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We present a model of a layered composite with thin layers bonded to
the bounding plane or planes. The purpose of the paper is to investigate
the contact shear stresses in the matrix, generated by fluxes of heat and
mass diffusion. It was found that the singularity in the value of stresses
at the circumference of the membrane depends on the ratio of the strata
thickness to the membrane radius. The maximum value of the stress
intensity factor takes place neither for A — oo nor for small values
of the ratio. Another phenomenon is the foundation effect, i.e. that
for small ratio, depending on the geometry of the problem there is no
singularity in the distribution of shear stress components at the vicinity
of the membrane circumference. The results are presented also in the
diagram form.

1. Introduction

We consider particular problems of thermodiffusion of solid elastic solids.
The purpose of the paper is to find the influence of the fields of temperature
and that of diffusion on the distribution of stresses in an elastic matrix in the
form of a layer with a thin layer coating it. The problem can be generalized
on the cases of layered composites. The main problem is to find the stress
concentrations, in the theoretical model the regions of stress singularities. We
introduce a model of a solid (compare the monograph by Nowacki and Olesiak,
1991) consisting of an elastic matrix in the form of a layer with a bonded thin,
inextensible membrane of a very small thickness, bounding the matrix. It has
been assumed that there are no heat and/or diffusive sources within the elastic
layer, and that the heat and diffusive fluxes enter through the boundary of the
layer. The idealization that the bounding membrane is inextensible makes it
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possible to reduce the problem to that of the fracture mechanics and to make
use of its typical methods. In order to find the criterion of debonding we have
to find the distribution of stresses over the contact region. The problem we
consider belongs also to those of the general theory of coupled fields, developed
and discussed by Kupradze at al. (1979). See also a chapter devoted to the
systems of equations of thermodiffusion in the monograph by Burchuladze
and Gegelia (1985). The problems of uniqueness, existence and estimates of
the solutions were discussed in a monograph by Fichera (1974). In the case
of a semi-infinite elastic space and axially symmetric geometry we have found
already (cf Olesiak, 1989) that there exist singular distributions of shear stress
component at the circumference of circular membrane and at the lines of a
jump in the distribution of temperature and/or of the mass diffusion on the
boundary.

The assumption that the bonded layer is inextensible and very thin con-
stitutes a model approximation. For an extensible boundary layer one can
expect, the stress concentrations in the regions where in the theoretical model
there exist the singular stress distributions. In the cases when the pertinent
stress intensity factor (i.e. the coefficient at the singular term) has been exce-
eded we can expect the debonding of the layer from the elastic matrix. The
coefficient at the singular value of shear stress component is dependent on the
magnitude of thermal and diffusive fluxes and on the value of the coatings
radii.

In this paper we derive the formulae and discuss the behavior of the cor-
responding contact stresses in the case of matrices in the form of thick layers.
If we drop the assumption that the bounding membrane is inextensible and
assume that its Young modulus is much higher as compared with that for the
matrix we would obtain the problems of stress concentration. These problems
are quite common in the so called engineering practice, in particular in the
problems of solids with the surface layer hardened by heat treatment and/or
diffusive processes. The numerous examples of solids with metal covered sur-
faces are encountered in electronic technology.

We consider the axially symmetric problems. The problems which do not
possess the cylindrical symmetry, for Jordan contours, are basically similar.

2. Basic equations

As our point of departure we take the set of partial differential equation
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of thermodiffusion of elastic solids in the form

(1 - 2v)Au+ graddivu = 2(1 + v)(apgradT + a.gradC)  (2.1)

AT =90 (2.2)
AC=0 (2.3)
Here
A, p - Lamé’s constants
v ~ Poisson ratio
ag, o, — coefficients of thermal and diffusive expansions, respecti-
vely
T — temperature in kelvingrades with respect to the natural
state
C — concentration of diffusing mass likewise with respect to

the natural state.
In a cylindrical coordinate system (r,%,z), and for the displacement vector
u = (u,0,w) we obtain the following system of equations

201 = v)Byu + (1 - 20)D*u+ Dw,, = 2(1 + v)(ayTyr +.C,r ) (2.4)

