ACOUSTIC EMISSION IN FRACTURE MECHANICS OF WOOD

JAN RACZKOWSKI

WALDEMAR MOLIŃSKI

Chair of Wood Science
Agricultural University, Poznań

ZBIGNIEW RANACHOWSKI

Institute for Fundamental Technological Research
Polish Academy of Sciences, Warsaw

Acoustic emission (AE) in wood can appear as a result of mechanical stresses caused by mechanical, external loading or wood-internal sorptive stresses. Since the AE phenomena depending on both those reasons are of different nature, therefore the AE generated under mechanical and sorptive loading will be described separately in this paper.

1. Mechanical loading

Conceptions of the effect of loading type (i.e. tension, compression, bending) on AE are rather vague. It is a common opinion that the highest number of impulses is generated during tension along the grain, while the smallest one appears in wood compression and bending (cf DeBaise et al., 1966; Sato et al., 1983; Noguchi, 1985; Niemz and Hänsel, 1988a,b). The differences in diagrams of AE versus deformation curves were observed. AE increase is rather smooth under tension while signals are generated shortly before failure in explosive manner when registered in wood compression test (cf Sato et al., 1983). The recent research, have not fully confirmed the above observations, showing, in fact, some differences in "AE-deformation" curves for wood being under tension and compression (Fig.1) but the differences in AE cumulative counts within the failure deformation area were rather irrelevant (Sato et al.,
1985). Regarding that observation, the objection against credibility of an AE cumulative counts measurement in the failure area or at the failure point, is raising. To ensure high accuracy of AE cumulative counts registration during wood failure is difficult and even impossible in a lot of tests.

Fig. 1. Acoustic activity of spruce wood specimens (*Picea jezoensis*) in tension and compresion along-the-grain test (Sato et al., 1985)

There are usually three main stages of acoustic activity of wood which could be distinguished during material loading process. The first stage: low acoustic activity, in the beginning of loading. At the second stage acoustic activity grows gradually to attain exponential increase at the third stage until material breaks. As early as in the very first period random explosions of separated or concentrated AE impulses are observed. Those impulses are generated in the area of still elastic deformations as an effect of non-uniform stress field, resulting from a non-homogeneity of wood structure. At this stage modifications and reorientations in wood structure are observed, which are leading to wood inner adaptation for new conditions of loading.

The relationship between an annual increment structure of conifers and the AE in tension test were investigated by Ansell (cf Ansell, 1982a,b). In tests, separate for early and late wood of pine specimens, the rapid growth in AE impulse cumulative counts was observed at a very low elongation level i.e. approximately of 0.1%, while late wood was tested. For early wood specimens the AE was not registered at such a low elongation level. The author suggests that the different reactions could be a result of the state of stresses in both of annual ring zones, caused by former drying of a specimen. The late wood zone reveals a higher level of initial stress, therefore the microcracks are more likely to appear. In his later paper Ansell (1982b) using samples of Parana pine and Douglas fir wood, stated that: the higher is distinction between early and late
wood in annual ring, the higher AE cumulative counts should be expected during tension along-the-grain.

Sato et al. (1984) divided the AE generated from wood samples in tensile along-the-grain test into two groups i.e. AE slow signals $AE(S)$ and rapid signals $AE(R)$, respectively. The attempt was made to assign to both kinds of AE impulses specified the failure mechanism. The authors suggest that $AE(S)$ signals originates probably from microdefects existing in wood long before mechanical loading. Those signals are in negative correlation with the stress level. Characteristics of rapid signals $AE(R)$ have shown their positive correlation with the stress level and have been mainly generated by shearing forces at the early-late wood boundary surface.

The AE cumulative counts are rapidly decreasing while the angle between tensile force direction and wood fibers grows, what was revealed by Ansell (1982a). At fibre angle of 15 degree the AE cumulative counts number equals only 10% of counts registered at fibre angle of 0 degree. For further fibre angle increase, lowering of AE counts is insignificant. The decrease in AE activity resulting from a slight growth in fibre angle is followed by a decrease in tensile strength of approximately 80%. This is probably the result of shearing mechanism domination in a failure process even at very slight fibres deflection from tensile forces path.

