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The note presents a method of determination of the solution (in a class of
generalized functions) to equations describing small transverse vibrations
of an elastic beamn with a hinge.

1. Introduction

A practicable method of analysis of mechanical structures composed of
a number of elastic beams connected by hinges is based on separating the
structure at hinges into parts consisting of single beams, determining then
the movement of each part and "glueing” together such obtained solutions to
get the solution for the whole system (compare any textbook on mechanical
engineering, e.g. Beer and Johnson (1977)). The disadvantage of such an
approach consists in the fact that one is obliged to solve a number of problems
and then to solutions corresponding to various parts of a system which needs
much move time-consuming computations in comparison with those needed
for solving a single beam.

The method of analysis of multi-beam structures vibrations presented in
this paper does not require the partition of the initial structure and amounts
to determining single beam vibrations. This is done by replacing a beam with
hinge by the substite structure consisting of a continuous beam with a variable
stiffness. The latter is obtained after passing to the limit as ¢ tends to 0
for the family of problems for continuous beams with stiffnesses depending on
a parameter ¢ > 0, modelling a hinge. The solution for the original system
is then obtained from the solution for the substitute one upon passing with
the parameter ¢ to zero. Since the stiffness of the substitute system is not
continuous, the solution will be sought for in a class of genecralized functions.
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Note that, in contrast to the classical method, the proposed approach permits
to perform necessary computations only once.

The paper presents an extension ol results I{asprzyk (1993) dealing with
static problems concerning a beam with a hinge, to the study of vibrations of
such beams.

A

Fig. 1. Beam with a hinge

The method will be illustrated by considering the problem of determination
of vibrations of the beam shown in IFig.1. We will carry out only this part of an
analysis which differs from the standard considerations concerning vibrations
of the beam having the form presented here but without the hinge.

2. Equation of motion

The cantilever elastic beam of length [ is fixed at the point A, taken as
the origin of coordinate system, and freely supported at the point B. It has
a frictionless (ideal) hinge at the point C with an abscissa ¢, 0 < a < [.

We assume that parameters of the system: density p, axial moment of
inertia J and cross section F of a beam are constant. The Young modulus
of material of a beam is denoted by FE. Function f(z,t) describes the
distribution of the external load density. Moreover, suppose that there are no
forces or moments acting upon beam in a neighbourhood of C.

Denote by wu(z,t) (z € [0,/], t € [0,00)) a transverse displacement of a
point z of a beam at an instant f. Replacing the beam with a hinge by the
continuous one, having the variable stiffness EJa(z,€1,€2), where €7, €2 are
positive parameters, the transverse vibrations of the latter are described by
the equation

9? 0%*u 9?

[
W[EJG(%fl,Ez)gw—g} + ol gm =120 (2.1)

The distribution of stiffness of the beam is characterized by the function

a(z,e1,62) = (1 - H(z - a‘)) + H(z —a™)
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where at =a+¢;,a” = a— ¢, II(2) is the Heaviside function
1 for z22>0
H(z)_{(] for 2<0
Thus

_J o for ze€(a",a")
EJ(I(-T,(:'I,&'Q) = { EJ for zé€ (—oo,a‘]U [a+,oo)

Passing with Eq (2.1) to a limit as ¢;,62 — 0 we get

0? 0%u 0*u
where e(z) = lim a(z,€1,€2).
‘l_’
€2 —0
The limit stiffness EJe satisfies EJe(z) = LJ for z # a, EJe(a) = 0,
thus Eq (2.2) represents vibrations of a beam presented in Fig.1.
We are looking for a solution u to Eq (2.2) satisfying the conditions:

u(z,-) e C* u(-,t) € C°
4
Wu(-,t) e C° for z#a
together with the geometric and mechanical boundary conditions
u(0,t) =0 u(l,t)=0
0u(0,1) 0%u(l,1)
P 0 oz = 0
v (2.3)
Pu(a,t) _  Pu(ay,?) O*u(a_,t)  *u(ay,t)
0z3 Oz3 ozt Oa?
u(a_,t) = u(a+,t)
and initial conditions
du(z,0)
u(z,0) = ¢o(z) 5 = P1@) (24)

We denote by u(ay4,t) and u(a_,t) the left- and right-hand limits of u(:,t) at
a, respectively. The similar convention is used for one-sided limits of partial
derivatives of u or other functions depending on the z variable.

