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A method of determining the laws of control for an astatic autopilot has
been considered. These laws have been formulated on the basis of the
linearized equations of spatial motion of a single-rotor helicopter. All
couplings between longitudinal and lateral motions have been taken into
account. The numerical example for one {lying speed and the variations
of the compensation and amplification coeflicients for the whole range
of flying speeds have been presented.

1. Introduction

The instability of a helicopter appears for most ranges of flight. This is a
reason of application of preventive measures which improve dynamic properties
of the object. That is an automatic flight control system enhancing damping
of natural motions of a helicopter-autopilot system.

The mathematical model of an astatic autopilot is presented in this work
taking into account its dynamics. The laws of control have been determined
on the basis of the method of separation of motions. Principles of that method
were described by Kozhevnikov (1977). Kowaleczko (1992) and Dzygadlo and
Kowaleczko (1993b) developed that method denying some simplifying assump-
tions. A static model of autopilot was analyzed there. That model excluded
all couplings between longitudinal and lateral motions. Kowaleczko (1994b)
modelled the laws of control for the static autopilot which included the co-
uplings. Kowaleczko (1994a) obtained those laws for the astatic autopilot
without taking into account these couplings.

The most comprehensive model, including dynamics of the autopilot and
couplings of motions, will be presented here.
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2. Physical and mathematical model of the helicopter

Similarly to Kowaleczko (1992) and (1994a,b), Dzygadlo and Kowaleczko
(1993a,b) the ”aeroplane” model of the helicopter is taken as a base. The
dynamics of this model is described by a simplified, linearized set of equations

Ci+ Dz+Es=0 (2.1)

where
z = [u,v,w,p,q,7,79, ¢, ] - vector of increases in flight parameters:

U,V,W — linear velocities of the centre of the fuselage mass
in the coordinate a system O0zpyr2; connected
with the fuselage

P,Q,R - angular velocities of the {uselage in the coordi-
nate system 0ziyrzk

©,d,¥ — pitch, roll and yaw angles, respectively.

8 = [Ab,, Aks, Ans, Aps,] — vector of the control parameters increases:

0, — angle of collective pitch of the main rotor
ks — control angle for longitudinal motion

ns — control angle for lateral motion

¢so — angle of collective pitch of the tail rotor.

The method of obtaining Eqs (2.1) was shown in detail by Kowaleczko
(1992), Dzygadlo and Kowaleczko (1993a). I'or further calculations this set
will be transformed to

z =Fz + Gs (2.2)

where Fis 9 x 9 matrix and is 9 X 4 matrix. These matrices can be written
as, respectively

F=-C'D G=-C'E (2.3)
where
[ X* XY Xw XP X¢ X7 X? X¢ X¥ ]
Y Yv Yv YP Ye Yr Y? Ye Y¥
Zv Zv zw zp ze gz 79 ze Z¥
L v [w L[p L1 LT L9 L¥ ¥
F=| M Mv Mvw MP M?! MT MY Me MY (2.4)
N+ Nv N¥ NP N9 NT NY N¥ NY
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
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[ X% X% X7ns X%
Y% Yrs Y15 Yéso
700 grs  7ms o
L Lrs L7 L$s
G=| M% Mrs M7 Mo (2.5)
Nbo  N&5s  Nns  Néso
0 0 0 0
0 0 0 0
0 0 0 0 |

Additionally it is assumed that the angles of pitch @, roll ¢ and yaw ¥
of the helicopter are small and

p:(;o (]:19 T:'(L (26)

According to the method of separation of motions, the vector of control s
is composed of two parts. s is the compensation vector and the vector s,
ensures stabilization.

s=A"(s, +3s;) (2.7)
thus the compensation vector s can be expressed
sp = Thz (2.8)

The 4 X 4 matrix A and 4 X 9 matrix T* have elements which are defined
on the basis of the following compensation conditions

Z¥u+ Z%v 4 Z%w+ ZPp+ 29+ Z7r + ZP9 + 290 + ZVy +
425 MKy + ZM Ay 4+ Z%°Ago + 2% A0y = 0

MYy + MYw + MPp+ M™r + M%p + MYy +
+MO% Al + M7 Aq, + MP°Apyo + M Ak =0

L*u+ L¥w+ LI+ Lr + L9 + LYy +
+L%A8, + L* Aky + LP°Adgo + LA = 0

N¥u 4+ N% + N¥w + NPp+ Nig+ N9 4+ N¥p +
+N%AG, + N Ak, + N An, + N**°Apy =0
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Thus the matrix A takes the form