![Fig. 2. Elementary direction of tension forces action (the first index) and cracks propagation (the second index) (cf Sato et al., 1986)](image_url)

The first paper on AE in wood, in relation to fracture mechanics categories was published by Sato et al., (1986). In that work the crack propagation during tensile tests on Cryptomeria japonica (hinoki) wood was investigated. The specimens were prepared as single-edge-notched in all orthotropic surfaces of a wood structure. The experiments were carried out for six basic systems i.e.: TR, RT, TL, RL, LR and LT (Fig.2). The first letter of index refers to tensile forces direction i.e. the direction perpendicular to crack propagation plane, the second letter to names the crack propagation direction. His research showed, that the relationship between the crack opening displacement COD
and the load value is of linear nature until reaching either a material failure point or a proportional limit for LR- and LT-specimens. The stress intensity factor and fracture toughness were calculated according to theoretic formulas of fracture mechanics. As evident from the model curve of stress intensity factor versus the COD, AE starts at the moment when plastic deformation around the crack tip appears (Fig.3).

![Diagram of fracture mechanism and AE in wood](image)

Fig. 3. Illustration of fracture mechanism and AE in wood (Sato et al., 1986);

K_{IC} – stress intensity factor (critical value for mode I), COD – crack opening displacement, A – non-loading, B – elastic deformation, C – local plastic deformation, D – crack propagation

As it could be expected, for LR and LT systems, the fracture toughness values are 10 times higher than for other specimen orientations when cracks develop along the fibres. The authors of the paper being considered focused on a most discriminated cracking plane i.e. the TR system, because of that case special importance to desorptive cracking of wood. There were observed as well a difference in cracks resistance and AE generation in pith-side-notched samples (Fig.2 TR system) and bark-side-notched ones i.e. in opposite direction. That distinction is likely to appear in reaction to a notch location in annual rings in which the specific density gradient is observed. As it emerges from a recent research, crack resistance of wood is closely connected to wood density (cf Gibson and Ashby, 1988). It is worth to recall the fundamental assumption about wood fracture micromechanics in an opening mode of fracture (mode I – cleavage) made by the authors mentioned above. According to the crack development path there are two basic types of crack propagation, i.e. cracking as a result of cell walls breaking and cell walls peeling, respectively, (Fig.4).

In wood of low specific gravity ($\rho < 0.3 \text{ g/cm}^3$) and thin-walled early wood cells of other species, the cracks develop mainly by cell walls breaking (Fig.5a). For the RT crack orientation breaking is almost the only manner of propa-
Fig. 4. Cracks propagation in coniferous wood (cf Gibson and Ashby, 1988); (a) – cell wall breaking, (b) – cell wall peeling

Fig. 5. Crack propagation in broadleaf wood (cf Gibson and Ashby, 1988)
gation. For wood species of higher specific gravity (\(\rho > 0.3 \text{ g/cm}^3\)), cracking is a result of both cell walls breaking and joined cells peeling (delamination) (Fig.4b). If crack development is of the TR orientation, the delamination process dominates over cell walls breaking. For the TR orientation cracks reach wood rays and develop along them. In that case the main mechanism is the cell walls peeling even for higher specific gravity of wood. Vessels bundle or even a single vessel in hardwood species can arrest the crack development. When developing, the crack opens the vessel or turns aside around the vessel and then stops (Fig.5). Energy required for the cell walls breaking is almost 5 times higher than for the cell walls peeling (cf Gibson and Ashby, 1988). As it is evident from the above, crack resistance depends on wood structure, geometry and mostly on bonds between wood rays cells and fibres or tracheids. Those bonds are the weakest centres initiating low-energy failures of a peeling type.

Contribution of the AE phenomenon in research into wood fracture mechanics is in its very beginning. Further investigations concerning various wood species of different density and research for verification of selective AE analyse of high-energy cell walls breaking processes and low-energy cells delamination processes are necessary.

One of the AE research into mechanical properties of wood area main purposes of is a material failure prediction. In failure prognosing the relation between stress at the AE initiation moment and the maximum stress could be helpful (cf Ranachowski et al., 1989). Introductory research into this subject seems to confirm the linear relation between load at the moment of AE initiation and stress at the failure point (cf Ohya et al., 1989; Raczkowski and Cegiela, 1992). Some investigations show that the AE method could be used for wood hardness estimation.

