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The paper deals with modelling problems of periodic stratified fluid-
saturated porous thermoelastic bodies. By using the homogenization
method with microlocal parameters and the linear theory of thermocon-
solidation homogenized models accounting certain local effects of stres-
ses, heat fluxes are derived. An example of application of the obtained
model is presented.

1. Introduction

The thermomechanical behaviour of a porous elastic medium containig
fluid has attracted the attention of researchers in such fields as soil mechanics,
ground water hydrology, geophysics, seismology, the theory of filtration and
purification, the study of sound-absorbing materials, biomechanics, and so on.
The list of papers on fluid-saturated porous body is rather extensive and will
not be wholly discussed here. The problem of thermomechanical coupling in
the theory of consolidation was presented by Schiffman (1970), Dcresiewicz,
Pecker (1973), Konczak (1975), Derski, Kowalski (1978), Derski (1979), where
the basis constitutes the theory of consolidation given by Biot (1956), (1962)
and Biot, Willis (1957). Tle equations of thermoconsolidation were derived
under traditional assumptions made in the consolidation theory and an ideal
heat exchange occuring between a skeleton and liquid being the components
of porous solids.

Tlhe purpose of this paper is to derive from equations of the linear theory
of thermoconsolidation a certain class of homogenized models of periodically
stratified fluid-saturated porous solids. The basic unit (fundamental layer) is



364 S.J. MATYSIAK

assumed to be composed of (n + 1)-different porous layers consisting of a
homogeneous, isotropic, elastic matrix whose interstices are filled with a com-
pressible viscous liquid. Perfect bonding and perfect thermal contact between
the layers are assumed. The considerations are based on the linear theory of
thermoconsolidation presented by Derski and Kowalski (1978), Derski (1979).
To obtain the homogenized model of stratified hodies the homogenization pro-
cedure established by Wozniak (1986), (1987), Matysiak and Wozniak (1987) is
employed. The approach is based on some concepts of the nonstandard analy-
sis combined with some a priori postulated physical assumptions. Application
of the homogenization procedure leads to equations given in terms of unknown
macrodisplacements of skeleton and fluid, macrotemperature as well as some
extra unknowns called kinematical microlocal parameters of skeleton and fluid
and thermal microlocal parameters of the aggregate. The main feature of the
homogenized model is a possibility of modelling not only mean but also local
values of deformation gradients, strains, stresses in every material components
and heat fluxes in the periodically stratified fluid-saturated porous solids. The
homogenized models of periodic stratified porous solids (without taking into
account thermal effects) was derived by Matysiak (1992).

The presented models can be applied to some problems of rock and soil
thermomechanics (to description of sandstone-slote, sandstone-shale, shale,
thin-layered limestone, varved clays, flotation wastes accumulated in storage
ponds). The possibility of application of the homogenized models to a geologic
strata is discussed by Kaczynski and Matysiak (1993).

2. Preliminaries

Consider a fluid-saturated porous elastic body which occupies a regular
region B in the Euclidean 3-space reffered to a fixed Cartesian coordinate
system z = (z1,Z2,23). The nonhomogeneous body in a natural (unde-
formed) configuration is composed of periodically repeated (n + 1)-different
fluid-saturated porous elastic layers (see Fig.1). Let hq,...,h,41 be the la-
yer thicknesses, and §é be the thickness of each basic unit of the body, so
6 = hy+ ...4 hpy1. The axis z; is assumed to be normal to the layering.
Perfect bonding and perfect contact between the layers are assumed. Let p
denote the density of free fluid and p(), » = 1,..,n + 1, be the densi-
ties of skeletons and non-free fluid of the subsequent layers, respectively. By
KO L, M), N r = 1,...,n+ 1, we denote material constants of the
consolidating layers (modulae of skeleton volumetric deformations, coupling



HOMOGENIZED THERMOCONSOLIDATION WITH. .. 365

A"
7Y bt wens )
L |
) [y (2) |
hy W 2
- -

)(3 xl

Fig. 1. In the rth layer: p, p", N*, M", K", L7 b" 4", 4", A", ¢"; r = 1,..,n+1

coefficients of skeletons and fluid volumetric deformations, modulae of fluid
volumetric deformations, shear modulae of the skeletons, respectively). Let
b(, r = 1,...,n+1, be the dissipation coefficients and A, » = 1,...,n+1,
be the heat conductivity coefficients of the subsequent layers. By +(7) and
7(") we denote

v = 2N £ 3Kl 4 3105
7(7) = 3(L(T)a(7) + M(T)@)

where o{M, r = 1,...,n+ 1, and @& are the coefficients of the linear expan-
sion of the skeletons and fluid, respectively. Let ¢, t € [to,ty) denote
time, u(z,t) = (u;,ug,u3)(z,t) be the displacement vector of the skele-
ton, U(z,t) = (Uh, Uz, Us)(z,t) be the displacement vector of the fluid and
9 = YJ(z,t) be the relative temperature.

