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The paper presents the method of modelling of the coupled longitudinal
and bending forced vibrations of the Timoshenko cantilever beam with
a transverse, one-edge, non-propagating, closing crack. Two models of
closing crack are examined in the paper. The beam is modelled by the
finite element method. The equation of motion is formulated using the
harmonic balance method. The influence of various parameters (crack
location and its depth, axial force frequency, closing crack model etc.)
upon the steady state response of the beam free end is analyzed. The
possibility of crack detection based on the analysis of higher harmonics
variations in the frequency spectrum is examined.

1. Introduction

Vibration testing is being recognized as an effective and fast method for
detecting cracks in structural elements (cf Adams and Cawley, 1979, 1985;
Stubbs, 1985). In order to detect cracks by vibration method the study of the
changes of the structural dynamic behavior due to damages is required. The
results of theoretical and experimental studies suggest that crack location and
its depth can be detected from the changes in the first few natural frequencies
(cf Ju and Mimovich, 1988), the modes of vibrations (cf Pandey et al., 1991)
and the amplitudes of forced vibrations (cf Akgun and Ju, 1990), respectively.
The effect of coupling longitudinal and bending vibrations (cf Papadopoulos
and Dimarogonas, 1988) or torsional and bending vibrations (cf Papadopoulos
and Dimarogonas, 1987) is also included to identification systems.

From the point of view, of the accuracy of numerical calculations a proper
model of crack behavior during vibrations is needed. In general two models,
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which describe the behavior of crack during vibrations, are appliecd. The first
model assumes that crack is open during vibration. This model is frequently
applied and widely described in literature (¢f Wauer, 1990). 1In this case
the equation of motion is linear. The second model take into account the
contact phenomenon at crack interfaces. This approach describes better the
real behavior of crack but it is not frequency applied to the dynamic analysis
of cracked structures, due to the fact (among the others) that the structure
vibrations are governed by the nonlinear equation or by the linear equation
with the time dependent coefficients.

Gudmudson (1983) experimentally investigated the influence of the one-
edge, closing crack upon eigenfrequencies of the cantilever beam. He pointed
out that the decrease in the natural frequencies caused by the closing crack
is much lower than the decrease due to the open crack. Gudmudson’s results
were theoretically confirmed by Ibrahim et al. (1987). In their work the crack
was modelled by bilinear spring. Using the bond-graph technique they analy-
zed the first five modes of the cracked cantilever beam and concluded that the
frequency drop due to the closing crack is always smaller than the one com-
puted applying the open crack model. Zastrau (1985) used the finite element
method to study the forced vibrations of the simply supported beam with the
multiple closing cracks. The time histories of vibrations proved nonlinear be-
havior of the structure with the crack. Actis and Dimarogonas (1989) applied
the finite element method to determination of the changes in the spectrum of
forced vibrations of a simply supported beam with the one-edge closing crack.
The similar approach was proposed by Qian et al. (1990). They concluded
that the difference between the displacement responses of the beam without
and with the crack,respectively, is reduced when the effect of the closing crack
is considered. Ostachowicz and Krawczuk (1990) analyzed the inflluence of the
closing crack upon the steady state response of the cracked cantilever beam.
They applied the finite element method and introduced the special point finite
element within the contact area.

Several papers concerned vibrations of beams with closing cracks were
published in 1992. Schen and Chu (1992) analyzed vibrations of the simply
supported beam with the so called "breathing crack”. The bilinear equation of
motion for each mode of vibration was formulated by Galerkin procedure. The
results of numerical studies have shown the feasibility of using the spectrum
pattern to detect cracks. Friswell and Penny (1992) proposed the equivalent
one-degree-of-freedom nonlinear model of the cracked beam vibrating in its
first mode. Abraham and Brandon (1992) applied the piece-wise linear appro-
ach to the ”breathing crack” modelling. They analyzed the influence of local
effects such as dry friction and impact at the crack interfaces upon the ampli-
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tudes of forced vibrations. Collins et al. (1991) used the pair of self-balancing
forces and the piece-wise stiffness to model the contact phenomenon in the
crack under longitudinal vibrations. They obtained the governing equation of
motion and studied dynamic responses of the cantilever beam employing the
two-term Galerkin approximation. Krawczuk and Ostachowicz (1992), (1993)
analyzed the influence of the closing crack upon the areas of parametric vibra-
tions and the dynamic stability of cracked columns. The crack was modeled
by the spring with periodically, time-varying stiffness.

