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A method of stress intensity factor evaluation is presented. Calculating
procedure is based on the well known weight function or influence func-
tion concept. After significant modifications, a unit an weight function
is proposed, which may be easily transformed to obtain a matrix data
base adequate for computer use and subsequent storage in its memory.
This data may be then applied to different loading functions, including
residual stresses.

By separating the geometry of the body from the load applied, one geo-
metric description covers many particular solutions for different loading

functions.
Simplified integrating procedure is also described, which makes the com-
puting time of K values very short.

1. Introduction

The stress intensity factor K is one of the most important parmeters, wi-
dely used in practice, to estimate failure conditions, fatigue crack growth rate,
corrosion cracking etc. Many methods of stress intensity factor determination
have been developed and published (cf Rice, 1972; Bueckner, 1973; Labbens et
al., 1976) in last few decades. Several standard numerical techniques provide
us with solutions to more complicated geometrical and loading problems.

A difficulty in the application of particular solutions found in the litera-
ture is that all results are usually expressed in many different ways: graphs,
tables, polynomial approximations etc. These are often useless in computer
techniques of design or need additional effort for data preparation.



154 K.MoLsk1

2. Weight function

2.1. Conventional weight function method

Many existing methods of crack analysis (cf Rice, 1972; Bueckner, 1973;
Labbens et al., 1976; Albrecht and Yamada, 1977) are based on continuous
load symmetrically applied to both crack sides. From the mathematical point
of view, if a crack length is a function of one coordinate only, the stress intensity
factor value is an integral of a product of two functions: loading function o(z)
and weight function m(z), as follows

a

K= /a(z)m(z,r) dz (2.1)

0
where
a - crack length
r -~ geometrical parameter
z — coordinate along the crack path.

Eq (2.1) is usually solved by numerical techniques, where special care is
given to the singularity at the crack tip. This makes the calculations more
difficult and longer.

2.2. Unitary weight function

The main idea of the present approach is to normalize the m(z) function
with respect to the crack length a and divide it by a correction function F(r)
for uniform stress. For example, assuming a single edge crack in an infinite
strip of width b, Eq (2.1), after rearrangement, takes the following form

K = / o(tyu(t,r) di] F(r) (2.2)

where t = z/a, r = a/b and F(r) is the finite width correction function for
a uniform load.

Normalized in such a way, new w(t,7) implicit function, which appears in
the integral, is called "unitary weight function”, and has an important feature
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useful in further analysis and expressed by

1
0= /w(t,r) dt=1 (2.3)

0
Thus, the integral of Eq (2.2), which appears in square brackets, may be
interpreted as a uniform load, called an equivalent stress o.q, which gives the
same stress intensity factor value as a real one. Numerical integration of Eq
(2.2) may be considerably simplified by using the procedure described below.

3. Procedure of integration
3.1. Linear loading function

The procedure of integration is based on a well known idea, frequently
used in mechanics. It states that the definite integral of the product of two
functions, where at least one of them is linear, is equal to the definite integral
of the first (non-linear) function, multiplied by the value of the linear one at
the centroid coordinate of the former area. Graphic interpretation of this rule
is shown in Fig.1.

Fig. 1. Graphic interpretation of Eq (3.1)

In the present case of stress intensity factor calculation, the following equ-
ation should be applied

xc zc

/ otyu(t,r) dt = 20(%) = o (X9) (3.1)

a
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where, according to Eq (2.3), 2 = 1. Eq (3.1) holds only for a linear loading
function. It means that if the centroid coordinate zc of the unitary weight
function is known, then the equivalent stress o, for the linear Joad is directly
obtained. One example of this situation is shown in Fig.2, where a single edge
crack in a semi-infinite plate is considered. For both cases given in Fig.2, the
stress intensity factor can be obtained from the following equation

K = y/ra 0(0.6092)1.1215 (3.2)

Fig. 2. Edge crack subjected to a linear load

3.2. Non-linear loading function

In general, the crack surface load is not a linear one and the problem
becomes more difficult. Eq (3.1) may not be directly applied and some mo-
difications are necessary. At this point, few possible solutions seem to be
reasonable. The best one, in the author’s opinion, is based on dividing the
whole range of integration (crack length) into ten equal segments and calcu-
lating ten fragmentary integrals §2; of the unitary weight function, as well as
ten centroid coordinates zc¢;. The stress intensity factor is represented thus
by a sum of ten products along the crack length as it is shown in Fig.3 and
described by the following formula

K = /7|y i(r)o(ze)| F(r) (3.3)
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Fig. 3. Integration of two non-linear functions

Accuracy of this procedure is verified by comparing the real values of stress
intensity factors for a case of a central, symmetrically loaded crack in an
infinite plate, to the numerical results of Eq (3.3). Loading stress has the
form

O'(t) = Uotn (34)

where oy is an arbitrary constant.
All results are listed in Table 1.