Following Derski and Kowalski (1978), Derski (1979) the constitutive re-
lations of the linear theory of thermoconsolidation take the form!

a,(;) = 2NWey; + (KWepy + LOU i —9)65; (2.1)

o = LWep + MU, . =59

where

IThroughout the paper indices ¢,j,k run over 1,2,3 and are related to the
spatial coordinates. Summation convection holds with respect to all repeated indices

and f,;=6f/0=;
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1
eij = gty +us)
(2.2)
5. — 1 for 1=
i = 3o for i j

and 01-(]7) are components of stress tensor of the skeleton in a layer of the rth
kind referring to the total unit surface, o(") are stresses in fluid in a layer of
the rth kind (fluid pressures inside the pores).

According to the results of Derski and Kowalski (1978), Derski (1979) equ-
ations of the linear theory of thermoconsolidation accounting for dissipation

have the following form

01(;),]' +0 5 +pM X = pug 460 (g — Uiy )
(2.3)

O'(T),i +pX; = pU;u —b(r)(ui,t ~Uin ) r=1,....,n+1

The heat conduction equation in the case of theory of thermal stresses can he
written

MY~y = — W, (2.4)

where ¢(") 7 = 1,...,n+1, are specific heats of the aggregates of the subsequent
layers (at the constant deformation referring to the unit volume) and Wjy is
the heat source function.

The assumption of the perfect bonding and perfect thermal contact be-
tween the layers implies the continuity of the displacement vectors of skele-
tons and fluids, temparature as well as the stress vectors of skeletons and fluid
pressure, and heat flux vectors on the interfaces (planes between the layers).

Eqgs (2.3) and (2.4) can be expressed in the following integral forms

n+1
Z/[Ug)vi,j +0 o —p(X; = g0 Yor + 0 (wiy — Uiy )Ui] dB =0
TZlBr

3 /[a(f)v]-,j (X = Ujyu Yoj = b (w0 —Ujy )v]-] dB =0 (2.5)
T=lBr

Z / [/\(T)ﬂ,iv,i +c(T)19,t v—Wov| dB =0
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for each test functions v;(+), v(-) such that v(z) € CY(R3), v(z) € CYB)

and vi(-)'aB = 0, v(-)laB = 0 and where B,,r = 1,...,n+ 1, denote the

part of the region B occupied by the material of the rth kind (see Fig.1).
Since the body is assumed to be periodic the material coefficients are

§-periodic functions taking constant values in the subsequent layers of the
body.

3. Homogenized model with microlocal parameters

To obtain a homogenized model of the periodic stratified fluid-saturated
porous thermoelastic solids described in Section 2 the approach called the
microlocal modelling is applied. This method is based on concepts of the non-
standard analysis combined with some postulated a priori heuristic physical
assumptions and has been presented by Wozniak (1986), (1987) for periodic
thermoelastic composites. Making appeal to the microlocal modelling method,
where the exact explanation of the homogenization procedure in terms of the
nonstandard analysis is given) we shall derive equations of a homogenized
model omitting the presentation of mathematical assumptions and detailed
calculations. Similarly to the papers of Wozniak (1987), Matysiak and Wo-
zniak (1987), an approximate solutions of Eqs (2.5) and (2.3) are assumed in
the form

ui(z,t) = wi(z,t) + l;(z2)¢si(z, 1)

Ui(z,t) = Wi(z,t) + 1;(22)Qsi(z, 1) (3.1)
Iz, 1) = 0(z,t) + l(22)T(z, 1) t=1,2,3 s=1,..,n
where I(-): R —- R, s = 1,...,n, are the known a priori é-periodic

functions, called the shape functions (cf WoZniak, 1987), given by

/ Ty — %6, for 0< 2, <4,

s\T2) = _

(z2) Bz =0) 1, for b6, << b

bs=hy 4+ ...+ hy s=1,...,n (3.2)

lS = hl + ... + hn+1 = 6n+1
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The functions w;(-), W;i(-) and 6(-) are unknown functions interpreted as
the components of macrodisplacement vectors of the skeleton and fluid and
macrotemperature, respectively. The functions ¢g(+), @si(-) stand for the
kinematical microlocal parameters at the skeleton and fluid and 7,(-) stand
for the thermal microlocal parameters of the body and they are related with
the microperiodic structure of the body.