( 1 A 7 Z¢so T
z%  Z0 7%

Mo 1 Mns A Peo

A= ][/]0'2’ . A ]["](b':: (2.10)
It L . L
Z Tis z s Z s

N¢9,, N&s N7s 1
[ N¢so Néso Nédao J

On the other hand the matrix T* is defined as follows

( /A VA /A ZP Z1 VAl VA VA4 AR
7% 7% 70, 78, 70, 78, 76, 7% 70
0 MY MY MP 0 M 0 MY MY
T=_ M7 Mre  FIR MEe MEs  MFs
A VA NS 7 AN AP
N N* N N* N1, NP Ne
L Nd’so Nd’so Nd’so Nd’so N¢so N¢so N¢so |
(2.11)

Substituting Eq (2.7) into Eq (2.2), and making use of Eq (2.8), we obtain the
following set of equations
z = Hz + Ks (2.12)

where the matrix H havesize 9x 9 and the K —sizeis 9 x 4. These matrices
are respectively equal to

H=F+GA'TF K=GA™! (2.13)

The set of Egs (2.12) will be completed by the following laws of control
which include the dynamics of automatic flight control system

Tp, 00,4 + Aoy = Tyw (2.14)
TilDFsa + AKsa = Tyu + Toq + 99 (2.15)
ThAfsa + Ansa = Tov + Tpp + T (2.16)
TpAdop + Apsa = 1 + Ty (2.17)
It can be described by a general expression
Tls, +5, = T2 (2.18)

According to Eqs (2.14) to (2.17) the matrix TY, which size is 4 x 9 has the
form

o 0 r,, 0 0 0 0 0 O

g_ | Tu 0 0 0 , 0 =9 0 O
=10 0100015 0 (2.19)

0 0 0 0 0 & 0 0 7y
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TL is the following diagonal matrix

T, 0 0 0
TL = 8 :'(;" :,9" 8 (2.20)
0 0 0 T,
Eqs (2.12) and (2.18) can be analysed together rewritting them as
T"z* = H*z* (2.21)
where the vector 2* = [z,3,] have the following components
z* = [u,v,w,p,q,7,9,0,%, A4, Aksa, Atsa, Absa) (2.22)

and the matrices T* and H*, respectively, are equal to

. [1 o . [ H K
=4 %] e (2.23)
13x13 13x13

The symbol | stands for the identity matrix.

Next the set of ordinary differential cquations (2.21) can be rearranged
into a form

g* = (T*)"'H*z" (2.24)

On the basis of this form we can determine the amplification coefficients
responsible for stabilization (the elements of the matrix T?) and the time
constants of the stabilizing network (the elements of the matrix TZ).

To this end we have to determine a characteristic polynomial of Eqs (2.24).
It can be described by a general expression

“/\ — (T*)_IH*I = \13 + D12/\12 + .D”/\11 + Dlo/\lo + Dg/\g + DS/\S +
(2.25)

+ D77 4 DA + DsA® 4+ Dyt + D3A3 + DA% + DAY + Dg =0

Then it is assumed that the spatial motion of the helicopter-autopilot sy-
stem is a superposition of aperiodic and periodic motions, respectively. The
time constants, the coefficients of damping and the periods of oscillations are
assumed. On this basis the characteristic Eq (2.25) can be written in the form
of a product of characteristic polynomials of the first order systems and the
second order systems.

For further computations it is assumed that the helicopter-autopilot system
realizes the following natural motions
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— five aperiodic damping motions of the time constant

TP

p b b b
o T Ty Th, Tro

— eight periodic damping motions; the damping coeflicients and the periods
of oscillations of them being, respectively

P 4 b b
C]]]a C]]z, C111> CII2

4 14 b b
Tins Tiey Tin, Tin

Thus the characteristic polynomial (2.25) can be written in the following
form

(A+ P)(A*+ PoA + P3)(A+ Py)(A* + PsA + Pg) -
(2.26)

(A4 Bo)(A+ B1)(A2+ Bod + B3)(A+ Ba)(A*+ BsA + Bg) = 0

where the symbols P; and B; denote

1 267 1
Pem PEm, By
1 267
7 T (T7s 2m
b
BO = ib. B1 = Lb B2 = 26;“ B3 = 1 2
TIO T11 T111 (Tlll)
1 201 1
By= — Bs = 2 Be = ——
T})2 T;)12 (T})12)2

