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Application of the finite element metliod to homogenization of a fibrous,
linearly elastic, composite material is considercd in the paper. The fi-
nite element method is used in two approaches based on dual variational
principles which give two approximate solutions: the kinematically and
statically admissible ones. Having these two solutions one can easily
evaluate the lower and upper bounds [or effective moduli of a homogeni-
zed material. The paper contains the formulation of the method used to
solve the considered problem, and some examples ol numerical results.

1. Introduction

The problem of estimation of effective moduli for periodic, composite ma-
terials is important from the point of view of designing. A boundary value
problem stated for the composite body, the basic cell of which has a very small
size, when compared to the size of the whole body, cannot be solved direc-
tly, and some methods of macroscopic modelling have to be used for such a
body. One way is to model the heterogencous material by the homogeneous
one with effective moduli. Such a body having anisotropic properties is cal-
led a homogenized material. Effective moduli of it can be calculated exactly
only in some simple cases when a corresponding boundary value problem is
one-dimensional. Since, in general case, the elfective moduli can only be de-
termined approximately, the problem of estimation of their lower and upper
bounds is important. The first attempts at such an estimation were done by
Voigt (1910) and Reuss (1929), however, differences between the lower and
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upper limits obtained by the proposed method are too large from the prac-
tical point of view. More accurate estimations have been done by Hashin
and Shtrikman (1962), (1963), and Iill (1963)+(1965) using dual variational
principles of elasticity theory. The intervals for clfective moduli obtained in
their works are rather wide, especially in case of large differences between the
moduli of components of a composite body. The precise definition of effective
moduli has been introduced by Duvaut (1976), Bensoussan, Lions and Papa-
nicolaou (1978) within a framework of the homogenization theory where the
asymptotic analysis is used to state the effective behaviour of the homogenized
material.

This work presents application of the finite element method to the problem
of homogenization of a fibrous, linearly elastic, composite material. The bo-
unds for effective moduli are obtained using the displacement and equilibrium
models of the finite element method based on the dual variational principles
of the theory of elasticity (cf Wieckowski (1986)). The work starts with some
basic results of the homogenization theory, afterwards the method of solution
to the considered problem is described. Some examples of numerical results
are included in the paper. '

2. Problem of homogenization of periodic fibrous composite
material

Let us consider a fibrous, composite body of periodic structure, the cross-
section of which occupies an open bounded region = C R? with a regular
boundary 0Z= consisted of two parts 9=, and 9=,, where the displacement
and stress boundary conditions are given, respectively. It is assumed that

0=, U0=, = 0= 0=, N0=, =0
meas(0=,) # 0

where meas(9=),) denotes the length of 9=,.

Material constants are assumed to be periodic functions of coordinates z,,
a=1,2. Let 2 € R? denote a region, in which the smallest repeatable part
£2¢ of = can be mapped using the transformation

1
Yo = _("Ea - Ca)

(g
[

where ¢ > 0, a4 is the position of the centre of a repeatable element. A
typical periodic structures of a fibrous composite material. The meanings of
the vector a, and the number ¢ are shown in the same figure.
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<

Fig. 1. Typical structures of composite material

Any f2¢-periodic function G¢(z) can be written in the form
T
G(z) =G|~
(2)=6G()

if G(y)is $2-periodic function defined on the entire space R2.
Assuming that the elastic constants A;;u(y) are £2-periodic functions, we
can write the following relation

Afu(z) = Aijkl@)

Then an equilibrium problem for the linearly elastic, periodic, composite
body can be stated as follows (e.g. Duvaut (1976), Bensoussan, Lions and
Papanicolaou (1978), Sanchez-Palencia (1980), Suquet (1982)):
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— Find u® € Vy such that
a*(uf,v—u®) = f(v—u®) Yv e Vi (2.1)
where

a(u,) = [e(u)AGu(@)eu(v) da

f(v):/f_jv; dz + / 1;v; dx

=4

Vo={ue[H(QP: w=U on dZ.}

U; and t; are the vectors of displacements and stresses given on =y and =,,
respectively.