Since |ls(z,)| < 6 for every z2 € R, then for small § the underlined terms
in equations (3.1) are small and will be neglected (see for an exact explanation
in terms of the nonstandard analysis to Wozniak (1986), (1987)). It has been
emphasized that I;,5, s = 1,...,n are not small and the terms involving [,
cannot be neglected. So, we have

Ujra = Wira Uiy X Wiy Hly2 Gsi Uiy R Wiy
Uiyo & Wiyg Uiy = Wisa +l52 Qi Uie = Wiy (3.3)
1910’ ~ 07(! 1972 ~ 02 + 1372 Ts ﬂﬂt ~ 036

Taking into account the tested functions in the form
vi(z,t) = gi(x, 1) + lp(22)Gpi(a, t)
- (3.4)
v(x,t) = g(z,t) + 1(z2)Gp(z, 1) =1,..,n
and substituting Eqs (3.1) and (3.4) into Eqs (2.1) and (2.5) after some calcu-
lations similar to given by WozZniak (1987) we arrive at the following equations
<SN>wij; +<N+K+L>wj;+ <M+ L>W,;i+ <N> qe,; +
+ < leyi> Gsjsj + <(I( + L)ls,j> qsy i + <(1‘/[ + L)ls’j> Qsjai +

—<T+F> 0,4 <p> X =<p> Wi+ <b> (i —Wiy) (3.5)

<L> Wi+ <M > Wi+ <Ll i> qoryj+ < Mg k> Qokyj +
—<9> H,j +ﬁXj = ﬁVVj,tt— <b> (w]’,t ——VVj,t)
<A> 05ii+ <A13,i> Ts,‘i - <c> a,t = _‘/VO

and

< le’j lp7j> q.«;i+ < (I( + L)ls,j lp7i> (]sj+ < «leai lpaj> Gsy +
+ <(M + L)lsyjlpyi> Qs; = — < Nlpyy> (wiy; +wjy ) +
- < (I( + L)lp,i> W — < (M + L)lp,i> Wi+ < ("/ + ’7)lp,i> 6

< Lls~;k lp7j> q.sk+ < A[lsak lp7j> st = (36)
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== < Llpi> wie — <Ml ;> Wi+ <7p,,> 6

<Alp7i 137i> Ts = - </\lp7i> 0”'
s,p=1,...,n i,7,k=1,2,3

where the symbol < f> denotes

| =

<f>=

)
[ #(a2) daa
0

for any d-periodic intergrable function f(-).
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(3.7)

Using the formulae (3.7) and (3.2) for an arbitrary é-periodic function
f(+) taking a constant value for f; in alayer of the 7th kind, « = 1,...,n+1,

we obtain
n+1
<f>=)_ fin
1=1
s n+1
<flsa2>= Efini — O Z fini
=1 i=s+1
14 s n+1
<floplpn>=Y fini—ap >, fimi+apas Y, fili
=1 i=p+1 =541
p,s=1,.,n p<s
where
o; m+ ...+ ni :
= — a; = 1=1,...
6 1—(m+ . +m)

(3.8)

(3.9)

Employing Eqs (3.8) we can calculate all material modulae in Eqs (3.5) and
(3.6) by substituting for a function f(-) the é-periodic functions M, N, I,

Lyp,7v,7,b, A, ¢

To determine the stresses in a layer of the rth kind we substitute Eqs (3.3)

into Eq (2.3). Thus, we have

L)

+ LOWik +o0 Qur) — ¥ 6655

o = LN wik ook gor) + MO Wik +63 Qo) — 776

U(T) = N(T)(wiaj +wjn' +ls,j qsi + ls,i qu) + [I((T)(’U)k,k +lsak (-]sk) +

(3.10)
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The components of heat flux vector A(") in the layer of rth kind are given by

AT = AN, +1,,: T)) (3.11)

Remark
In Egs (3.5) to (3.8) and (3.10), (3.11) we have

ls0=0 ls3=0 (3.12)

Egs (3.5), (3.6), (3.10) and (3.11) constitute the governing equations of the
homogenized model of periodically stratified fluid-saturated porous termoela-
stic body. It can be easily observed that we have the system of 7n linear
algebraic equations (sce Eqs (3.6)) for the kinematical and thermal microlocal
parameters ¢, Qs, T, s = 1,...,n,1 = 1,2,3. The microlocal para-
meters can be eliminated from Eqs (3.5) by using (3.6) which leads to the
system of seven linear partial differential equations of the second order with
constant coefficients in macrodisplacements w;, IV; and macrotemperature 6.
These equations should be supplemented by appropriate boundary and initial
conditions similar to that of the linear theory of thermoconsolidation.