From the presented review of the papers it results that the problem of
coupled vibration of the beam with closing crack has not been analyzed up
till now. For this reason in the present paper the coupled longitudinal and
bending vibrations due to the one-edge, transverse, non-propagating, closing
crack located at the cantilever Timoshenko beam are investigated. The beam
is modelled using the finite element method. The equation of motion is for-
mulated according to the harmonic balance method. The possibility of crack
detection based on the analysis of higher hiarmonics variations in the frequency
spectrum is examined.

2. Discrete model of analyzed cantilever Timoshenko beam with
closing crack

A discrete model of the analyzed beam with the transverse, one-edge, non-
propagating, closing crack is shown in Fig.1.

The analyzed structure is discretized using the finite element method.
Undamaged parts of the beam are modelled by the beam finite elements of
Timoshenko type with two nodes and three degrees of freedom at the node
(cf Przemieniecki 1968). A special Timoshenko beam finite element with the
crack is substituted for cracked part of the beam (cf Krawczuk, 1992). The
cracked element has the same degrees of freedom number as the non-cracked
one, Fig.2. In the case, when the crack depth is equal to zero all characteri-
stic matrices of the cracked element have the same form as in the case of the
non-cracked element proposed by Przemieniecki (1968).
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Fig. 1. Dimensions and the discretization of the cantilever beam with the closing
crack analyzed in the paper
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Fig. 2. Beam finite element with the one-edge, transverse, nonpropagating crack
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2.1. Stiffness matrix of the cracked element

The stiffness matrix of the cracked beam finite element K, can be written
in the following form

Ke=TH(C°+CHIT (2.1)
where
C® - flexibility matrix of the non-cracked element
C! - flexibility matrix of the element due to crack
T - transformation matrix of the system of dependent nodal for-

ces into the system of independent ones
the upper index T denotes transposition of the matrix, whereas the upper
index —1 denotes its inverse.
The flexibility matrices C° and C! are calculated according to the me-
thod described by Krawczuk (1992). The flexibility matrix of the non-cracked
element C° can be expressed in the following form (c¢f Krawczuk, 1992)

l

o | s 2
=| 0 sEriea am (22)
0 2E1  ET
where
{ - length of the element
A - area of the element cross section
I - geometrical moment of inertia of the element cross-section
E - Young modulus
G - shear modulus
B - shear coefficient of the element cross-section (cf Cowper,
1966).
For the rectangular cross-section
124+ 11y
10(1 — v?)

where v denotes the Poisson ratio.
The final form of the element flexibility matrix due to crack C! is given
by the following relation (cf Krawczuk, 1992)

€11 C12 <13
1
C=]c2 e ca (2.3)

€13 €23 (€33
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where

e = %}”2) 7@Ff(a) da (2.4)

cl2 = %27611?3(&) da (2.5)
0_

c13 = _%—_l;ﬂ)/kapf(@) da (2.6)
0 _

Co2 = %7&Ff(d) da + M/ Fi(&)da (2.7)
_0

cys = %@ 7&F3(a) da (2.8)
0_

ey3 = %;Em/wf(a) da (2.9)
0

and & = o/H and a = a/H - see Fig.2, B, II, | are the dimensions of
the element, Fij(@) and I2(a) are the correction functions which take into
account finite dimensions of the element.

Forms of the correction functions Fj(a) and I,(&) are given by the
following formulas (cf Papadopoulos and Dimarogonas, 1988)

tan A 0752 + 2.02(% ) +0.37(1 = sin )°

Fi(a) =/~ — (2.10)
2
1.122 - 0.561( &) +0.085( %) +0.18(%)3
Fy(@) = () _ (%) (# (2.11)
-7

where A = ra/2H.

In formulas (2.4) + (2.9) two types of integrals appear. The changes of
these integrals (called non-dimensional flexibilities) related to the crack depth
are shown in [ig.3.