When the size of cell ¢ is small when compared to the diameter of the
region =, the approximate solution to Eq (2.1) cannot be obtained in the
direct way. An eflicient manner of solving the problem js provided by the
homogenization method where we have to solve the problen: corresponding to
a homogenized material:

— Find u € Vp such that

flu,0 =) = f(v—u) Vv e Vy (2.2)

ae

where

T (u, v) = /s,-]-(u)AfJf-rk,su(v) do (2.3)
The tensor of effective moduli Af]“k,, introduced above, is evaluated from the
relation (cf Duvaut (1976), Bensoussan, Lions and Papanicolaou (1978))

1

Al = ety [ (A = XA i)
n

meas

where meas(£2) is the area of £2 and x?? denotes the homogenization function
being the solution to the following cell problem:
— Find x?? € V such that

/(,\’fz + 61,,~5qj)A,-jklvk_1 dy=20 YveV (2.4)
e}

where
V= {v € ()P /v,- dy =20 v.;.Q-periodic} (2.5)
ip]
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In the definition (2.5), the condition [, »; dy = 0 should be satisfied in order
to avoid non-uniqueness of solution.

It can be proved easily by direct derivation that the formula (2.4) can be
written in the following equivalent form:

— Find w € V such that

/(w,-_j + E,'J')A,'J'Hka dy=10 YoeV (2.6)
0

where

B = 1 ifi=pAj=gqg
Y71 0 otherwise

The field w;, being the solution to Eq (2.6), can be regarded as the
periodic part of the displacement field in infinite, periodic, composite body,
corresponding to the tensor of mean strains [;;, which can be expressed as

follows
u; = Fijy; + w; (2.7)

where

Eij =¢&;
1
M= W—)!(') dy

The following relation exists between both fields w; and ™

o £pq
w; = eE,gX;

Eq (2.7) is shown in Fig.2
The formula (2.6) is somewhat more useful than Eq (2.4) in numerical
calculations.

3. Solution to cell problem by displacement model of FEM

In case of fibrous, periodic, composite material, the displacements field w;
depends only on two variables zy, x5, therefore the following relation is true

w3 =0 i=1,2,3 (3.1)
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Fig. 2. Deformation of infinite, periodic, composite body

Using Eq (3.1), we can split the 3-dimensional problem (2.6) into two 2-

dimensional problems:
The anti-plane shear problem:  Find w3 € Vj such that

/Agaglgw;;‘avhg dx = -—/A30313E3,3’U'0, da Yv eV, (32)
n n

where

Vi={veH'(R): vl-periodic ¥=0}

and o,8=1,2.
The plane strain problem:  Find w, € V, such that

/Aa,g,ygwmgva'g dx = — /(Aag,ygEms + A0333E33)va'3 dx Yve V,
n n
(3.3)

where
V, = {v e[HY (D) :  wvuR-periodic 7, = 0}

Let us define two finite dimensional spaces Vjp, K = 1,2, being a sub-

spaces of Vp
N —_—
Vi = {w: w(@)=Y W) pl(x)ec(@)
I=1

pl(x) € H (W) uh.Q-poriodic}
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N
Vo = {uwne:  wile)= Y3 0lp'(2) p'(2) € COD)
I=1

pl(z) e MY (W) uhaQ-periodic}

where
o' ol -~ degrees of freedom
p/(z) - shape function
w! - support of the shape function p/, w! = supp(p’).

The discrete problems corresponding to Eqs (3.2) and (3.3) can be written
as follows:
— Find u, € Vgp such that

a(up,v—up) = f(v—up) Yo € Vigp K =1,2

The 3-node triangular and 4-node rectangular elements have been used to
solve the considered problem in the displacement model of the finite element
method.