Eqgs (2.2), (2.3) and (2.4) will be solved using the Galerkin method. Since
the problem is linear, its solution is a sum of solutions representing free and
forced vibrations of the beam, respectively.
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3. Free vibrations of the system

Set
u(z,t) = X(2)T(1) (3.1)
where X is assumed to be C9in the interval [0,{], C* in subintervals (0,a),
(a,l) of [0,]]and T is C? for ¢t > 0.
Substituting expression (3.1) into Eq (2.2) we get the equation

[e(z)X")'T (1) + b*X (z)T(t) = 0

where b2 = (pF)/(EJ) which, after a separation of variables, can be rewritten

as .
. mn
T_ @)X e

T = Y (3.2)
We denote = d?/di?, ” = d?/dz®. The derivative with respect to the
variable z is understood in a sense of distributions on (0,1).
From Eq (3.2) it follows that
T+w?T =0 (3.3)
[e(2)X")" = XX =0 (A1 = p2w?) (3.4)
Formula (3.1) and Eq (2.3) imply that X satisfies boundary conditions
X(0)=X'(0)=0 X(H)=X")=0
(3.5)
X0l a) = (-1 XW(ay) j=0,2,3

X )(z) denotes the jth derivative of X(z). Set 6,(2) = 8(z — a), where §
is the Dirac distribution concentrated at the point z = 0 (i.e. §, is a Dirac
measure concentrated at z = a).

Observe that if f is differentiable for z < a and z > @ and one sided
limits of its derivative exist at a, then the distributional derivative of f is
given by (cf Schwartz (1965), Ch.11, §2)

fI:{fl}+006a

where {f’} dcnotes the derivative of f in a standard sense computed for
z <aor z>aand op= f(as)— f(a_) denotes the jump of value of f while
T passes da.

Using this observation one gets

[e(x)X"]" = XW — g(2,a_,a4)
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with g(z,a_,ay) = (X"(az) - X"(a3))8, + (XO)a2) — X©)(ay))s, and
Eq (3.4) can be written in the form

X® - MX = g(z,a_,ay) (3.6)
From Eq (3.5) it follows that X"(a_) — X"(a4) = 0, hence
g(z,a-,ay) = (XO(a_) - XO(ay))s, (3.7)

o Remark 1. A quantity v = X®)(a_) - X®)(a,) appearing in Eq (3.7)
is considered as a parameter to be sclected in a such a way that the
boundary conditions are satisfied for solution X of Eq (3.6).

To solve (3.5) and (3.6) we will replace them by an equivalent boundary
value problem for the first order system of differential equations.
Introducing new variables

X = Y1 = Ay Yy = Ays Yh = Ay4 (3.8)

and putting v = ys(a-) — ys(ay) we obtain from Eq (3.6) the first order
system of differential equations with a distributional right-hand side

Y — Ay = fo(2) (3.9)
where
fO(x’a—7a+):gl(z’a—’a+)e'1 gl(x,a—7a+):76a
01 00 Y1 0
_ 0 010 | Y _ 10
A=A1000 1 V=1 y “=1lo
1 0 0O Yy 1

Note that yq(a_) — ys(as) = XO(a_) — XO)l(ay).
From Eq (3.5) it follows that
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The conditions (3.10) are equivalent to
M;y(0) + May(l) =0 (3.12)
where

M1= M2:

OO O =
OO = O
o O OO
OO OO
o= OO
OO OO
= o O O
OO OO

Eq (3.12) represents the boundary conditions, while Eq (3.11) corresponds to
the mechanical and geometrical conditions imposed by a hinge.
It can be verified by a direct computation that the fundamental matrix

solution Y(z) to the homogeneous equation (3.9) is given by
1

Y@@) =3

cosh Az + cos Az sinh Az + sin Az cosh Az — cos Az sinh Az — sin Az
sinh Az —sin Az cosh Az + cos Az sinh Az +sin Az cosh Az — cos Az
cosh Az —cos Az sinh Az —sin Az cosh Az + cos Az sinh Az + sin Az
sinh Az +sin Az cosh Az —cos Az sinh Az — sin Az cosh Az + cos Az