4. Thermoconsolidation of periodic two-layered fluid-saturated
porous solids

For the case of periodic two-layered fluid-saturated porous solids we obtain
(assuming that n =1 and using Eqs (3.8), (3.9) and (3.2))

o~

<f>=mhA+(Q-m)fa=f

< flig>=m(h - f2) = [f] (4.1)

7712f1
I-m

<fBao>=mfi + =f

where
h
m= 71 (4.2)
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By substituting Eqgs (4.1) into Eq (3.5) we have the following system of equa-
tions
Nwi,j; +(N + K + Lwjji +H(M + D)Wj,ji +[N1qri2 +[Ng1j; 6i2 +

K + Llqizy +((M] + [L])Q12. — (5 + %)6’,¢+5Xi = PWi,u +g(wi7t —Wi»(t4) 3)

Lwiok; +MWioks H[Lq12,; HIM Q12,5 —56,; +5X; = pWis —b(w;, =Wyt )

Xg,ii +[’\]Tl y2 _ant = _'WO

Combining Eqgs (3.6) and (4.1) we obtain the formulae for kinematical and
thermal microlocal parameters

ﬁtIu = —[N](w1,2 +w2.1 )

(2N + K + L)gr2 + (M + L)Qu2 = —2[N]wap —([K] + [L]wrok +
—([M]+ [LD Wi +([v] + [7])0

Ngis = —[N])(w3,2 +w2,3) (4.4)

Lz + MQu2 = ~[Llwgs ~[M]Wi.i +[7]6

ATy = —[A]0,

To determine stresses O'g), fluid pressures o(7) and heat fluxes A(") in a
layer of rth kind, r = 1,2, we employ Eqs (3.10), (3.11), (4.1) and (3.2).
Thus, we have

o) = 2N w1 + KO (wi,k +11,2 012) + LO (Wi +l1,2 Qaz) — 779
Ug;) = N(T)(wlﬂ +wo,1 2 q11)
‘7§T3) = N(T)(wl,s +ws3,1 )
oé? = 2N (wa,2 +l1 2 12) + KO (wipr +H1,2 012) +

+LO Wik +l1,2 Q12) — 776 (4.5)
Ugrs) = N(T)(wz,s +w3,2 +1,2 13)
059 = 2N Dwas + KO (wik +l,2 qr2) + LO Wik +l,2 Qr2) — 78
o™ = LO(wy k1,2 r2) + MO (Wi +11,2 Qr2) — 778
w) = /\(T)(g,i +l1,2T1)

where
for r=1

1
ll 2 = { — (46)
—1—1_llﬁ for r=2

and q11, q12, q13, @12, 11 are given by Eqs (4.4).
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5. Example
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Fig. 2. In the rth layer: p, p", N*, M", K" L™, b", 4", 4", A", ¢"; r=1,2

Consider now a periodic two-layered fluid-stratified layer resting on the
rigid impermeable subsoil (see Fig.2). Let aé be the thickness of the stratified
layer, where a is a sufficiently large natural number. We assume that no heat
sources are present inside the layer, and that the body forces are omitted. Let
the upper and lower planes of layer be subjected to constant temperatures 6
and 6, respectively, as well as the upper one is free of tractions. Thus, the
considered problem is a stationary and one-dimensional. The displacement
vectors of the skeleton, fluid and temperature can be taken in the form

u(zq) = (0,u(22),0)
U(z2) = (0,Uz(22),0) (5.1)
0= 9(12)