Table 1. Accuracy of the present method for an exponential load (Eq
(3.4))

exponent n | 1 2 3 4 5 6 7
error % 010141029 | 054|087 (13|20

It is obvious that accuracy of the method depends on the shape of loading
function, which may be interpreted now as ten straight-line segments. Maxi-
mum error (2%) occured when n = 7. Higher values of the exponent n were
not investigated. For lower n values, the accuracy was much better.

Many tests made for different plane crack problems showed that fragmen-
tary quantities §2; strongly depended on the ratio of crack length to finite
width. This relation is shown in Fig.4 for a single edge crack in a finite width
plate, Mode I and II, and in Fig.5 for two symmetrically loaded semi-infinite
cracks in an infinite plate, Mode I, II and III. All fragmentary values with
the same index number were then approximated with 0.5% accuracy by ten
biquadratic polynomials, expressed by

2(r) = Aoi + Ayt + ... + Agir? (3.5)
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Fig. 4. Fragmentary values of the unitary weight function integrals vs a/b ratio, for
a single edge crack in an infinite strip

Suprisingly, while §2; values changed strongly with the a/b ratio, the
centroid coordinates zc¢; remained almost fixed. The explanation of this
phenomenon is as follows: although the unitary weight function changes, its
form remains similar.

4. Data pattern

From the above analysis one may conclude that every plane crack problem
can be represented in the form of a matrix, given in Table 2.
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Fig. 5. Fragmentary values of the unitary weight function integrals vs a/b ratio, for
two symmetrically loaded cracks in an infinite plate

Table 2. General pattern of data matrix for plane crack problems

Code | Aoy A11 A1 Asn  Asq | (zc/a)
Mode | Ao. A12 A2 Asp Az | (zc/a)r
Type | Aoz A1z A2z  Asz A4z | (zc/a);
o Aoa  A1a Azsa Asg Agag | (2c/a)y
Fy Aos A1z  Ass  Ass  Ass | (zc/a)s

Fs | Aojo A110 A210 Azio As10 | (ze/a)o
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In the first column, starting from the top, there should appear: Code - case
number, Mode - I-st, II-nd or I1I-d Mode of loading, Tvpe — singularity type of
the correction function. The remaining seven entries of the first column should
contain polynomial coefficients of the F function, which is then expressed by

F(r) = Type(Fo + Ar+ Brf 4 F6r6) (4.1)

Next five columns are ocuppied by ten groups of coefficients of biquadratic
polynomials, described by Eq (3.5), which represent fractional values of the
unitary weight function. Thus, the sum of all elements of the second column of
the matrix must equal one, but for the next four columns the result of adding
them up should be zero.

The last column includes ten normalized centroid coordinates, which are
considered to be constants.

5. Conclusions

Any form of weight function may be easily transformed into the unitary
weight function and partially integrated by numerical procedures to obtain
a matrix data base adequate for computer use and subsequent storage in its
memory. This data may be then applied to different loading functions, which
are considered as ten straight-line segments along the crack length. Thus,
numerical calculations of stress intensity factors K need only ten steps, making
the computing time very short.

By separating the geometry of the body from the load applied, one geo-
metric description covers many particular solutions for different loading func-
tions. For plane problems, only one width correction function F, assumed for
constant load, is needed.

Accuracy of the method depends mainly on the loading function and no
more than a two percentage error may be expected for engineering applica-
tions.

Approximate values of classic weight functions can be found using the data
base described above. One example of such a transformation can be found in
the paper by Shen and Glinka (1990).
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Automatyzacja obliczerl wspdlczynnika K w oparciu o zmodyfikowang
funkcje wagows

Streszczenie

Przedstawiono metode obliczania wartosci wspdlczynnika intensywnosci napre-
zenia K w oparciu o zmodyfikowana funkcje wagowa, nazwana jednostkows funkcja
wagows. Podano definicje, budowe i sposdb zapisu jednostkowych funkcji wagowych
w formie zunifikowanej, dogodnej do budowy komputerowych baz danych dla réznych
geometrii elementu i konfiguracji szczelin. Omdwiono procedure obliczeniowa, wspol-
czynnika K oraz uproszczony sposéb calkowania. Podano dokladnosé oraz zalety
metody.
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