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The present contribution consists in a detailed description of the algorithm
emerging from the principles given in our previous paper (Blazewicz and
Styczek, 1993). Methods of determination of the decomposed velocity field
components, together with the methods of the blobs position fixing have been
presented. One can find in the paper also some methods of the computer
visualization.

1. Introduction

The scheme of stochastic simulation of a fluid flow algorithm supplied with
the theoretical basis was presented in the previous part of this paper. In the pre-
sent part we will turn to the details concerning particular problems appearing in
the algorithm realization process, i.e. geometrical description of the motion being
under consideration (airfoil, flow area), evaluation of coefficients and right-hand
sides of the equations describing the new blobs circulations, determination of both
the total flow velocity and blobs motion in accordance with the Ito equations. The
crucial point for the present algorithm realization was application of the computer
of a relatively small power to numerical calculations (i.e. IBM PC/AT microcom-
puter supplied with the Definicon accelerator card), which forced us to introduce
unusual numerical techniques at certain stages of the process, e.g. spreading a
network over a flow area and interpolating some velocity components within it, as
well as employing the so-called substitute blobs. Both the aforementioned methods
tended to reduce a number of operations performed at one time step.

Another troublesome question, not so directly connected with the computer
cfficiency, was the problem of increasing number of blobs with the simulation time
passing by due to the way of the blobs creation on an airfoil contour at the inverse
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mechanism (disintegration of blobs) being written off the algorithm. It is obvious
that there exist the natural limit for the simulation time — up till the moment at
which the number of blobs increases to the value disallowing further calculations
for either the long time or the computer power required. It turned out, that
due to the algorithm being employed the simulation time required for the correct
calculations would be rather relatively long one.

We have assumed that the simulation process starts with the flow in which the
vorticity appears only within the areas close to the airfoil contouri.e. at the initial
moment only the first generation of blobs exists. It has been also assumed that
the simulation is realized over the period of time needed for the blobs to flow down
a distance of a several chords from the airfoil, what needs a lot of time steps to be
realized. At each step the number of blobs remaining in the flow increases with the
network (employed to the approximation of the boundary vorticity distribution)
spread over an airfoil density gettinghigher. At a high number of blobs remaining
on the boundary — hundreds of them ~ the total number of them appearing during
the simulation could reach a few or several thousand, which obviously would exceed
the computer capacity. It was necessary then to introduce — despite of the process
of blobs creation on the airfoil boundary — the mechanism of the total number of
blobs existing in a flow reduction, which was achieved due to the operation of the
blobs summing up.

Let us assume that due to stochastic components of the process, centers of
different blobs are located close enough. The vorticity within the areas created
by circles bounding the blobs is a single-valued function having a form of sum
of the component vorticities. Shapes of these areas are determined by the radii
and distances between the overlapping blobs, respectively. Induction in the far
exterior of the system created in such a way will not change significantly when
the lumped vortex of the global circulation will substitute for it. A small-range
interaction appears as a result of the superposition described above and can be
determined with acceptable approximation in terms of a small-range induction of
a substitute blob having the largest radius and exhibiting a circulation being a
sum of the component circulations.

The aforementioned operation, performed at different ”intensity levels” — hi-
gher far from an airfoil and minimal in the airfoil vicinity — enables one to control
the total number of blobs and keep it at the level adequate to the computer power.

The process of summing up blobs despite of its main role i.e. reduction of a
blobs number within the flow, has also been applied to creation of the aforemen-
tioned substitute blobs systems. These are auxiliary systems (of less components)
formed for the successive stages of calculations, in which the summation of the
intensity distributed over the motion area has been performed in a way ensuring
the calculation time reduction without any influence on the calculations quality.

It is obvious that the aforementioned operations aiming at the calculations
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flowchart optimization escape from the analysis of their influence on the simulation
results quality. It was assumed, however, that they were necessary and both the
realization and the parameter choice were based on the results observation.

2. Geometrical relations

Let us name a plane of an airfoil the flow plane z.

y : 7
f @ z=2(g} % @
_—
_J-———«—'—::7 ™
T \/ ) bl
S
Fig. 1.