(1 = 2v)Bow + 2(1 — v)D?*w + D(ru),, = 2(1 + v)D(eT + L) (2.5)

(Bo+ DH)T =0 (2.6)
(Bo+ D*)C =0 (2.7)
where we have introduced the following differential operators
02 10 0
=+ -— —kr® k= = — 2.
B or? + ror 0.1 0z (28)

It is sufficient to assume that the required functions multiplied by +/r are
integrable (i.e. € L!'). Sommerfeld radiation (or regularity) conditions are
necessary for /7f(r) € L'. We apply the first order Hankel transform with
respect to Eq (2.4) and zero order Hankel transform with respect to Eqs (2.5)
+ (2.7), namely we assume

fe o]

(€, z) = Hafu(r,z); 7 = €] = /ru(r,z)Jl(rfy) dr (2.9)

0

(€, 2), T 2),C(€, 2) = Ho[w(r, 2), T(r,2),C(r,2); 7 — €] = (2.10)

= /u(r, 2),T(r, 2),C(r,2)rdo(r€) dr
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The solution of the system of equations (2.4) + (2.7), expressed in terms of
the Hankel transforms of the corresponding functions takes the following form

u(r, z) = Hy[u(€, z); € — 7] (2.11)
w(r,2),T(r,2),C(r,2) = Ho[w (&, 2), T (£, 2),C(&,2); € — 7] (2.12)

where, taking into account the general solutions of the system of ordinary
differential equations in the space of transforms, obtained from the system of
partial differential equations (2.4) + (2.7), and some algebra, we find that

a6,2) = [—73—(3—4V)ﬂ3(£)+2(1€+ “) A(€) - £262(6)] cosh(é2) +

(2.13)

+ [ aa©) - (3 - 0)aa() + XD B(E) - €u(0)]sinh(e2)
0(§,2) = [as(€) + £2Ba(£)] cosh(£2) + [(73(§) + £283(£)]sinb(£z)  (2.14)
T(&,2) = Ag(€)cosh(£z) + By(€)sinh(£2) (2.15)
C(£,2) = Aq(€)cosh(€z) + B.(€)sinh(£z) (2.16)

Here a3(€), B3(€), va(€), 83(€), Ae(€), Bo(£), Ac(€) and B.(£) denote the

functions of £ to be determined from the pertinent Hankel transforms of the
boundary conditions.

Similarly we obtain from the generalized Duhamel-Neumann constitutive
relations

Uzz(r,z) = HO[a'zz(E’z); £— T] (217)
aro(r,2) = H1[6+,(E,2); € — 7] (2.18)
O',-,-(’I‘,Z) + 0'09(7'72) = HO[arr(é.’z) + 690(6, Z); f - T] (219)
where
5.2(6,2) = 2u€{laa(€) + (1 - 20)8s(€) + E2B5(6)] sinh(€2) +
+ [va+ (1= 2v)B3(€) + £263(€)] cosh(£2) + (2.20)
- [(1 + v)A(€) cosh(€z) + B(€) sinh(fz)]}
brol62) = 2] [15(6) + 21— v)Bs(6) = 11 £ A(E) + E2by()] sinh(¢2) +

(2.21)

+ [os(6) +2(1 - v)8s(€) - cosh(£2)}
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3. Boundary conditions

2a

v

aaT(r,z) ra, C(r,z)

‘——2‘—”

z

Fig. 1. An elastic stratum with bonded membrane of radius a

We solve the thermodiffusive problems for an elastic layer of width h and
bonded circular membrane presented in Fig.1. The stresses in the matrix are
exerted by a flow of heat and/or diffusive mass from the sources on the upper
and lower planes bounding the body. We assume that on the upper plane there
is a known distribution of temperature and diffusion over a circle of diameter
a. Outside the region r < a the solid is being kept in the natural state
of temperature and diffusion. On the lower plane we assume either known
distributions of temperature and diffusion or their fluxes. For the mechanical
boundary conditions we assume that the upper layer is free from tractions
over the region outside r < @ and free from normal components of tractions
for » < a. For the bottom plane of the layer z = h we assume that the shear
stress tensor component and the normal component of the displacement vector
vanish. First we take into account only three boundary conditions, namely

