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Realization of the discrete Fourier transform (DFT) as the [ast Fourier
transform (FFT) has a widespread application in practice.

There are, however, such problems in technology where the application
of the FFT method does not justify satisfactory results. Such problcims
comprise e.g. the analysis of short sections of fast decaying vibrations or
the analysis of instantaneous values ol nonstalionary signal parameters.
Solving the problems arising in this type of signals analysis has contri-
buted to development of the algorithm of the DFT fast computing for
transient vibrations. The developed method cnables one to obtain high
resolution for low frequencies by increasing the density of sampling of
the analyzed signal. The algorithm in tcrims of the computer program
(Lenort (1989)) has been tested both on the model data and on the real
signal records.

1. Introduction

When evaluating the aircraft structure in flight response to the impulse
excitation, some problems arose in the modal analysis of transient signals.
Forced vibrations of e.g. a wing were decaying within one sccond, half a
second and even a shorter period of time (see I'ig.1). This response should
constitute a basis for defining natural frequencies of vibration components,
damping coeflicients and vibration amplitudes, respectively.

Analysis of the signals having frequencies from a few 1z up to tens of 11z
is, if carried out by means of the FFT, very complicated.

The resolution of FFT is well known as
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Fig. 1. The impulse response of an aircralt with underwing stores, measured at the
speed V = 870 kph. Time of the response decaying marked by vertical lines does
not exceed 0.3 sec. Measurement done by means ol strain gauges

where T is the length of evaluated signal. For T = 1 second the resolution
is Af = 1 Iz, such a definition of the natural frequency is therefore of low
precision. The so-called ’making up’ of short signals by supplementing them
by zeros, used sometimes, results in the decrease in sampling signal density,
i.e. the loss in information and deformation of the analysis results.

Neglecting the spced and many other advantages of the FFT, modal frequ-
encies may be defined more precisely by considering sufficiently small values
of Af and computing the DIT as follows

2 N-1 Af
Y(kAS) = Z y(nAtl) cxp( —j2r 7 kn) (1.1)
n=0 S
where
y(nAt) - sampled signal under consideration
fs — frequency of sampling signals (1), f; = 1/At
Af — optionally selected transform resolution, for example

Af = 0.011Ilz; limitations in selecting Af and & arise
from the Nyquist criterion and other rules of a correct
signals processing (c[ Maiiczak (1971)).

By means of this transformation more precise natural frequencies of the
object can be defined, despite the possibility of the so-called ’side arcas’ ap-
pearance, which are connected results of with the analysis of finite sections of
vibrations.

As an example Fig.2 presents comparison ol the FFT resolution and rea-
lization of the DFT in accordance with Eq (1.1) for the model signal having
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the form of a sine curve with the [requency f = 10.5 Hz, for T = 1 sec,
fs = 1024 samples per second and Af = 0.1 Hz.
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Fig. 2. Some results of the frequency and amplitude analysis of the mode signal
y(1) having frequency f = 10.5 1z carried out in terms of the Fourier
transformation for 7= 1sec and f; = 1024 samples per second; ® - computed by
the I'FT method, e — computed according to Eq (1.1)

This example shows that the FFT represents the true [requency of a signal
and its amplitude, only if the number of signal cycles on the evaluated section
is complete (cf Brigham (1974)).

On the other hand, realization of the DFT in accordance with Eq (1.1)
for Af = 0.1 Hz may in this case provide the precise determination of the
frequency and the amplitude of that signal. The time of computing is, however,
several hundred times longer and the analysis of experimental data collected
during one flight, carried out in this way, is impossible due to time-consuming
computations of thousands of transforins.