Application of the AE method to research into wood rheological properties has been carried out in specific, separated areas, so far. However, already in the earliest works concerning the AE, wood rheology aspects were considered. Debase et al. (1966) observed acoustic activity in creep processes of wood samples which were bending under load of 80% of the maximum stress. The experiments revealed that acoustic activity increases together with failure development. An analogy in creep curves and acoustic activity plots was confirmed by further research (cf Morgner et al., 1980; Niemz et al., 1983). It seems that especially in research into wood properties variation under long-term loads, the AE method shows its great usefulness for defects accumulation monitoring in creep processes (cf Raczkowski, 1969). In wood creep research it is essential to determine the relationship between stress level, even below the long-lasting strength and AE parameters at each stage of a creep process.
In cycles of repeated tension along the grain, under stress rising from 0 to approximately 70% of the ultimate stress level, AE cumulative counts decrease with the increasing number of cycles (cf Sato et al., 1983). The decrease in AE activity after 2nd cycle reached 80%, and after 9th cycle 95% of acoustic activity compared to the 1st cycle. The authors suggest that the so called Kaiser effect might occur (cf Kaiser, 1953). However, some AE activity appears in following cycles, which implies some doubts as for the stress memory phenomenon appearance (cf Beall, 1989). The problem of Kaiser effect adequacy in wood – being a viscoelastic material – has not been solved yet, and still requires more advanced investigation e.g. into the effect of rest period duration between subsequent cycles on the Kaiser phenomenon.

In fatigue research conducted in terms of wood tensile along-the-grain tests with 20 Hz frequency, it was shown that the AE increases with the number of cycles and is equal approximately to 100 impulses in one cycle just before failure (cf Sato et al., 1983). Together with the number of loading cycles, as it was stated by Kovačuk and Gurin (1991), on bended pine-wood samples, a gradual accumulation of defects increased. After cyclic interactions there start to create, not only small defects, but the medium-size or even greater defects as well. The failure of such samples appears unexpectedly, with small defects creation observed at the same time.

Discontinuities and structure disturbances existing already in wood before loading, have an effect on acoustic activity. Such a natural wood structural disturbance in macroscopic scale is knot. More intensive acoustic activity of wood containing knots showed Adams (1969). As a reason of increasing acoustic activity of knotted wood, desorptive cracks were revealed. Desorptive cracks appear in knots or around the knots area during timber drying process, and still before mechanical loading. Similar observations, concerning higher acoustic activity of wood samples containing knots were made by Sato et al. (1985) (Fig.6). The estimation of knots effect on wood strength was shown with the aid of AE method.

The investigations were carried out into natural defects of wood structure i.e. internal crushes resulting from living tissue reactions on heavy winds (typhoons). The AE recorded during bending tests of so defected samples was examined (cf Sato et al., 1985). Samples containing local crushes generate a higher number of AE impulses than clear wood. This enables one to detect the local crushes in wood structure with aid of AE method. It should be noticed here that the Young modulus values of sound wood samples and locally crushed samples, respectively, do not show any significant differences. That is why that defect cannot be detected using traditional methods of wood stiffness measuring.
As early as in the firsts papers on the moisture content MC effect on acoustic activity it was found that AE cumulative counts rate (i.e. AE density) recorded in cleavage test of oven-dry wood was three times as high as for wet samples (cf DeBaise et al., 1966). While testing the oven-dry samples in along-the-grain tension test the AE was recorded at lower elongation level and showed a higher cumulative counts number than for air-dry samples (cf Ansell, 1982b). It was shown by Niemz and Hänsel (1988a,b) that together with wood moisture content lowering, AE generation starts at lower stress levels. At the same, fixed stress level, AE cumulative counts are the higher the lower moisture content in tested wood is. The essential role in that case seems to be played by raising plasticization due to increase of the moisture content in wood. It should be noticed, however, that the growth of AE activity in wood of a low moisture content could be a secondary effect resulting from wood structure deterioration during drying process. Therefore further experiments (cf Okumura et al., 1987; Beall, 1989) are still necessary, especially to show the relationship between methods of slow reaching various initial moisture contents in vacuum atmosphere and AE activity of wood. Preheating of wood results in generation of the AE at lower stress levels. Pine wood samples formerly heated up to 120°C in various periods, generate the AE already at stress level about 10÷20% of failure load (cf Niemz and Hänsel, 1988a).