The contour of the airfoil under consideration appears as a result of the unit
circle transformation, center of which is located at the point (0,0) lying on the ¢
plane, performed in terms of the following function having a form of series

K
Ck
z=2z()=C+c+ > = (2.1)
k=1 C
where the coeflicients c¢g, ¢y, ..., cx are known.

Let us divide the circle into N parts, each one of which has to be divided next
into L segments. The point defining this division have the following arguments

85 = jAbN i=0,1,..,N
(2.2)
90 = jAON + kAS j=0,1,..N-1 k=0,1,..L
where 9 AD
s N
AlOny = — Al = —=
N=N L

It is obvious that
9(])V = 98 + 27

and . _
¢, = 63t for j5=0,1,.,N-1
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It would be convenient to employ a common index for the points enumeration
l=35L+k

for 7=0,1,..,N-1, k=0,1,..,L—1and for j=N,k=0.

One can write then
0, =1IA6 l=0,1,..,NL (2.3)

in particular it is 69 = On7, — 2.
The following proper airfoil contour division can be then defined by means of
the transformation (2.1)

P,z = z(eiei) or P = z(ew‘)

The points Pg, 7 =0,1,..., N represent the ends of N segments, over which
new blobs will appear. We assume that the center By (k = 1,2,..., N) of each
segment has to be located over the center of Pé‘"lP(’,‘ segment at a distance of
half its length

By = 5 (RE + BE) + 5 (Ph - PE1)eiE

The bounding circle of the blob has a radius o chosen in a way ensuring inter-
section of an airfoil at points P(f_l , P, respectively

o) = %|pg ~ By

The airfoil arc s measured from the trailing point is a function of the 6 angle
defined on the circle in an usual way.
It can be written

dz _ dz d (eio) — .eiok

4z _dz) @ 2.4
d6 ~ d¢lcck df dClecx (2:4)

Let [ denote the angle between the 0X axis and the unit vector tangent to an
airfoil ¢. We can write

dz ds ;
— = —¢f 2.
FTRPT (2:5)
One can achieve then J J J
s z z
RabSUU hatefl R haind 2.
a6~ s |dC (cK (2.6)

After integrating Eq (2.6), under the additional condition s(0) = 0, one can
determine the function s(#). The right-hand side of Eq (2.6) is calculated at the
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points ¢ = exp(if;), I = 0,1,..., NL, directly from the formula for transformation
derivative

d_

—k" (2.7)

./\,|._.
M>~

Applying the tra.pezmda.l rule to mtegra.tlo we arrive at
S = 0
(2.8)
ds ds
d0(01 1)+ d0(6’l)] l=1,2,...NL
Eqs (2.4) and (2.5) will be also applied to determination of the unit vector ¢
tangent to the airfoil points. The following formula holds

1
st =811+ §A0[

d jeif 4z
t= eiﬁ = i_z'_ = iﬁ
ds dz
Wlecr
One can calculate then
t=t(6) l=0,1,..,NL (2.9)

The tangent unit vectors ¢ = ¢ can be employed in determination of tangent
and normal velocity components, respectively. One can write

vl — " = (u —iv)e = (u—iv)t (2.10)

oT
ot +iv" = (u+ iv)e_iﬁ = (u+ iv)%

For purposes of the blobs displacement control we define a network spread over
the airfoil exterior. Components of the velocity fields, including the component
induced by the blobs, will be calculated at the network nodes. Interpolating the
total velocity calculated at these points we will arrive velocity components at the
blob center. Calculating the blob center velocity in the aforementioned, indirect
way, we can reduce significantly the calculation time, especially if the number of
network nodes is considerably lower than the number of blobs.

The second important role, which the network plays, is enabling the plain
verification whether the blob has already crossed the area boundary (the airfoil
contour or hypothetical outer boundary) or not.

The last, but not least, role of the network is giving the possibility of quick
?picking up” the neighboring groups of blobs from the variety of blobs existing
within the flow (by means of controling the correlation between the current blob
rumber and the closest network nodes numbers).

The advantages of the network application are obvious, having in mind the
aforementioned functions of it:
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e relatively small number of nodes,
e high concentration of nodes in the vicinity of an airfoil.