The aforementioned disadvantages admitted the necessity for formulation
(for such a type of signals and a group of tasks) of a new kind of algorithm
for the DFT computation, revealing high resolution at low [requencies and the
computation speed comparable to that of FFT.
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2. Algorithm for fast computation of the DFT revealing high
resolution at low frequencies

The FFT is a well-known, very fast procedure for computation of a trans-
form applying the formula

N-1
2 2
Y(RAS) = 5 3 y(nAt)exp(—j%kn) k=0,1,2,...,N—-1 (2.1)
n=0

Taking the above into consideration, the algorithm for the fast computation
of DFT is based on the formula

fk) = Z Y nAl) exp( 2k ) k=ksyokend (2'2)

Frequencies f of the computed transform lines can be written as

_ s
Je=7

Lines on the frequency axis are spaced uncqually. On the other hand the
period for successive lines is constant and equals
k
T, = kAl = —
g s

The resolution of this realization of DI'T is (according to Lenort (1989))

f2
fs

The increase in {requency of the time signal sampling results in the re-
solution improvement. On the contrary, the very good resolution for low
frequencies deteriorates with the square of a high valuc of f.

Fig.3. show the transform of the signal from Fig.2, rcalized in accordance
with Eq (2.2) for f; = 1024 samples per second. The real frequency 10.5 1z
of asignal y(1) has been determined by means of the DFT employing Eq (2.2),
with accuracy of 0.05 Ilz. It should be noticed that also the signal amplitude
has been determined more preciscly than when applying the FFT. In this case
the use of FFT produces the amplitude decrecase by approximately 38 per cent
and the transform line decrease to 1 Ilz.

A very high speed of the FF'T computing has been reached by lowering the
number of multiplications (cf Brigham (1974)).

Af =
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Fig. 3. Determination of the model signal y(¢) (I'ig.2) requency and amplitude by
means of the DFT in accordance with Eq (2.2); ® - computed by the FFT method,
e — computed in accordance with Eq (2.2)

Similarly one can recach a very high speed of computations when realizing
the DFT in accordance with Eq (2.2). For even values of £ the decrease
in number of multiplications is 4 fT-times (cf Lenort (1989)), while for odd
values is is 2 fT-times, respectively.

There exists the possibility to compute the single lines only, what consi-
derably decreases the time necessary e.g. for the damping factor computation
(cf Lenort (1984)). Due to the algorithm procedure when employing the FFT
one should always compute the set of lines.

The possibility of reducing the number of multiplications when realizing
the DI'T in accordance with Eq (2.2) is shown below.

If it is assumed in Eq (2.2) that

n = ng+ kn, ng=0,1,2,.... k-1 n; =0,1,2,...,[N/K]

where [N/k]is a function "entier”, [N/k]= E(N/k)

2w
Wi = exp(—J—k—)
Eq (2:2) can be rewritten as

2 k=1 [N/K] .
Y(fi) = Z Z y(no + kny )W, prorkn)
no= T'L)—O
9 1 [N/A]
= = Z > y(no + kny)Wrewp™ = (2.3)
no_Onl_O
k-1 [N/k] -1 [N/K]

N Z Z y(no + kn )W = — Z wee Z y(no + kny)

"0 0n;=0 no—O ny =0
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because

wim = (W) = ()™ =1

As it can be seen from the formula (2.2) the number of multiplications
required to compute the k-line has been reduced n; times, ie.  [N/k]
times. For N = 2000 and £ = 20 the the number of multiplications has
been reduced 100 times and proportionally has been limited tlie time of the
transform computing.
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Fig. 4. Graphical presentation of the principles applicable to the realization of DFT
computed in accordance with Eq (2.2) for N =19 and k = 14. Determination of
the imaginary part of a transform.

In order to simplify the presentation of the possibilities of further decrease
in the number of multiplications for % as an even number one may employ
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the graphic method. For better understanding let us draw only the scheme of
method of the imaginary part of k-line computing (Fig.4).

Instead of multiplying the successive values of the y(nAt) function by the
values of sine function at these points (what would require N multiplications)
we add up at first the values of y(nAt) function at the points where the
values of sine function are identical and only then we multiply this sum by the
appropriate value of sine function.