From Eqgs (2.26) and (2.27) it follows that, by prescribing the time con-
stants 7T and T}, the coelficients of damping &7}, and &4, and the periods
of oscillation T7,; and T?;, we can obtain the following natural motions

— P 2
My = = T VAR GV
Th ’ Tin Tin
— P 2
A, = —-17 A= & n 1 - (&71) ,
ot ’ Tfr T7r
1
b _
Mo =13, (2.28)
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— (£b )2

A, = —Lb Ay = _&in n 1 - (&) :
Ty, ’ T?,, T?,

—(£b )2

A= L AL = & n V1= ()2,

12 Tb 1134 = =7 T 1
12 112 112

By comparing Eq (2.25) with Eq (2.26), we can obtain, after some simple
transformations the relations between the coellicients D; and P; and By.

Simultaneously the coefficients of the characteristic polynomial  D;
(i = 0,12) are the functions of the required values Ty, Tk, Tw, Tu, Tq,
795 Tyy Ty Tuy Tpy Ty Try Ty Which define the form of the laws of control (2.18).

In the end we obtain a set of thirteen nonlincar algebraic equations, of a
general form

Di(Toy, T, T, Tip, Tws Ty Ty Tws Tus Tps Ty Try Typ) = D;(P;, By)
(2.29)

i=0,..,13

The solution to this set gives values of the time constants and values of the
amplification coeflicients, which together with the compensation coefficients
(2.11), characterize the automatic flight control system in the spatial motion.

3. Numerical example

Exemplary results of the numerical analysis are presented for the Polish
?Sokol” helicopter. Detailed initial data will be presented together with the
form of the laws of control for the flying speed of 100 km/h and the varia-
tions of the compensation and amplification cocfficients of the autopilot over
a range of flying speeds from 0 to 250 km/h. It has been assumed that the
induced velocity in the plane of the main rotor is constant and the helicopter
performs a steady horizontal {light, the parameters of which have been given
by Kowaleczko (1992) and Dzygadlo and Kowaleczko (1991).

For a spatial flying spced of 100 km/h the matrices F and G have the
following nonzero elements:



966 G.IKKOWALECZKO

— for the matrix F

X* =-0.029283 XV = -0.004664 X™ =0.001854 XP = 0.2095468

X?=1.5096089 X7 =0.0100954 X" =-9.80629
Y*=-0.001183 Y" = -0.095860 Y™ =0.005634 YP = -1.473138
Y? =0.1856809 Y™ = —27.30430 Y? =0.005573 Y¥ = 9.804197

Z* = —-0.067603 Z" = —-0.002036 2ZY = —-0.47314 ZP = —-0.355670
Z9 = 27775872 Z" = —0.522719 Z? = 0.26978 Z% = -0.202519
L* = 0.006338 LY = -0.030324 L* =0.009394 L? = —0.898412
L7 = —0.185780 L™ = 0.086907

M =0.0076036 M" =0.002516 M™ = 0.002499 MP = 0.017988
M9 = —-0.444167 M7™ = —-0.006152

N* =0.013888 NV =0.055573 N¥ =0.028115 NP =0.030087
N?=-0.123689 N7 = —0.754432

F75 =1.0 Fgy = 1.0 I =1.0

— for the matrix G

X0 = —3.125898 X% = —10.8568 X7 = —0.30001 X%w° =0

Yo = 1.377479 Y% = 0.36659 Y7 = —9.14644 Y %50 = 12.2923
Z% = —51.98020 Z%s = —21.6915 Z7"s =1.91438  Z%so =

L% =1.475246  L** = 1.38278  L" = —12.7172 L% = 2.741854
MY = 1576425 M*s =5.40889 M7 = 0.40497 M®se =(

N = _2064799 N*s =0.83037 N7 = —0.44740 N%° = —19.1856

it

On the basis of this data the following values of elements of the matrices
A and TY have been computed
— for the matrix A

1 0.4173050 —0.0368291 0

A= 0.2914512 1 0.0748709 0
—0.1160039 —0.1087329 1 —-0.2156018

0.1076225 —0.0432810 0.0233195 1

— for the matrix T*

—0.0013005 —0.0000392 —-0.0091023 -0.0068424 0.5343548
Tk = 0 —0.0004651 —0.0004620 -0.0033256 0