J
0

I
I
I
I
!
l
L

N

Fig. 3. Required position of nodes on the opposite sides of a cell

The problem of construction of kinematically admissible fields of displa-
cements satisfying the condition of f2-periodicity has been solved using the
Lagrange multipliers method. The nodes laying on the two opposite sides of
the cell have to be distributed in the same way, as it is shown in Fig.3, and for
each pair of nodes corresponding to each other, the following condition must
be fulfilled

o~ =0 el -l =0 (3.4)

where ! and X are the degrees of freedom dcfined at nodes [ and K
referred to the ath component of the displacement vector.
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4. Solution to cell problem by equilibrium model of FEM

After splitting into two 2-dimensional problems, the dual cell problem can
be set as follows:

The anti-plane shear problem: Find o3, € Y7 such that
1
/ zuagar;;a dr = /EgaTga dx Vr ey, (4.1)
n?
where

Y = {T eL*(D): maae=0o0n 2 Tganaﬁ-anti-periodic} (4.2)

The plane strain problem: Find .5 € Y, such that
14+v ,
5 ——(0apTap — V0uaTpg) dx = (Faﬁra,j + v Ey31a3) da VreY,
n
(4.3)
where

Y, = {T € [LH D] : Tap = Toa Toap = 0 on 2 Tﬁanﬁﬁ—a.nti-pcriodic} (4.4)

In Eqs (4.1) and (4.3) the counsiderations have been restrained to the case of
isotropic material with the Young modulus £, and the Poisson ratio v.

The crucial point in the equilibrium approach to the finite element method
is the choice of representation of statically admissible fields of stresses. Gene-
rally, they can be represented by the stress [unctions of Maxwell and Morera
(cf Fung (1965), Truesdell (1959/60))

In the anti-plane shear problem, only two components of the stress tensor

are non-zero
T3¢ 75 0 a = l, 2

and the equilibrium conditions reduce to one equation
O30, =0 on 2 (4.5)

Eq (4.5) is satisfied if stresses are cxpressed by the Prandtl stress function
Y € H'(£2) according to the formula

O34 = eaﬁw,ﬂ
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where e,p denotes the permutation symbol, ¢, = €2 =0, ¢j3 = —ey; = 1.
The finite dimensional space of statically admissible stress ficlds Yj, being
a subspace of Y] can be defined for the anti-planc shear problem as follows

N
Yih = {Th,ch t Thza(T) = €ap Z <PIP,1ﬁ(fE) p'(z) € CU(R2)
I=1

(4.6)
p’(a:) e H'Y(wh) Thgc,no,Q-anti-pcriodic}

In the plane strain problem, the following stress components are non-zero

Caps 033 # 0
and two equilibrium equations are to be satisfied
Opap =0 on 2 (4.7)

Now the self-equilibrated stresses are expressed by the Airy stress function
F e H¥ ()

Tuf = Caryepshiys

For the plane strain problem, the finite dimensional set of statically ad-
missible stress fields is defined as follows

N
Yo = {Thaﬁ t Thap(®) = eareps Y @'l s(2) pl(z) € CN(R)
= (4.8)
pl(z) e 3w ‘rha/,»ngﬂ—a.nti-pcriodic}

The discrete problems corresponding to Eqs (4.1) and (4.3) can now be
written as follows:
— Find o, € Yy, such that

blon, 7= an) = g(1 — on) V7 € Yien K=1,2

To fulfill the conditions of f2-anti-periodicity of the stress field, the method
of Lagrange multipliers is used.