Since Y(0) = | is the unit matrix, the general solution to Eq (3.9) can be
written in the form

y(e) = Y(@)e +Y(2) [ Y(=5)fo(s) ds (3.13)

where ¢ € R* denotes a vector of integration constants and [J Y(—s)f(s) ds
is understood as a primitive of a distribution h(s) = Y(—s)fo(s). Applying
to each component of the vector Y(—s)ey the formula for a primitive of a
distribution d,¢(s) (¢ being a Cl-function) [§ 8.0(s) ds = Hy(z)p(a) we
obtain

Frofz /Y ) fols ds-v/Y §)esbo ds = yHo(2)Y(=a)es  (3.14)

From Egs (3.12) and (3.13) it follows that y(2) = Y(z)[c + vH.(2)Y(—a)es].
Since  y(a-) = Y(a)e and ylay) = Y(a)c + ve4, it is clear that
yi(a~) = wilas), © = 1,2,3, hence the last two boundary conditions of
Eq (3.11) are satisfied.
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From the first one we get v = —2e/ Y(a)c which yields the formula for
general solution to Eq (3.9) satisfying I'q (3.11)

y(z) = Y(2)[| = 21, (2)Y(—a)ese] Y(a)]c (3.15)

e Remark 2. Using Eq (3.15) one can show that y3(z) < 0 for z € (0,a)
and ys(z) > 0 for = € (a,!). Thus from the second condition of Eq
(3.11) it follows that yz(a) = 0, which proves the correctness of the
assumed mathematical model describing beam with the hinge.

The formulae (3.15) and (3.12) result in a system of linear equations for ¢
(M1 + MY(D[1 - 2Y(—a)ese] Y(a)])e = 0 (3.16)
Note that the coefficient matrix of Eq (3.16)

B(A\,a) = M;+ MYl -2Y(—a)ese] Y(a)]
= My + MY(l = a)(l — 2eqe] )Y(a)

is a (transcendental) function of A, because Y(z) = Y(z, ) is transcendental
with respect to A.
Eq (3.16) has a nontrivial solution, provided B(A,a) is singular, i.e.

det B(),a) = 0 (3.17)

e Remark 3. It can be proved that Eq (3.17) has an infinite set {A,} of
eigenvalues satisfying

0< A <A< lim A\, = o

n—oo

If c¢n, Yon(a) are solutions to Eq (3.16) corresponding to an eigenvalue
An, then

(@) = Y(2, M)l = 2Ha(2)Y(~a, An)esel Y(a, An)ln (3.18)

is a solution to Eq (3.9) such that X,(z) = €] y,(z), e =[1,0,0,0],
satisfies Eq (3.4) with A = A, moreover the family {X,} fulfills ortho-
gonality conditions

l
)0 forr m#n
/X" Xm(s) ds = { kn#0 for m=n (3.19)
0
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The proof of Remark 3 follows very closely the proof presented by Kasprzyk
(1983), where the similar eigenproblem has been considered. The formula
(3.18) can be verified by a direct computation. Condition (3.19) follows from
the orthogonality condition proved by K asprzyk (1983).

e Remark 4. One can get an implicit equation in A, only in the case of
beams with constant stiffness. Ior beams having the variable stiffness
the application of numerical approach is needed to obtain eigenvalues
and eigenfunctions of the problem.

o Remark 5. It follows from Eq (3.17) that the solution A, depends on
a and ! or, more precisely, on the ratio a/{. The investigation of the
dependence of eigenvalues on parameters of the system lies beyond the
scope of this note and will be carried out in the next paper.

The desired formula for free vibrations of the system under considerations
is given by

o0
u(z,t) = Z Xn(2)(an sinw,t + b, coswyt)
n=1
where w2 = Ai/b? and a,, b, are coefllicients of the Fourier expansions of
initial data @o(z), @1(2) relative to the orthogonal family {X,} of eigenfunc-
tions corresponding to Iq (3.4). Details can be found in Kasprzyk (1983).

4. Forced vibrations

Determination of the forced vibrations of a system is carried in a standard
way and does not involve any additional problems. It is necessary to keep in
mind that the Fourier expansion of f(2,t) needed in the course of solving the
problem has to be done relative to the orthogonal basis {X,}. We will not
pursue this question here.
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Drgania poprzeczne belki z przegubem

Streszczenie

W pracy podano metode wyznaczania rozwiazania (w klasie funkcji uogdlnionych)
réwnania opisujacego male drgania poprzeczne belki sprezystej z przegubem.
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