Important and interesting results were obtained in research into detection of very early stages of fungi decay of wood. Noguchi et al. (1986) experiments - AE measurements in wood bending tests – proved the possibility of decay
detection for the wood mass loss even below 1% which is unlikely to be detected by any conventional analytical method. This field of research was developed by Beall and Wilcox (1987) in compression tests perpendicular to grain in radial direction of fungi decayed wood samples (mass loss ranging from 1 to 28%). The ratio of AE signals number and stress proved to be extremely sensitive indicator of the cell walls biotic destruction range (Fig. 7).

![Graph showing logarithm (of base 10) of events per unit stress to 0.75 percent elastic compression versus square root of mass loss (cf Beall and Wilcox, 1987)](image)

Fig. 7. Logarithm (of base 10) of events per unit stress to 0.75 percent elastic compression versus square root of mass loss (cf Beall and Wilcox, 1987)

The dispersion of tested samples deterioration grades was approximately tenfold in that case. Very good correlation between fungi decay and acoustic activity was recorded by Wagenführ and Niemz (1989) in bending test. The AE was used by Niemz et al. (1990) for assessment of tissue destruction level in wood exposed to industrial pollution. Nevertheless there still exists an unsolved problem how to apply the AE method to testing objects in their natural environment when bodies being examined are structural beams, pillars or other objects built into existing building structure (cf Noguchi et al., 1985a).

Processes appearing in wood based materials under external loading are of much more complex nature than those in solid wood. Since defects create and develop not only in the wood tissue or in cells themselves but in an adhesive joint and a "glue-wood" boundary area as well. For instance the acoustic activity in particleboards being loaded is observed as early as at 10 ÷ 20% of the maximum stress while in solid wood the process appear at a stress level at least 50 ÷ 60% of the maximum stress (cf Morgner et al., 1980; Beall, 1985; Niemz and Hänsel, 1988a). Very high correlation between a load value at selected AE cumulative counts level and the particleboard lamination strength ($R^2 = 96\%$) was revealed by Beall (1986). To locate the
failure process area (wood, adhesive joint) is not possible with AE analysis at the present stage of art. From experiments on adhesive joints strength in plywood it emerges however the possibility of distinguishing the destruction in wood or in an adhesive joint on the base of "AE-deformation" curve shape. The curves are of linear nature for a glue joint failure process and non-linear for destruction in wood itself (cf Beall, 1989). In investigation at structural parameters of particleboards (particles geometry, glue content, density) it was proved (cf Niemz and Hän sel, 1987, 1988a,b; Hän sel and Niemz, 1989) that the parameters increase implies the rise in acoustic activity. Particles length enlarging effects in the AE generation at a lower stress level. That could be the result of so called technological defects i.e. desorative microcracks originating from primary particles drying. In research into AE activity of wood particle-cement boards it was observed that samples failure had not been preceded by defects cumulation, therefore the destruction process is more rapid than the one taking place in particleboards (cf Kovalčuk et al., 1988). Experiments carried out with plywood proved the possibility of using the AE method for indication of non-glued or improperly glued places (cf Yoshimura et al., 1987).

2. Sorptive loading

It is known that wood is hygroscopic material. Moisture content gradient and anisotropy of sorptive deformations accompanying the moisture content changes are the reason for induction of woods own sorptive stresses. The stresses originate on all levels of wood internal structure, and can reach very high values which evident demonstration is wood cracking during a drying process. The mechanism of hygroscopic cracks creation has not finally been recognized yet. Research into the AE generated by wood moisture content changes, started in 1980s and is still continued in the USA, Japan and other countries; it brings important information about a fracture mechanism. Signals being recorded come directly from defects and non-continuities existing in wood, initiating the cracking process.

The AE recorded during a wood drying process is of explosive nature, what indicates the presence of local stress cumulations and their releasing (cf Noguchi et al., 1980; Skaar et al., 1980). It was revealed as well, that hardwoods generate a much higher AE level than softwoods being dried under similar process conditions (cf Noguchi et al., 1985b; Niemz et al., 1990). Moreover, experiments show that AE intensity and a cumulative counts number
Fig. 8. Changes in specimen weight m, mean AE amplitude per 100 events A, and of AE cumulative event count N, respectively, during drying; (a) – mizunara ($Quercus crispula$), (b) – keyaki ($Zelkova serrata$), (c) – sugi ($Cryptomeria japonica$) (cf Noguchi et al., 1985b)
is highly dependent on internal non-homogeneity of a wood structure. Wood of high non-homogeneity (e.g. oak) produces during a drying process more AE signals compared to wood of a more homogeneous structure (e.g. birch). Spectral analysis of signals generated during a wood drying process shows that AE impulses are formed in stress waves of various shapes, and their duration time ranges from approximately 50 ÷ 200 ms. Component frequencies of those waves are included in range 50 ÷ 700 kHz (cf Noguchi et al., 1985b; Sadanari and Kitayama, 1989; Nakao, 1990). Mean amplitude distribution, estimated per 100 AE events is almost constant over the whole drying process and does not show any correlation with dimensions and shape of the specimen being examined (Fig.8).