As an example we may write, in accordance with Fig.4

Y1 sin oy + ye sin ag + ys sin ag + Y13 sin a3 + ¥)5sin a5 =

=(y1 + ¥ — Y8 — Y13 + Y15) sin

In this way, for even values of & the 4 f7T-times decrecase in the nuniber of
multiplications is obtained as well as the appropriate decrease in the time of
the transform computation.

Some features of the described DI'T are presented below on the background
of the I'FT features.

Fast Fourier transform (FFT)

Works for N = 2/

Resolution Af =1/T = f,/N.

Equal spacing of lines along the frequency axis f = kA f, k is the number
of cycles on the T-signal section.

For k > N/2 the Nyquist criterion is not met, for & = 0 computed the
average value of signal is computed.

2N/l times decrease in the number of multiplications.

Computed real and imaginary parts constitute the coellicients of LF'ourier
series, with integration replaced by summing-up.

The worked out algorithm for computing the complete sct of lines.

In order to increase the resolution, the so called 'making-up’ of a signal
with zeros is used.

The method for very wide range of applications.

Discrete Fourier transform (DFT)

For every N.

Resolution Af = f2/f,.

Equal spacing of lines along the axis of vibration period T, = kAl. Une-
qual spacing of lines along the frequency axis [ = fs/k, k is the number of
samples in a cycle.
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For k > 2 the Nyquist criterion is met, for k£ = 1 the average value of a
signal is computed.

For even values of &, 4fT-times decrease in the number of multiplications
appears, for odd values of k, 2fT-times decrease appears.

Results of the discrete transformation are close to the continuous Fourier
transformation for signals with a finite length.

Fast computing of a single transform line is possible.

In order to increase resolution single zero values may be placed hetween
signal samples to obtain the resolution Af = f2/(2f,) or e.g. triple zero
values to obtain the resolution Af = f2/(4f,).

The practical method for the modal analysis, useful in determining natural
frequencies, damping coeflicients, amplitudes and phases of short signals with
low frequency.

3. Concluding remarks

The presented algorithm for fast computation of the discrete Fourier trans-
formation has been tested on the model and real data (cf Lenort (1989)).

This algorithm is available in the form of computer codes in Fortran lan-
guage. One of them is presented by Lenort (1989).

The described procedure of computing the DFT is the suitable and fast
tool for the analysis of the signals like e.g. vibrations appearing during flight
tests of the flutter tendency of aircraft structures. The possibility of a single
transform line fast computation is very uselul when determining the damping
coefficient of a noise-disturbed signal. 1lligh resolution of this transform at low
frequencies enables one to define properly the modal frequencies even from the
short-lasting, fast-vanishing signals.
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Sreszczenie

Bardzo szerokie zastosowanie w praktyce znalazla realizacja dyskretnego prze-
ksztalcenia Fouriera (DFT) w postaci szybkiej transformaty Fouricra (I'I'T).

Powszechne zastosowanie metody ['I''T do obliczania DI''T najlepiej $wiadezy o jej
zaletach.

Istnieja jednak w technice zagadnienia, do ktérych zastosowanie mietody FEFT
nie daje zadawalajacych wynikéw. Do takich zagadnien moina zaliczyé analize krét-
kich odcinkéw, szybko zanikajacych drgan lub analize chwilowych wlasnodci sygnalu
niestacjonarnego.

Problemy analizy tego typu sygnaldw przyczynily sie do opracowania algorytmu
szybkiego obliczania DFT dla kréotkich realizacyi drgai. Opracowana metoda pozwala
na uzyskanie duzej rozdzielnosci dla malych czestosci poprzez zwickszenie gestosci
prébkowania sygnalu analizowanego. Algorytm w postaci programu na EMC (Lenort
(1989)) zostal przetestowany na danych modelowych i na rzeczywistych przebiegach
sygnalow.
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