242 Z.WIECKOWSKI
5. Estimation of lower and upper bounds for effective moduli
The value of strain energy
1
e(u) = E/Aijklﬂj(u)gkl(“) dy
0
stored up in the volume of an elastic body satisfies the following inequalities

. 1
3 / A,Juauak, dy = e(0®) < e < e(u¥) = /A,J“u, Juk, dy (5.1)
n

where u¥ and o® are the kinematically and statically admissible solutions,
respectively. For the homogenized material, the strain energy accumulated in
the basic cell can be expressed as

e= %A?}TME,-jEklmeas(Q)
It follows from Eq (5.1) that the elfective moduli occurring in the diagonal

of the 6 X 6 matrix of elastic constants, it means the components A,J,J, can
be estimated using the inequalities

1
e(0*(Ers)) < 5 Af 1 meas(2) < e( Auk(ELy))
2
where it is assumed that only FE;; # 0, and F;; = 1. Tt should be noticed

that the summation convention does not stand [or capital indices. For other
components of effective moduli, we can write the following inequalities

G(US(EIJ» El\'L)) < (AIJIJ + ALk + ‘2/17'}1\1) meas(§2) <

SN’ NlH

< e(Au*(Er1, ExcL)

which imply
e(a’(E”, E,;L)) - %( T+ A‘II\PEI\'L) meas(2) < AT, ncas(2) <

< e(Auk(E”, E,\-'L)) - %(Al,“j",_, + A‘,‘\’-‘i,\.»[’)meas(ﬁ)

where it is assumed that only Ep;, Enp #0,and Epy= Erp = 1.
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6. Numerical results

6.1. Square cell

The composite material consisting of the epoxy matrix (EF = 2.5 GPa,
v = 0.4) and steel fibres (E = 209 GPa, v = 0.3) of circular cross-section is
considered. The cell geometry is shown in Fig.4, where the following dimen-
sions are applied
Lh=0hL=1 R=10.75

|

21,

|

Fig. 4. Square basic cell

- 21, Ny

In case of the anti-plane shear problem the finite element mesh has consi-
sted of 208 triangular elements and 117 nodes for the whole cell domain. For
the solution to the plane strain problem, 100 square elements have been used
to discretize the quarter of cell region.

Because of double symmetry of the problem, it is sufficient to consider the
following states of mean strain

e the anti-plane shear problem

Es =1 Ez=0

e the plane strain problem

En=1 Eapp=FEyp=E;,=0
Ea3 = Evw=FEyp=LE,=0
Eyn=1 Ey=Fyp=Fyp3=0

The results concerning the anti-plane shear problem are given in Fig.5
and Fig.6, while Fig.7 + Fig.10 correspond to the plane strain problem. The
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components of the homogenization function Y, obtained by means of the di-
splacement model of the finite element method is shown in Fig.5 and Fig.7.
In Fig.6 and Fig.8 + I'ig.10, the stress distributions, obtained by the displa-
cement (the left diagrams), and equilibrium (the right diagrams) models of
the finite element method, are compared. In Fig.6, the continuous and dashed
lines represent the stress components o3; and o392, respectively.

xon

Fig. 5. Homogenization function — the anti-plane shear problem, F3; =1

-8 -8
ok 107 [N/m?) oy 107 [N/m?)

Fig. 6. Stress distribution — the anti-plane shear problem, Fj; =1

Some of effective moduli (e.g. Ajj22) can be considered to be evaluated
inaccurately. Using the mesh consisting of 1600 square elements and 1681
nodes for the plane strain problem, we obtain the results shown in Table 2.
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Fig. 7. llomogenization [unction ~ the plane stratn problem

Table 1. Effective moduli

A:(;Iirl) A(low) A(up) A(mean) AA
[GPa] | [GPa] | [GPa] | [%]
A“n = A2222 11.500 13.700 12.600 873
Ay 4.488 | 6.686 | 5.587 | 19.67
Ag1as = Agess | 5.867 | 6.793 | 6.330 | 7.31
A33as 97.879 | 98.270 | 98.074 | 0.20
A1212 1.7413 | 2.0013 | 1.8713 | 6.95
A1313 = A2323 2.39 2.48 2.43 1.93
Table 2. Effective moduli — more accurate results
X(;Z) A(Iow) A(up) A(mean) AA
[GPa) | [GPa] | [GPa) |  [%)]
A1 = Agazs | 11509 [ 11.801 | 11.700 | 1.63
At 5.1940 | 5.9430 | 55685 | 6.73
Aqas = Aggas | 5.7755 | 6.3345 | 6.0550 |  4.62
Asas3 97.992 | 98.057 | 98.024 | 0.000332
Al212 1.7378 | 1.7805 | 1.7592 1.21