0.0004984 0 0.0007386 0 —0.0146086

0.0007239  0.0028966  0.0014654  0.0015682 —0.0064470
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—0.0100561 0.0051899 -0.0038961 0
0.0011374 0 0 0
0.0068338 0 0 0
0.0068338 0 0 0

0 0 0 0

It has been assumed that the time constant and the damping coefficients

are
Th =12 T},=20 1T},=16 T},=08
=09 =07
T)y=05 TH =04 THp=10 Th, =14
Tip=18 &5 =09 &, =09

which corresponds to the following cigenvalues

M = —0.833 M, = —0.45 % 0.2179445i
My =—0.625 M, = —0.875 % 0.89269i

Mo = —2.0 Ab112 = —0.64285714 £ 0.31135i
MY, =-25 A 134 = —0.50 £ 0.24216105i
/\l}2 =-1.0

The matrices of the time constant T and the matrix of the amplification
coefficients T are respectively

1.4769608 0 0 0
s 0 0.361612 0 0
0 0 0.295133 0
0 0 0 0.3483328
0 0 0.0053163 0 0
1o _ | —0.0008768 0 0 0 —0.0608547
= 0 0.0026032 0 0.0966221 0
0 0 0 0 0
0 0 0 0
0 —0.0454142 0 0
0 0 0.1239504 0
0.0478454 0 0 0.0697777

These matrices determine the laws of control (Eq (2.8)). They are used
together with Eqs (2.12) to verify computations of the eigenvalues and eige-
nvectors on the basis of the Fade method (cf Fadeev (1960); Gérecki (1980)).
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The eigenvectors are made dimensionless and normalized according to the al-
gorithm described by Kowaleczko (1992) and Dzygadlo, Kowaleczko (1993a).
The linear velocities are divided by the blade tip velocity of the rotor while

the angular ones by the angular velocity of the main rotor.
The Euclidean norm is used to normalize the eigenvectors.

The eigenvalues and the eigenvectors corresponding to them are as follows

A7, = —0.83333 | M}, , = —~0.45£0.2179] A, = —0.625
u* 0.00595489 0.0304009 % 0.000277192i 0.0141017
v* 0.0402704 0.0219892 F 0.0527003i 0.0497694
w* 0.000168244 ~0.000157650 & 0.00177811i | —0.0000421591
»* 0.0304248 -0.00538311 F 0.0160270i 0.0222729
9* —0.00323212 —0.00354191 & 0.00432597i | —0.00413057
r* —0.00550777 ~0.00187519+ 0.00508494i | —0.00543985
v* 0.103751 0.271425 F 0.125698i 0.176788
w* —0.977005 —0.114598 £ 0.897575i ~0.953641
P 0.176866 0.208951 F 0.201186i 0.232914
* | —0.000813779 0.00268383 £ 0.00334289i —0.000612031
k% | —0.000782562 | —0.0145480F 0.000284396i | —0.00504025
n} -0.0271190 ~0.0149717 £+ 0.0484151i —0.0409915
:, 0.00745663 0.0135306 F 0.0101482i 0.0118752
AP, = —0875+£08927i | Aj, =-20 XN =-25
u* | —0.0000439380 ¥ 0.00103306i | —0.00142359 0.0120800
v* —0.0106382 F 0.0252528i —0.000474649 0.0366886
w* | —0.000787168 F 0.000106804i | 0.000160006 0.000941227
p* —0.0316502 £ 0.0330068i —0.0709595 —0.0693737
q* 0.00132148 F 0.000967241i 0.00445464 —0.0224047
r 0.00486908 F 0.00603308i 0.0187547 0.0442234
9 —0.0345778 ¥ 0.00570648i —0.0595808 0.239730
w* 0.978922 F 0.0107475i 0.949443 0.742580
P ~0.165203 £ 0.0159691i —0.250938 ~0.473369
2z | 0.0000546653 + 0.00065439i | —0.0000914186 | —0.000390265
kY 0.000458054 % 0.00274439i —0.0154769 0.243415
s 0.0702026 + 0.0696704i -0.161032 ~0.256352
$%, | —0.00988983 + 0.00508050i 0.0214071 0.182470
X, =-10 Ajry o = —0.64286 £ 0.3113i Afjaq = —0.50 £ 0.2422i
u 0.00363876 0.00777833 F 0.00346443i 0.0210810 F 0.00378488i
v 0.0339960 0.00124297 F 0.0491639i 0.00950108 F 0.0550407i
w* | 0.000288627 | —0.000681490+ 0.000110015i | —0.000536102 + 0.00110946i
p* 0.0367285 —0.0184914 F 0.0183282i —0.0104764 F 0.0163760i
q* | —0.00298533 | —0.000633506 % 0.00303494i | —0.00228528 + 0.00423995i
r* | —0.00589419 0.00120515 = 0.00441103i —0.000496670 £ 0.00516315i
9* 0.0798575 0.0708949 F 0.0919512i 0.188021 F 0.135775i
w* -0.982860 0.324183 £ 0.919954i 0.110335 + 0.920883i
P 0.157729 0.0313982 F 0.168410i 0.129937 F 0.213402i
03 | —0.000675552 | 0.0000842846 + 0.00166368i 0.00145925 + 0.00274031i
k% | 0.000882015 | —0.00464144 4 0.000515767i | —0.0105061 0.00107534i
nt -0.0117922 —0.00294866 £ 0.0494309i —0.00537673 + 0.0507133i
¢, t 0.00531288 0.00363999 % 0.00837622i 0.00908988 % 0.0109578i
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Similar verifying computations have been made over the entire range of
flying speed, the natural motions obtained occurace to be the same as assu-
med. Fig.1 + Fig.4 show the variation of the compensation and amplification
coefficients. Fig.5 show the variation of the time constants of the autopilot.
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Fig. 1. Compensation coefficients for longitudinal motion