![Fig. 9. Relationship between AE cumulative count and surface of cracks developed during drying process of beech wood samples of dimensions 30R x 30T x 10L mm (cf Raczkowski et al., 1990)](image)

Only the first acoustic signals indicating the cracking process, so that being the result of structural defects development within the cell wall i.e.: flows creation, delamination of cells, are exhibiting a fairly high amplitude. Observation, of the almost constant value of average energy of AE signals emitted during the drying process, is of great importance as it enables one the conclusion that AE cumulative counts should be proportional to the surface of developing drying cracks. To create a crack of a certain surface requires of breaking a certain
number of bonds which is proportional to that surface. Some investigations attempting to verify that assumption were made by Raczkowski et al. (1990). It was proved, in experimental recording of AE cumulative counts from the prismatic beech wood sample being dried (dimensions $30T \times 30R \times 10L$ mm) and measurements of crack surfaces created then, that the relationship between AE counts number and cracks surface was precisely linear (Fig.9).

The cracks surface measurement was taken with a Brinell magnifying glass with 0.1 mm accuracy. Crack paths were forced by notches made on tangential surfaces of the wood specimen before experiment course. The constant value of AE signals energy during wood drying process is also the result of a cracks propagation nature i.e.: mainly along one, particular symmetry plane of wood, that is a radial plane. In direction normal to a radial plane direction the highest values of tension stress are induced as the wood shrinkage is the most restrained in that direction (cf Noguchi, 1987). Moreover, in a radial plane the shearing stresses are induced as a result of differences in shrinkage of wood rays cells and axial structures of a surrounding tissue. Those additional shearing stresses contribute the wood fracture process taking place in radial plane.

Fig. 10. Plots of wood moisture content, warpage force, deformation, AE cumulative count rate and AE amplitude, respectively, in oak wood drying process; t_m – wet bulb temperature, t_s – dry bulb temperature; (cf Okumura, 1986b)

AE sources at initial stages of a wood drying process, are located near under the timber surface. That takes place when wood outer layers are sub-
jected to tension stress i.e. at the moment when the shrinkage process starts. In a course of time the AE sources are being moved into deeper, inner wood layers after the moisture content equal to the fibre saturation point FSP^1 is there reached (cf Okumura, 1986a and 1987; Wassipaul, 1986; Rice and Skaar, 1990). AE intensity depends on the wood own shrinkage stresses, which are concentrated around microcracks tips level. When the crack tip develops into an area which is stress resistant enough, crack propagation is stopped. Its further propagation is possible only when an acting stress is increased to a level which ensure extension over a new limit for that crack initiation. The above mechanism of crack propagation is well described by plots of AE counts rate and warp reaction force during a wood drying process at unstable parameters of drying medium (Fig.10).

Later works (cf Raczkowski et al., 1990) leading to determination of the relationship between difference of shrinkages within the wood block being dried and the AE, verified the assumption that the AE intensity level reflects the state of stress in wood being dried. The AE counts rate reached its maximum at the point of critical moisture content in wood i.e. at the moment when a shrinkage stress reached the highest level.

When the wood specimen being dried, is of a shape of thin board, where the drying process is defined by water evaporation from wide surfaces, then the AE intensity maximum is observed in the beginning of the process (cf Niemz et al., 1990 and 1991). While drying the thin specimen the outer layers reach the equilibrium moisture content EMC under conditions being, and start to shrink. The outer layers, however, are bonded with inner wood tissue layers of a still higher moisture content, what restrains shrinking process of outer layers. That process results in stress cumulation in areas of the largest non-homogenity of a tissue structure. Thus, the AE sources are being initiated, despite of relatively low values of shrinkage stresses measured under conditions of restrained deformations for the whole sample. Numerous structural defects, dispersed over the large inner area of wood, generate AE impulses of a high amplitude. This fact reflects in the values of AE signals being recorded. After some time of drying structural defects link together creating microcracks. During a drying process the moisture content decrease rate is lowering, which is specific for moisture movement towards outer layers of wood, and reflects in decrease in AE intensity (cf Melzow et al., 1986). Movement of the AE sources towards the areas which had already achieved the FSP and shielding the moving crack by plastic strains zone (cf Wassipaul,