0,.(r,0)=0
or:(r,h) =0 for r €< 0,00) (3.1)
w(r,h)="0

By making use of the above boundary conditions we can eliminate three pa-
rameters, say: a3(€), 63(€) and +3(£) and express all quantities in terms
of B3(§) and the parameters A(£) and B(£). In this way we obtain three
linear algebraic equations %3(¢), 63(€), as(§). We obtain the equations for
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the components of displacement vector (compare Olesiak, 1993)

4, 2) =

w(§,z) =

+

+

{[=2(1 - v) + &= tanh(ER)]Bs(€) +

14+v

31—y 2B + A©) tan (€]} cosh(€z) + {{[2(1 - v) +

(3.2)

Ehtanh(€h)] tanh(ER) + &(R

1+v '
'2‘(1_—,,),5[1 — 2v — {htanh(ER)][B(€) + A(€) tanh(sh)]} sinh(£2)

{{[1 = 2v + £h tanh ()] tanh(¢h) - £(h - 2)}s(€) +

1 + v 14+v
21-v) (3.3)

A(€) tanh(¢h) } cosh(€z) + {~[1 ~ 2v + £z tanh(€R))Bs(€) +

1+v
¢

A(€) tanh(€h) — " tanh(€R)[B(€) +

A©) - (11+ Y_2B(€) + A(€) tanh(€h)] } sinh(£2)

and the stress components

&ZZ (E’ Z)

r2(€,2)

= —2ue{e={tanh(€R)Bs(E) -
+ A tanh(Eh)]) cosh(€:) + {E[(h —2) — Ehtamh* (EMIB(E)

14v

5= )E[ 6+

14+v

g e(t ek tanh(ER)B(E) + A(E) tanh(¢h)]) sinh(£z)

2(1
= 2u6{{[(1 - €h tanh(€h)) tanh(¢h) + £(h — 2)}Ba(€) +
1+v
2(1~v)

—~ {[1 — €z tanh(€R)])B5(€) +

———h[B(&) + A(¢) tanh(£h)]} cosh(£z) +
(3.5)

_ 2(11+" 2[B(€) + A(€) tanh(¢h)]} sinh(¢2) }

Parameters A({) and B(§) can be determined from the thermal and diffusive
boundary conditions. First let us assume the boundary conditions on the



STRESS INTENSITY FACTOR... 183

lower plane, i.e. for z = h. We shall discuss three basic cases, namely: case 1.
when over z = h both the temperature and the diffusion are being kept in
the natural state, i.e. T(r,h) = 0, and C(r,h) = 0. In case 2. we assume
the thermal and diffusive perfect isolation while in case 3. free heat and mass
exchange. For case 2., i.e. for perfect isolation over z = —h

0 - 9 -
5= T(E2)_ =0 5062 =0

z=h

we obtain the following relations between the parameters Ag(£), Bg(&), Ac(€)
and B.(¢)

T(&, z) = Ag(€)[cosh(£z) — tanh(£R) sinh(£2)] (3.6)
C(€,2) = Ac(E)[cosh(€£z) — tanh(£h) sinh(£2)] (3.7)
B(&) + A(€) tanh(Eh) = 0 (3.8)

4. Reduction to a system of dual integral equations and Fredholm
integral equation

In order to find the state of stresses and the contact shear stresses between
the membrane of diameter 2b and the elastic layer we have to solve the
system of equations, resulting from the boundary conditions, for B3(€). The
mechanical boundary conditions corresponding to Fig.1 are as follows

u(r,0) =10 for re<0,b) (4.1)
Or(r,0)=0 for 7 €<b,00) )
We have the following expressions for the transforms of the radial displacement
component and of the shear stress tensor component, expressed by a single
parameter (3, respectively

! A (4.2)

a(€,0) = -2(1-v)Bs() +
5r2(€,0) = 2u€{[(1 - £htanh(£h)) tanh({h) + £R]Ba(E) +

+ ——2(11+_'L)h tanh(€h)[B(£) + A(€) tanh(£h)]}
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We arrive at the following system of dual integral equations

