCOSZW)) + T J slaréy + Bop(&r)] (4.3)
+ aj
Using the fact that both solutions have the same initial condition at & = —é/¢
we obtain
) 6
(&) = vO(&)] < Cley + 6], —;Sflﬁz (4.4)
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The component v, is subject to the linear equation

1 1
vy + Boy” fl) e a1 + Bo' ) = —Egmazl/fl (4.5)
Then from Eq (4.4) it follows immediately
(0) 0 ) ,
[va(€1) — vy (E1)] < Cle&y + 4 T <6 < o (4.6)

it éis sufficiently small. So with the case of no friction we are done.
If > 0 we again presume a solution of the form & = exp[—up(&)|r(€).
With the help of formula (3.13) and the above estimates we get

6

1p2(&) — pO2(&6)] < Clegy + 6] _;Sflf

R

Since Egs (3.13), (3.14) and (4.3) imply that p’ and p{®)" both are positive
we have

1p'(&) = p (1) < Cf]e6r + 6

and therefore

Ip(61) — PO < Clet + 813 Cea<!um

A combination of Eqs (4.4). (4.6) and (4.7) vields
ey 6] — e DO < ety + 6] Ceas ? (4.8)
.

In order to get the proposed assertion concerning the velocities on the
original curve before and after the wedge it remains to estimate the error
produced by the cut off function. We get:

Lemma 2. Let q(t) be the solution to Eq (2.4) for the constraint ~°. Then
it holds for sufficiently small €

|G+25 — qas| < CO (4.9)
with a constant C'= C'(x).
o Proof: It is well known that for any constraint 7 € C?(IR"™') there

exists a C%-solution ¢(4) to Eq (2.4) for any given initial values. Furthermore
the second time derivative §(t) is bounded by a constant depending only on
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the initial values and on ||v||c2. Hence to get the above assertion it is enough
to show that for a sufficiently small ¢

§ : 5¢
e (Ollez < € 0<q <26,

with a constant C independent of 6. We get

H(720)) = (1= (g H (v(0) + () A (rlg)) +
(4.10)

¥ ()] er Vlrela) = 3@l T+ Vvele) = v@lel b+ " (a0l ) = 7(q)]

The first term on the right-hand side is globally hounded by virtue of our
assumptions about « and . For the second term we find

b Gt = |2 ()

i.e., it is bounded by a constant independent of 6 [or any ¢ < 6!t/ Now
we consider the third term of Eq (4.10). We have

< (oI &< g <26

() < Co™!
IV (v —s)|| € C

1/ ; A END ,
P i <ef}) <o
for ¢ < §'+Y7. On the other hand we have

IV(y = sl £ 6. §<q <26,

since s = a1¢1 + @292 + Yolqq| is the second order Taylor approximation of
~v. A combination of the last three inequalities yields the boundedness of the
third term of Eq (4.10). Tt remains to estimate the last terni. We notice that

()] < Co*
4 q ,
e = 76l < ﬂoC‘ ‘/—1‘ - @(ﬂ)‘ < CETT < 87
€ €
for § < g1 < 26 and ¢ < §'*t1/9. As before we obtain from the Taylor series

< Co?

|7 — s

Again a combination of these three inequalities immediately yields the boun-
dedness of the last term on the right-hand side of Eq (4.10). Now we have
that all second order derivatives of v¢ are bounded by a constant independent.
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of 6 whenever 6 < ¢; < 26 and ¢ < 6'71/7, It is easy to show that the same
holds true for the gradient and the function itself.
.
Combining both lemmas and using standard inequalities we immediately
obtain:

Theorem 1. Let the wedge be defined as in Eq (2.1), with a,b,c € C*(IR""!)
and Ve(zy) #0. Then we have:

In the above defined class of regularizing functions ¢ there exists a
unique limit ¢ of the velocity after the wedge subject to formula (3.17).
where ¢~ is the left-hand limit of the velocity before the wedge.

In this way we are able to predict the velocity after the wedge knowing the
velocity before. So for numerical aspects it is possible to stop the integration
just before the wedge and to restart a new initial value problem just behindit.
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Punkt materialny poruszajacy sie na niegladkiej rozmaitosci w IR"

Streszczenie

Rozpatrzmy punkt materialny poruszajacy sie po (n—1)-wymiarowej rozmaitosci
z klinem. Aby uniknad¢ mnozenia dystrybucji w réwnaniach ruchu. regularyzujery
klin przy pomocy gladkich funkeji zaleznych od malego parametru €. Powstaje wow-
czas pytanie: czy istnieje graniczna wartos¢ wektora predkosct przy przejsciu przez
wygladzony klin. W artykule podajemy klase regularyzacj, dla ktérych granica ist-
nieje i Jest niezalezna od szczegdlnego wyboru samej regularyzacji. Ponadto podajemy
ograniczenia dla jakosci aproksymacji zaleznych od parametru .
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