1FSP – a fibre saturation point, the wood moisture content corresponding with the maximum content of bonded water in wood fibres (approximately 30% of wood dry weight)
1986) caused that the great part of elastic strain energy was dissipated. To continue the crack propagation an increase in shrinkage stresses is necessary. So, the AE intensity depends on kinetics of dry wood front movement deep into piece being dried.

An important aspect of research into wood drying cracking can be a hypothesis of so called moisture analogy of the Kaiser effect. In observations of the wood moisture change cycles, the highest number of AE impulses was recorded in the first cycle of drying. In the second cycle of wood drying (after its moistening in humid air up to the FSP) the AE is not observed or is recorded at a very low level (cf Okumura, 1987). However during next drying (after soaking in water) tested wood generates the AE at a high level (Fig.11).

![Fig. 11. AE generated from wood in drying process after cycles of moistening in wet air (1) and re-moistening in water (2); (a) oak ($Quercus$ sp.), (b) sugi ($Cryptomeria japonica$) (cf Okumura, 1987)](image)

Data presented in Fig.11 show the possibility of the Kaiser effect appearing in further cycles of wood drying. Trying to give a complete answer whether the Kaiser effect appears in cycles of moisture changes, the experiment was conducted by the authors of this paper. Samples of beech green wood of dimensions $20T \times 20R \times 25L$ mm were dried in a laboratory drying chamber at a temperature of 80°C down to 1% of the MC. Then after cooling down to a room temperature, the samples were soaked in distilled water up to the initial moisture level (approximately 80%). After reaching the assumed MC, the samples were subjected to the following drying-moistening cycles. Ten complete cycles of moisture changes were carried out. During those processes the AE was recorded, with the parameters: piezoelectric transducer of reso-
nance frequency 100 kHz, total amplification of measuring track $80dB$, noise discrimination level $0.2V$. The results of experiment are presented in Fig.12.

\[\frac{N_t}{\sum N_{s+n}} \% \]

Data shown in this Figure reveal that in following cycles of wood drying and moistening AE cumulative counts decrease. For a drying half-cycle the decrease in AE counts is more rapid than for a moistening half-cycle. AE signals recorded in the second and following moisture change cycles could testify to further propagation of moisture cracks and activation of newly created structural defects.

From the survey of research of into desorptive cracking of wood it emerges that the AE accompanying that process could be used for wood cracking prediction. That implies the possibility of preventing the cracking during wood kiln-drying, in terms of the signals coming from wood itself (cf Noguchi, 1987).

Cracks audible with a "naked ear" which are emitted from rapidly soaked dry wood indicate that the AE is generated during the wood moistening process, as well. Research into the AE generated in the process of wood moistening is much less advanced than for the AE from drying processes. The reason is probably a lower practical value of adsorptive cracks comparing desorptive cracks created in the process of drying which is the fundamental process of wood treatment. The first paper regarding that problem was published only in 1985 and concerned the AE generated in chipboards seasoning treatment under variable air humidity conditions (cf Beall, 1985a and 1986). It was found that the AE was generated in the first moistening cycle and
reached a much higher level than the \(AE \) released in following drying cycles. \(AE \) intensity during the moistening process is strongly correlated with kinetics of wood swelling. In following cycles of air humidity changes the \(AE \) appeared only at the initial stage of the drying operation. Further moistening processes did not induce any \(AE \) signals.

In papers on the \(AE \) generated during wood soaking in water it was found that the reason of the \(AE \) phenomenon is a crack formation process in a still non-penetrated by water, inner zone of wood. The crack existence in a dry zone was revealed with the aid of X-ray photography method (cf Moliński et al., 1991a). That fracture is a result of interaction between wet outer and dry inner zones of wood. The outer zone during its moistening has not got a possibility of free swelling as it is restrained by a dry inner zone which counteract free adsorptive swelling of a wood tissue in outer layers. The result of that process is induction of compression stresses acting across the grain in outer zone and tension stresses in inner zone. Those two kinds of stresses are balanced up until reaching the wood ultimate stress level for tension perpendicular to the grain in the inner zone. Before reaching this point \(AE \) impulses are not recorded in spite of whole specimen volume growing. To induce local deformations exceeding the ultimate values it is necessary that the defined volume of outer zone is penetrated by water. Those processes imply crack creation and propagation in a dry wood tissue.