Substituting Eqs (5.1) into Eqs (4.4) we obtain

quu =0 q12 = dywa,o +dy W0 +d3f
q13 =0 Q12 = dywa,z +dsWa,p +deb (5.2)
T, = - M

A

where
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_ —2[N|M - [K]M +[L]L

4 4, ZLL 4 (M1

A A
N 1 L7 ) 1 — —2N1L] - K[L) + 2[N]L + [K]L
3= 4= 1
(5.3)
g = “2N[M] - K[M] + L[L] o = 2N+ K9] - L)
5 — 6 —

A A
A=2NM+ KM - 12

Eqgs (5.1), (5.2) and (4.3) yield

where

Since

where

Ajwe,22 +A2Wo00+A4360,, =0
Biwgy2 +BaWo,00 + B30, =0 (5.4)
f,2,=0

Ay = 2N + K + L+ (2[N) 4 [K] 4 [L])dr + ([M] + [L])dy
Ay = M+ L+ (2[N)+[K]+ [L])da + ([M] + [L])ds

Az = —(F+7) + QN+ [K]+ [L])ds + ([M] + [L])ds
By = L+ [L])dy + [M]d, (5.5)
By = M + [L]dy + [M]ds

By = =% + [L]d3 + [M]ds
A1B; — A2 By # 0 then from Eqs (5.4) it follows that

wo,2 = f16,2 Wasoo = f2l,2
(5.6)
0((1}2) = n1ZTy + N2
AyB3 - A3B, A3By — A1 B3
_ D2 = L3 A58 7
h A1B; — A2 By f2 A1B, — A2 By (5.7)

and nj, ng are arbitrary constants which should be determined for appropriate

boundary conditions.
Bearing in mind the above given assumptions we consider the following
boundary conditions

0(1132 = 0) = 90 9((1)2 = CL(5) = 01
’LUQ(.’L‘Q = 0) =0 0'%12)(12 = (L(S) =0 (58)
Wa(za =0) =0 o2y =ab)=0
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where 6y, 6; are given constants.
Solving Eqs (5.6) under the boundary conditions (5.8) (by using Eqs (4.5)
and (5.1)) we obtain

— 8,

0
6(z,) = laé z9 + by

1
w(z) = Eflz% + e12, (5.9)

1
VV(CL‘Q) = Efﬂ% + eqz9

where
_ —(91f10é + g2 f2a0 + g301)gs + (94.f1a6 + g5 faab + g6b1)g4

€

9195 — 9294
ey = —(9af106 + gs f2a6 + g601)g1 + (91 f1ab + g2 faaé + g361)g4
9195 — 0294

g1 = 2N+ KOY1+dy) + L0d,
g2 = (2N + KUNYdy + LO(1 + ds)
g3 = (2ND 4 KOYgy + 1MW dg — 1)
ga = LA +dy) + MWDy

LWdy + (1 + ds)MW

gs

g6 = LWdg + MW dg — 5

Knowing the macrotemperature 6(-) and macrodisplacements  ws(-),
W5(+) (see Egs (5.9)) one can determine the stresses 01«[;), o(") and heat fluxes
A(") on the basis of Eqs (4.5), (4.6) and (5.2).

6. Concluding remarks

The homogenized model of periodic stratified fluid-saturated porous ther-
moelastic solids derived and discussed throughout the paper can be treated
as a basis of a theory and a starting point for applications in geophysics, ge-
otechnical engineering, composite materials. The obtained model describes



HOMOGENIZED THERMOCONSOLIDATION WITH... 375

not only mean but also some local stresses and heat fluxes connected with the
periodic layered structure of the body.
Assuming that the skeleton is homogeneous, so

{p(r)’]((r), LU M0 NE) p) 4() 5(7) )\(T)} -
= {p(S),K(S),L(S)’ M(S)’N(S),b(s),,y(S)’ry(S),)\(s)} (6.1)
r,s€{l,..,n+1}

we obtain form Eqs (3.8) and (3.6) that

S =

1,....
qs't_O QS'L"’O Ts“'O { 121’2’3 (62)

Substituting Eqs (6.2) into Eqs (3.5) and using Eqs (6.1), (3.8) we arrive at
the relations of the linear theory of thermoconsolidation given by Derski and
Kowalski (1978), Derski (1979).
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Homogenizowana termokonsolidacja z parametrami mikrolokalnymi
periodycznie uwarstwionych wypelnionych ciecza cial porowatych

Streszczenie

W pracy rozpatrzono zagadnienia modelowania periodycznie uwarstwionych,
wypelnionych ciecza, termosprezystych cial porowatych. Stosujac metode homoge-
nizacji z parametrami mikrolokalnymi oraz liniowa teorie termokonsolidacji wypro-
wadzono homogenizowane modele uwzgledniajace pewne lokalne efekty dla naprezen,
strumieni ciepla. Przedstawiono réwniez przyklad, w ktdrym zastosowano otrzymany

model.
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