In the opposite to the form of the flexibility matrix C° the components
c12 and ¢q3 of the additional flexibility matrix C!, are not equal to zero. For
this reason the coupling of longitudinal and bending vibrations resulting from
crack can be expected in the spectrum of vibrations.
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Fig. 3. Variations of the nondimensional flexibilities as the function of the relative
depth of the crack; Ci(a/H) = [’*a F? (a) da, Ca(a/H) = [[*a F} (a) da

The transformation matrix T is obtained from the statical equilibrium
conditions of the element. In the case of presented element this matrix has
the form

[ -1 0 0]
0 -1 0
0 -1 -1

=] | o o (2.12)
0 1 0
0 0 1|

Substituting relations (2.2) (2.3) and (2.12) into Eq (2.1) the stiffness ma-
trix of the element with crack K, can be determined. When the flexibility
matrix of the element due to crack C! is equal to zero, the stiffness matrix of
the element K. has the same form as in the case of the non-cracked element
proposed by Przemieniecki (1968).

2.2. Inertia matrix of the cracked element

The inertia matrix M, of the cracked element is assumed in the same
form as the inertia matrix of the non-cracked one (cf Krawczuk, 1992). For
the presented element the inertia matrix M, has the following form (cf Prze-
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mieniecki, 1968)

0 mgy maz3 0 mos mog
pAl 0 mgo3 maz 0  mas mag

M. = T+07 | ma 0 0 my 0 0 (2.13)
0 mos mas 0 mss msg
| 0 my m3zs 0 mse Mmes |
where

myy = Myq = % Myg = gl-—tﬁg)— (2.14)
Moy = Mss = (% + ]—76515 + ldS?) + §(§)2 (2.15)
as = meg = (% + 6645 + 1—20-5152)12 + (%)2(-1% + %45 + %452)212(2.16)
Moz = —TMsg = (2110 120 __1_452)[ + (1)2(% - %¢)l (2.17)
mas = (420 + —qb + —ds?)z + (%)2(—% + %(p)z (2.18)
mas = (790 oot et) - (1) (2.19)
Mas = _(Tiﬁ + 6645 + 66¢2)12 (%)2(—516 - -égzs + édﬂ)z? (2.20)
o= Qﬂ(—lli) r= 12_1 (2.21)

3. Equation of motion of the model

In general case, the equation of forced vibrations of the cracked beam has
a nonlinear character (cf Gash, 1993). Aslong as, the amplitudes of vibrations
are small in comparison to the static deflections due to a certain loading com-
ponent of the beam (dead loads, own weight etc.) the nonlinear equation of
motion can be transformed to the linear, periodically time-varying equation.
Taking into account the above assumption, the discretization process leads to
the following equation of motion

Mi + Cq + [K — AKS(1)]q = P(2) (3.1)
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where
— global inertia matrix
C - global damping matrix
K — global stiffness matrix of the non-cracked model
AK — changes in the global stiffness matrix caused by crack
f(t) - crack function which describes the process of crack closing
P(t) — global column matrix of forces acting on the structure
q,q9,9 - column matrices of generalized accelerations, velocities
and displacements,respectively, of the discrete model no-
des.

The above equation of motion constitute the system of linear periodically
time-varying differential equations of the second order and it can be solved
using the harmonic balance method. When the harmonic balance method is
applied, the crack function f(¢) and the solntion form of the Eq (3.1) q,
should be expressed as the Fourier series.

11
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Fig. 4. The closing behaviour of the "breathing crack”-model A; Maye’s
model-model B

Because one of the aims of the present paper is to compare the steady
state responses of the beam for different models of closing crack, two crack
functions are analyzed. The first one is called "breathing crack” (¢f Abraham
and Brandon, 1992; Shen and Chu, 1992). In this case crack can be fully
open or fully closed, Fig.4. Other states are excluded from the analysis. The
"breathing crack” model can be presented as the Fourier series in the form

1 2 2 2
- z PR — w — t)... 2
f(t) 5 + - cos(wt) o cos(3wt) + - cos(5wt) (3.2)
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where w is the frequency of the axial force acting on the beam. The second
model examined in the paper was proposed by Mayes and Davies (1976) for
deep cracks (Fig.4). In this case the crack function has the form

(1) = %[1 + cos(wt)] (3.3)

For this model crack can be fully open or closed and also partially open or
closed.
The solution q of the Iiq (3.1) can be expressed as the truncated Fourier

series ,
j=R

q= Z[a]- sin(jwt) + b; cos(jwt)] (3.4)
j=1
where a;, b; are the column matrices of the constant variables.