![Graph](image)

Fig. 13. Relationship between initial moisture content in pine wood samples and \(AE \) cumulative count recorded in soaking in water process; samples dimensions \(30R \times 30T \times 10L \) mm (cf Moliński et al., 1991b)

Crack propagation is directed mainly in a radial plane of wood being soaked and a crack path is slightly broken at annual increment boundary. That is
obvious if we consider very weak bonds between axial elements and wood rays cells. The wood fracture level, resulting from wood soaking, depends on the initial moisture content, the moistening stresses level, a dry wood resistance to tension across the grain direction, as well as on the previous moisture history of wood being tested. The highest AE counts level is recorded in oven-dried wood and while increasing its initial moisture content AE cumulative counts are gradually decreasing (Fig.13) (cf Moliński et al., 1991b).

For the initial MC over 13% the AE phenomenon is not registered at all. That fact could be an effect of moisture stress values which depend on a moisture gradient over the tested specimen thickness or length (cf Morgner et al., 1980). Therefore the higher is the wood initial MC the lower are moisture stresses. Lower is the wood stiffness what implies its higher susceptibility to deformations, therefore the more uniform distribution of stresses induced by moisture changes is more likely. The plots of adsorptive stresses versus AE cumulative counts both in normalized to their maxima scale, confirm the above observations (cf Moliński et al., 1991a). The most important fact is that levels of moisture deformations and stresses corresponding to the AE process initiation are different depending on the initial MC (Fig.14).

![Fig. 14. Tangential swelling measured at the moment of AE initiation in wood soaking process (cf Suchorski and Moliński, 1990)](image)

It emerges from Fig.14 that the very first AE signals are recorded at a lower moisture stress level for oven-dried wood and at a higher level for the MC corresponding with water bonded with hydrogen bridges. That could be explained by the effect of so called adsorptive strengthening of wood observed in tension, shearing and bending tests within the range between 0 to 8% of the MC in wood.

Regarding the quantitative description of the AE phenomenon with wood soaking, for model simplification it was assumed (cf Poliszko et al., 1991/92) that in a cross-section RT of swelling wood, a crossing system of defect paths
exists. The crossing points determine a basic dimension of microcracks width. According to that model the total number of elementary microcracks in the cross-section of tested sample is expressed by the following formula

$$N = 2\frac{a_R a_T}{l_R l_T}$$

(2.1)

where: a_R, a_T and l_R, l_T are average sample and microcrack radial and tangential dimensions, respectively.

It takes into consideration the decrease in acoustic waves amplitude, on the way between the source and piezoelectric transducer, what is the result of energy dissipation AE signals number in soaked square-cross-sectioned specimens could be defined by formula

$$N = 2k \frac{a^2}{l_R l_T} \exp\left(\frac{-\sigma a}{2}\right)$$

(2.2)

where

- k: measuring track sensitivity coefficient
- σ: acoustic energy losses in tested medium.

![Diagram](image)

Fig. 15. Diagram of dependence of the AE total event counts per unit area of RT-plane cross-section of beech wood samples on the length of sample edges (cf Poliszko et al., 1991/92)

Plot of the relationship between $\ln(N/a^2)$ versus the sample edge length a observed in Fig.15, reveals good conformity of experimental and theoretical, data given above. Limiting the value of $\ln(N/a^2)$ as $a \to 0$, calculated with accuracy of a constant $2k$, defines the average dimension of microcracks: $l = \sqrt{l_R l_T}$ in the cross-section RT of tested samples. The probability p of crack creation on a surface hl, appearing in a sample of cross-section ha,
determines the number of dissociated bonds ratio to a total bonds number i.e. \(hl \) to \(ha \) ratio. Due to the above \(p = l/a \), and referring to the Bolzman formula

\[
p = \frac{l}{a} = \exp\left(\frac{-\Delta E}{RT}\right)
\]

(2.3)

where

\(\Delta E \) – activation energy of one mole of bonds dissociation
\(R \) – gas constant
\(T \) – temperature in Kelvin scale.