[v©n-kemnende= 1) re<on)  (44)
[ev@rnien de=o re(hoo)  (43)
0

On the right hand side of the first of the dual integral equation we have

1= (11+ v / A(E)J (Er) de + / Epall — k(ER(Er) dE (46)
where
— exp(—£&h) cosh(&h)
k(Eh) = fh + sinh(&h) cosh(&h) (4.7)
and
b4 = %h tanh(£A)[B + A tanh(¢h)] (4.8)

The system of dual integral equations can be reduced, by application of Abel
transforms and the use of certain properties of Bessel functions and of elliptic
integrals to a single integral equation of the second kind

b
o) = = [ 9@ K (t,2) dz + F() (4.9)

The kernel is given in the form of the sum of the Fourier cosine transform
integrals

K(t,a:) =

SRR

/knsm sm (nz) dn =
° (4.10)

%{f-c[k(n); n— t_TZ] — Fe[k(n); n “;lz]}
where

Folk(€); € =yl = [ k(E) cos(€y) de (4.11)
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If the solution of the integral equation (4.9) is known we are able to find
function () appearing in the system of dual integral equations (4.4) and
(4.5), and in turn the contact shear stress component, from the formula

o(r,0) = 2u [ $()I(r€) dt (4.12)
0

The stresses can be expressed directly by the solution of the Fredholm integral
equation g(t,h)

2 T Fs?2—12 1
ons(r,0) = 22 i mg0(8) — [ 5T - og/(6) - o) s} (413)

In order to obtain the distribution of stresses we have to find the kernel (4.10),
then solve the Fredholm integral equation, and finally the stress tensor com-
ponents. The kernel is an improper integral and can be evaluated numerically,
consequently the solution of the Fredholm integral equation, and the contact
shear stresses from formula (4.13) also has to be computed numerically with
decreasing accuracy. The accuracy of the entire procedure is not high. To in-
crease it we replace function k(£h) by such a function which would behave at
infinity and zero precisely as k(£h) and the kernel integral could be calculated
analytically. There exist a number of such functions, for example

1= (4n - 21_71) exp(—27) n=¢&h
(4.14)

2= (47 - 21—7’) exp(—27)

In Fig.2a we show three curves: k(n), ¢1(n) and the difference
¢1(n) — k(n). We see that the difference is a smooth function, vanishing
at zero and tending rapidly to zero for values of 7 > 3. In Fig.2b cu-
rve called hump(n) is the corrected curve ¢;(n). We see that the diffe-
rence hump(n) — k(n) has been reduced to a small region, the segment
of 7 between 1 and 2 and the integral limits reduce to this segment. In
calculations we have assumed that hump(n) = ¢i1(n) — corr(n) where
corr(n) = 0.55sin(nyw5/6)H(1.2 —n), here H(z) denotes Heaviside step distri-
bution.

The approximate values of kernel K1(z,t) have been presented in the
diagram form in Fig.3. Kernel K1(z,t) is symmetric and can be computed
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Fig. 2. (a) Functions k(7), ¢1(n) and their difference, (b) Functions k(n), corr(n)
and hump(n)

Fig. 3. Approximate kernel K1(z,t) of the Fredholm integral equation (4.9)
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analytically. We obtain

K1(t,z) =

0\8

71; (47) - é}ﬁ) exp(—27n) sin(n%) sin (”7%) dn =

(4.15)
_ 8h%tx[8h%(6h? + 12 + 22) — (12 —22)?] 1 . 4h?4 (1 +2)?
T TR+ (t -2 [4R2 + (1 + =) 8h " 4h2+ (- z)?

The difference of kernel K1(z,t) and the exact kernel K(¢,z) Eq (4.10),
computed numerically, is presented in Fig.4.