4. Concluding remarks

It can be seen, from Fig.1 + Fig.5, that some of the coeflicients and the
time constants of the autopilot show considerable variation with the varying
flying speed. This means that we cannot design an autopilot with constant
parameters which would en$ure the assumed performance to be realized over
a wide range of the flying speed.

This remark is the same as remark which has been formulated by Dzygadlo
and Kowaleczko (1993b). But in this paper the couplings between longitudi-
nal and lateral motions are included and we use the dilferent model of the
laws of control. Then we have other values of the amplification coefficients of

autopilot.
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Fig. 2. Compensation coeflicients for lateral motion
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Fig. 3. Amplification coeflicients for longitudinal motion
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Fig. 5. Time constants of the autopilot
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Numerical computations have been made employing the set of thirteen non-
linear algebraic equations (2.29) and the multidimensional Newton’s method
(cf Bjorek and Dahlquist (1983)). It requires good initial approximation of the
searched variables. When we take as this approximation the solution which
has been obtained for the astatic autopilot, excluding the longitudinal-lateral
couplings, the algorithm is numerically unstable. The correct solution can be
obtained on the basis of the "embedding” method (cf Bjorek and Dahlquist
(1983)). In this method a solution to one problem is embedded into a wide
family of problems. It has been made taking into account the coupling ele-
ments in the matrices F and G, Eqs (2.3). In such a way we obtain successive
approximations of the solution up to the final solution with full couplings.

The results of calculations show that for flight velocities higher then 200
km/h a family of solutions appear. Fig.3 + I'ig.5 show in this range only
two branches (A and B) of this family. Existence of this family of solutions
is in agreement with the theory of sets of nonlinear algebraic equations (cf
Szmelter (1980)). In general way it is impossible to prejudge the existence
and a number of those solutions.

In this range we observe considerable variation in the values of the am-
plification coeflicients and the time constants of the autopilot. Each of the
branches correspond, in theory, to assumed natural motions of the helicopter-
autopilot system. However taking into account design limitations we have to
realize laws of control making use of this branche only which can be obtained
with the least variation of the coefficients and the time constants of the au-
utopilot for the whole range of speeds. So it can be seen from Fig.3 + Fig.5
that we have to take the branche A.
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Model matematyczny astetycznego autopilota dla $miglowca

uwzgledniajacy sprzezenia pomigdzy ruchami podluznymi 1 bocznyni

Streszczenie

W pracy przedstawiona zostala metoda okreslania praw sterowania dla autopi-
lota astatycznego. Prawa te sformulowano na bazie zlinearyzowanych réwnan ru-
chu dla $miglowca jednowirnikowego. Uwzgledniono wszystkie sprzezenia pomiedzy
ruchami podluznymi i bocznymi. Pokazano przyklad obliczeniowy dla konkretne)
predkosci lotu oraz przebieg wspdlczynnikéw wzmocnienia autopilota w calym zakre-
sie predkoscl.

Manuscript received March 10, 1994; accepled for print May 17, 1994