2 — Mechanika teoreryczna i stosowana

245
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al':i"»IO'g[N/mz] o 10 [N/m?]
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Fig. 8. Stress distribution — the plane strain problem, E; =1
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o-l';i"-IO'g[N/mz] O.lsll -10-9[N/m2]

o100 [N/m?] o 107 [N/m?|
0.8 7 7

< o0 0.7

Fig. 9. Stress distribution — the plane strain problem, FE33 =1
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o107 [N/m?] ot 107 [N/m?]

oy 107 [N/m?)
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Fig. 10. Stress distribution — the plane strain problem, E» =1

7. Hexagonal cell

Let us consider the anti-plane shear problem of a composite material with
the hexagonal cell, the quarter of which is shown in I'ig.11. Calculations have
been made for the following values of shear moduli g 1.3 GPa for the matrix
(epoxy resin), and 29 GPa for fibres (glass). The problem has been solved for
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D

Fig. 11. Hexagonal basic cell
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1-003 2-010 3-017 4-024 5-031
6-038 7-.045 8.052 9059 10 - 0.66
Fig. 12. Deformation of a hexagonal cell



250 7. WIECKOWSKI

the following two states of mean strain:

EBI =1 E32 =0
E31 E32

Il
—_

The diagrams of displacement fields w3 are shown in the form of isolines
and 3-dimensional plots in Fig.12. Fig.13 presents the solutions to the problem
obtained by the equilibrium model of the finite element method; the isolines
of the Prandtl stress function, and the distribution of the principal stresses
are shown in the figure.

SEXS X

A=K\
VARV ANTAN WAVAV.

AN

1-040 2-120 3-200 4-280 5 - 360
6 -440 7 -520 8- 6.00 9 -680 10 - 7.00

max=15.540

325

N

< ! /
N \Z I I G
./ | 1 _‘, Y
1

9 7 6 5 4 3 1
12 11 10 2 max=15.861

1-.-107 2--98 3--89 4--80 §5-.71
6--62 T7--53 8--44 9--35 10 - -26

Fig. 13. Stress distribution — the statically admissible solution
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The lower and upper bounds of ellective moduli, their mean values and
errors are given in Table 3. It can be noticed that the difference between the
values of both moduli is very small. It is natural because the composite mate-
rial considered in the example reveals the material symmetry of the hexagonal

type.
Table 3. Effective moduli — hexagonal cell

AE;E[) Allow) A(up) A(mcan) AA
[GPa] | [GPa] | [GPa] | [%]

Agaaz | 5.609 | 5.656 | 5.632 | 0.408

A1313 5.607—, 5.658 | 5.638 | 0.453

10.

11.

12.
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Modele przemicszczeniowy i naprezeniowy metody elementéw
skoriczonych w mechanice kompozytéw

Streszczenie

W pracy rozwazono zastosowanie metody elementéw skouczonych w zagadnie-
niu homogenizacji periodycznego, liniowo sprezystego materialu kompozytowego
o strukturze widknistej. Metodg elementow skoticzonyeh sformulowano w dwaoch
ujeciach przemieszczeniowym i naprezeniowymn, wykorzystujac dualne zasady wa-
riacyjne. Otrzymano dwa rozwiazania pl/ybh/one l\mematyczme 1 statycznie dopu-
szczalne. Na podstawie tych rozwiazan oszacowano dolne i gérne granice moduldw
sprezystos$ci materialu efektywnego. Praca zawiera sformulowanie metody rozwiaza-
nia rozwazanego zagadnicnia i przyklady obliczen.
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