7777 IS
77/
""'I'II

Fig. 4. Difference of two kernels K1(t,z) — K(¢,z)

If, as a function under the improper integral sign, we take not ;(7n) but
hump(7) = ¢1(n) — corr(n) then the difference of the exact kernel K(¢,z) and
the corrected kernel

Keorr(z,t) = K1(z,t) — /corr(n) sin(n%) sin (n%) dn (4.16)

does not exceed 2%. Consequently it is justified to replace, in our calculations,
kernel K(t,z) by Kcor(t,z). Since now the kernel of the Fredholm integral
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equation can be written down analytically, we are able to solve it by the
method of successive approximations. The Neumann series for the resolvent
kernel takes the following form

9(t) = F(t) + %wﬁl(t) + r—lzll’z(t) + ... (4.17)
where
b
i) = / K(z,l)F(z) dz (4.18)
0

and similarly for the next approximations. The solution depends on the free
term F(t). For the case of the thermal and diffusive boundary conditions
discussed here, i.e. for the perfect isolation for z = h, function F(t) corre-
sponds to the pertinent function encountered in the solution of the analogous
problem for an elastic semi-space. We have, (see Olesiak et al., 1992)

1+v 2
Ft) = ma(t ~ Vit —a?H(t - a)) (4.19)

where a is radius of the region in Fig.1, « is a constant in thermodiffusive
boundary conditions, v denotes Poisson ratio. The function F(t) is conti-
nuous in the range < 0,b) and has one point for which its derivative has
a finite jump corresponding to the line of jump in the value of temperature
and/or diffusion on the boundary. We assume that & = 1 and a = 1/2.
For these values we obtain an approximate solution of the Fredholm integral
equation from the truncated Neumann series. The solution depends on the
parameter h, the width of the layer.

We see from the solution presented in Fig.5 that for smaller values of the
thickness A of strata it assumes the negative values. In this problem it is
important to know the behavior of function g¢(1,h) = g(t) i.e. for z =1 on
the circumference of the membrane.

5. Conclusions

The shear stress component is given by Eq (4.13). The coefficient at the
singular term is the stress intensity factor Kpy. Its magnitude is equal to

1+v 2
K= 2—\/'2—”—(1_—’/)0#\/;9(1ah) (5.1)
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Fig. 5. Solution g(z,h) of the Fredholm integral equation (4.9)
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Fig. 6. Function g(t) = g(1,h) versus h for h €< 0.1,2.0 >
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From Fig.6 and Fig.5 it is evident that function g¢(1, k) has maximum at
h = 0.8 and is negative for h < 0.24. The behavior of F(t) is crucial since
for a corresponding value at which it has a jump in the value of its derivative
the magnitude of the contact shear stress tensor commponent exhibits the
singularity of the logarithmic type. The singularity of one over square root
type in the magnitude of the shear stresses appears at all points for which
g(1,h) > 0. This fact implies that there might be a region of delamination or
debonding of the membrane from the elastic matrix and that it depends on
the values of the stress intersity factor Kj;. The existence of the regions of
the negative values of the solution g¢(%,h) implies that in the cases for smaller
values of the ratios h/b and a/b the problem has to be treated as one with
uknown regions of contact shear stresses. The negative values of g¢(t,h) mean
that the membrane coating the elastic strata is under compression.
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Wspdlczynnik intensywnoéci naprezeni w zagadnieniu warstwy z cienkim
pokryciem w polu termodyfuzji

Streszczenie

Rozpatrujemy zagadnienie warstwy spreiystej pokrytej cienka nierozciagliwa
membrang o promieniu b. Na skutek dzialania pola termodyfuzji powstaja styczne
naprezenia kontaktowe, ktére w poblizu obwodu membrany wzrastaja nieogranicze-
nie. W pracy pokazaliSmy, dosé nieoczekiwane zjawiska, a mianowicie, ze wartosé
wspdlczynnika intensywnosci naprezenia wzrasta do wartosci maksymalnej dla sto-
sunku grubogci do promienia membrany 0.8, przy ustalonym promieniu dzialania
irodel termodyfuzji. Drugim zjawiskiem jest efekt podloza, to znaczy, ze dla malych
wartosci stosunku grubosci do promienia osobliwos¢ w wartosci naprezen przestaje
wystepowac, a w zagadnieniu nalezy uwzgledni¢ warunki brzegowe ze zmiennymi gra-
nicami.
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