From the point of view of the accuracy of the assumed solution q, it is of
great importance to define the proper number of harmonics. When the number
of harmonics is too small the accuracy of the solution can be insufficient. On
the other hand, when the number of harmonics is too large the time and the
cost of numerical calculations increase. The solution of this problem, in the
case of cracked rotating shafts, was given by Gash (1993), who pointed out
that only three first harmonics have a significant influence on the solution of
the equation of motion form. In the presented paper the four first harmonics
are take into consideration.

By substituting Eq (3.4) into Eq (3.1) and equating the corresponding
coefficients of sin(jwt) and cos(jwt), Iiq (3.1) can be transformed into the
set of linear homogeneous equations in terms of a; and b;. When the crack
function is given by Eq (3.2) the equation of motion has the form

Ay Ap a 0 -
reiNE o9

where
[ K’ —416w2M I—%AZK 20 oAk ]
A = _ﬁ(—)AK K—;Q;ZKM K’_ijQKM —3%)AK (36)
| 50K 0 —ZAK K -wM |
[ K’—1w2M 1—317A2K 30 o
Aoz = _3_76“ K_gZKM K’—E_ﬂQj?KM ——7?;AK (3-1)
| ROK 0 ~3AK K~ 16w2M |
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0 0 0 —
A, = 0 0 —3wC
0 —2wC 0
L —wC 0 0
[0 0 0 wC
AL_| 0 0 2C 0
271 0 3C 0 0
[ 40C 0 0 0

and K' = K-2JAK, a

expressed as

B11 B12 a
By Bio b
where
[ K’ - 16w2M ~1AK
—%AK K’ — 9w2M
Bll = 1
0 ~taK
i 0 0
Y —%AK
—%AK K — 4w?M
By, = 1
0 ~1AK
0 0
[0 0 0 -
B._| © 0 —3uwC
12 = 0 —20C 0
i —wC 0 0
0 0 0 C
B | 0 0 2C 0
=1 0 3C 0 0
[ 4wC 0 0 0
where

(= ]

= col(ay,as,a2,a1) , b
P = col(0, Py,0,0), Py is the amplitude of the axial force acting on the beam.
Tor the crack function proposed by Mayes the equation ol motion can be

I3

0
1
—Z{AK
K — 40wM
1
"Z[AK
0
-%AK
K’ — 9w?M
~1AK

0
0
1
_ZAK
K — WM
0
0
~1AK
K' — 16w?M
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CO](I)],I)Q, b3, b4),

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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4. Numerical calculations

Numerical calculations were done for the cantilever beam with the rec-
tangular cross-section. Dimensions and the discrete model of the analyzed
beam are shown in Fig.l. The beam is made of steel of the following ma-

terial properties: Young modulus E = 2.1-10'"" N/m?, shear modulus
G = 8.07-10° N/m?%, mass density p = 7860 kg/m® and Poisson ra-
tio v = 0.3. The free end of the beam is subjected to the axial, harmonic

force (Ppcoswt). The damping matrix C is calculated as the linear com-
bination of the stiffness and the inertia matrices of the non-cracked element
(C = nM + ¥K). The coefficients 1 and % are calculated according to the
method described by Rakowski et al. (1984). In the all numerical examples
the coefficients n and ¢ are: n = 22.619,¢% = 0.000052474.

The results of numerical calculations are presented in Fig.5 + I'ig.9. The
steady state responses of the beam free end obtained for two models of the
closing crack are shown in Fig.5. The first model (called A) corresponds to
the ”breathing crack”, whereas the second model (called B) corresponds to
the model proposed by Mayes and Davies (1976). In this example the relative
depth of the crack is equal to 0.3 and its location is L,/L = 0.1. The
amplitude of the axial force is equal to 100 N with the frequency equal to
100 rad/s. The numerical results presented in Fig.5 clearly show that the
character of the beam steady state responses is similar for the both models.
Nevertheless the amplitudes of the rotational degrees of freedom (q1s) for the
model A are much greater than those received according to the model B.