Taking the above into consideration, the number of \(AE \) signals generated by soaking wood should be related to temperature as follows

\[
N = 2k \exp\left(\frac{2\Delta E}{RT}\right) \exp\left(-\frac{a}{2}\right)
\]

(2.4)

The results of temperature measurements shown in Fig.16, reveal due to theoretical expectations, linear course of \(\ln N \) versus \(1/T \) plot within the temperature range \(0^\circ \text{C} \div 50^\circ \text{C} \). The slope of linear function represents activation energy \(\Delta E \) of bonds dissociation in a crack area. Its value is ranking above 12.5 kJ/mol which equals to hydrogen bonds energy.

![Graph showing the relationship between \(\ln N \) and \(1/T \) for AE signals generation.](image)

Fig. 16. Temperature dependence of the total number of \(AE \) signals recorded while soaking beech wood in water (cf Poliszko et al., 1991/92)

3. Conclusion

In Poland, research into acoustic activity of wood was undertaken in the
Chair of Wood Science at Agricultural University in Poznań. The specialized measuring track for the AE recording was completed there in co-operation with Professor J. Ranachowski from the Institute of Fundamental Technological Research Polish Academy of Sciences in Warsaw. The laboratory stand was designed to use the Polish apparatus type "DEMA" and then developed later to its modified version "EA-3" which was adapted to use the digital measuring track with an IBM compatible computer. Tests conducted with the aid of Polish devices on wood and wood based materials were successful and are being continued. The results of research are gradually introduced into international scientific circulation.

Acknowledgements

This paper was partially financed by the KBN Research Project – Grant No. 33148-9203

References

6. Beall F.C., 1986, Effect of resin content and density on acoustic emission from particle-board during internal bond testing, Forest Prod.J., 36, 7-8, 29-33

16. Moliński W., Raczkowski J., Poliszko S., Ranachowski Z., 1991a, Mechanism of acoustic emission in wood soaked in water, Holzforschung, 45, 1, 13-17

34. Okumura S., Kawamoto S., Mori T., Noguchi M., 1986a, Acoustic emission during drying of japanese oak (Quercus mongolica var. grosseserrata), Bull. Kyoto Univ. For., 57, 300-307 (Jap.)

35. Okumura S., Kawamoto S., Nakagawa M., Noguchi M., 1986b, Relationship between drying stresses and acoustic emission in wood, Bull. Kyoto Univ. For., 58, 251-259 (Jap.)

41. Raczkowski J., Poliszko S., Molinski W., Suchorski P., 1990, Emisja akustyczna w procesach wysychania drewna: Wplyw temperatury suszenia na niektore parametry emisji akustycznej w drewnie, Maszynopis sprawozdania z badań coord. przez IPPT PAN (CPBP 02.03. 1.18), Poznań, 1-50

42. Ranachowski J., Rejmund F., Librant Z., 19, Emisja akustyczna w zastosowaniu do wyznaczania propagacji pęknięć i oceny wytrzymałości mechanicznej materiałów kruchych, in: J.Ranachowski (ed.), Problemy i metody współczesnej akustyki, PWN Warszawa-Poznań, 105-118

43. Rice R.W., Skaar Ch., 1990, Acoustic emission patterns from the surfaces of red oak wafers under transverse bending stress, Wood Sci. and Technol., 24, 2, 123-129
Emisja akustyczna w mechanice pękania drewna

Streszczenie

W pracy przedstawiono szereg zagadnień związanych z mechaniką pękania drewna. Osobno omówiono zjawiska towarzyszące destrukcji tego materiału pod obciążeniem mechanicznym oraz efekty wywołane zmianami wilgotności drewna. W artykule przedstawiono omówienie wyników badań wielu autorów jak i badania własne. We wszystkich przypadkach prezentowany materiał dotyczy wyników badań, w których podstawowym narzędziem do śledzenia mian strukturalnych w drewnie była metoda pomiaru emisji akustycznej. Takie podejście do tematu wynagło szerszego omówienia źródeł sygnału emisji akustycznej w drewnie, a we wnioskach końcowych umożliwiło wyznaczenie energii pękania wiązań strukturalnych w oparciu o wyniki badań akustycznych.

Manuscript received April 28, 1993; accepted for print July 9, 1993