The influence of the crack depth upon vibrations of the beam free end is
illustrated in Fig.6. The crack is located at the first element (Ly/L = 0.1).
The parameters of the axial force are the same as in the first example. The
"breathing crack” model is applied. The results obtained indicate that when
the crack depth increases the amplitudes of transverse (¢;7) and rotating
(g18) vibrations also increase, whereas the amplitudes of axial vibrations are
almost unchanged.

The steady state responses of the beam free end for various locations of the
crack are presented in Fig.7. In this example the relative depth of the crack
is equal to 0.3. The amplitude and the frequency of the axial force and also
the closing crack model are the same as in the second example. The results
indicate that the amplitudes of transverse and rotating vibrations generated
by the crack are the biggest for the crack located near the fixed end of the
beam.

The influence of the axial force frequency upon the steady state responses
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Fig. 9. Amplitudes of higher harmonics as the function of the relative depth of the
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of the beam is presented in Iig.8. The results clearly shown that the charac-
ter of transverse vibrations generated by the crack strongly depends on the
exciting force frequency. When the frequency of axial force lies near the first
bending natural frequency of cracked beam (about 246 rad/s) the character
of vibrations is similar to the character of vibrations of the non-cracked one.

Fig.9 shows the variation of the four first amplitudes of harmonics for
the various depth of the crack. For parameters which are taken into account
(Po = 100N, w = 100rad/s, a/H = 0.3 and Ly/L = 0.1)it occurs
that the amplitudes of the first and the second harmonics, for small cracks
a/H < 0.4, are the same. The third harmonic appears when the crack depth
is greater than 30% of the beam height, whereas the fourth harmonic appears
for the relatively deep cracks (¢/H > 0.5).

5. Conclusions

The paper presents the method of modelling of the coupled longitudinal
and bending forced vibrations of the cantilever Timoshenko beam with the
one-edge, transverse, non-propagating, closing crack.

The results of numerical calculations clearly shown that the amplitude of
harmonics in the spectrum of vibration are strongly dependent on the location
of crack and its depth and also the frequency of axial force acting on the beam.
On the other hand, the character of steady state responses of the beam slightly
depends on the model of closing crack.

It is well known that in the case of the non-cracked beams the effect of
coupling between longitudinal and bending vibrations does not appear. The
crack presence in the beam causes the coupling of these two modes of vibra-
tions. This effect was reported by Papadopoulos and Dimarogonas in the case
of bcam with open crack (cf Papadopoulos and Dimarogonas, 1988). When
closing crack is analyzed this effect appears also, and additionally the higher
harmonics are generated in the spectrum of vibrations.

The results of numerical calculations presented in the paper have shown
that crack in the vibration beam can be easily detected by analyzing the
spectrum response for the known axial forcing function. The high harmonics
clearly indicate crack presence in the beam. The number of harmonics and
their amplitudes can be correlated with crack depth.
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Wymuszone drgania wzdluzno-gietne belki wspornikowej typu
Timoszenki z zamykajacym si¢ peknicciem

Streszczenie

W pracy przedstawiono metode modelowania 1 analizy wymuszonych wzdluzno-
gietnych drgan belki wspornikowej typu Timoszenki z poprzecznym jednostronnym
peknieciem zamykajacym sie. Przeanalizowano dwa modele zamykania sie szczeliny.
Belke modelowano metoda elementéw skoriczonych. Rdwnanie ruchu wyprowadzono
w oparciu o0 metode bilansu wspdlczynnikéw harmonicznych. Przedstawiono wyniki
obliczen numerycznych ilustrujace wplyw polozenia 1 glebokosci pekniecia a takze
czestosci osiowe] sily wymuszajacej na drgania ustalone koiica belki. Omdéwiono moz-
liwosci detekeji peknigé w oparciu o analize wyzszych skladowych harmonicznych ge-
nerowanych w widmie drgann w wyniku zamykania sie szczeliny.
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