Such a network appears as a result of the conformal transformation (2.1) ap-
plied to the proper network spread over the unit circle outwards. The points, at
which half-lines emanating from the coordinate system origin at ?J; angles relative
the 0 axis intersect the circles of radius r; concentric with the unit circle, create
the auxiliary network.

Denoting this network nodes by (;; we write

Giyj = ries (2.11)
From the assumption of the uniform circuit division into Ng—1 segments it follows

191 =0
9, =91 + A j=2,3,..,Ng

where Ad = 27/(Ng—1).
It is worth noting that Jy, = ¥, 4 27.
The formulae for r; radii read

ry = 1
Ty = 1‘,'_1(1 + ‘/V,') 1=2,3,..,Nw

For W; = 1 the distance between the successive points of the i—1 layer, measured
along the arc, represents the distance between the layers 7 and i —1, respectively.
Through the proper choice of the W; value, compression or decompression of a
grid, respectively, in the radial direction can be obtained.

It is convenient to evaluate W; using the formula

W;=A(i—-1)+B

For the proper concentration of nodes to be obtained near the airfoil the following
two ranges of layers are introduced:

— the near one, containing Nwpg layers,
— the distant range with all the remaining layers.

In each of these ranges different pairs of parameters A and B are determined.

The transformation (2.1) of the auxiliary plane enables us to represent the
network spread over the airfoil exterior nodes z; ; by the points (; ;. Nodes of the
first layer (z;,;) are located on the airfoil contour and the both the ends of each
layer overlap i.e. z; = 2; N,.



THE STOCHASTIC SIMULATION...

897

The coordinates of the network nodes can be calculated from the following
formula (in accordance with Eq (2.1))

K
19 CL
zj=rie™ + et Y Tk oikd;
k=1

We calculate also at each node the transforming function derivative (which may
be employed e.g. to the V), velocity determination)

1 X kck

dz
—(2;;)=1- - -
dc( "»J) Tie"9j = chelk‘&j

The scheme of the network spread over the airfoil is give in Fig.2

Fig. 2.

The scheme of the network spread over the airfoil, with the location of just
appearing blobs being marked is given in Fig.3.
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]

Fa

Fig. 3.

3. Velocity fields Vp, Vr

Vp represents the velocity of an inviscid fluid flow past the airfoil under conside-
ration. Let us employ the well-known conformal transformation (cf e.g. Prosnak,
1970).

Let the velocity at infinity be V, = Use'® while the circle radius @ = 1. The
following complex potential represents a solution to the aforementioned problem

r 1
w = Vz _1 Voo_
(C) oG+ o n¢+ c
where .
Viw = Usoe™

The circulation I' should be chosen in a way ensuring that one of the two
impact points appearing on a circle is located at the point (1,0) representing the
inverse image of the airfoil cusp.

To this end let us write the formula for a complex velocity

daw r 1

Vz = 5 — V2o — Voo_
Pode omi( (2

(3.1)

under condition that it vanishes at the point ( = (1,0). Thus we obtain (Fig.4)

eia

Vo) = U (1= 3) (7 + ) 6
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The formula for the corresponding complex velocity in the flow plane =z can be

written as
Vo) = Vel () (3.3)
while the sought-for velocity 17,,, being a conjugate reads
Vp(2) = conjgV.,(2) (3.4)

Having in mind Eq (2.10) we calculate the tangent component V! of the velocity

V,, on an airfoil

= Vi(s) =re [Vzp(z)t] =re [ieszp(()(%Z-)_l] (3.5)

airfoil

Vi(z

P

The velocity Vr(z), in turn, corresponds (in terms of the transformation
z = z(()) with the velocity field of the potential vortex with circulation I
and located at the circle center lying in the auxiliary plane.

The complex velocity induced by the aforementioned vortex can be written

dWr T
VzI"(C) = _dC_ = m
Thus in the flow plane we have
dz\ -1
Ver(z) = Ver(O)( ) (3.6)

while as in the previous case

Vr(z) = conjgV,r(z)
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Let us calculate the tangent and normal components of Vr on an airfoil. Applying
the relation

V, — iV = V,(()e"?

for ( = €% we can write

Vir = iVor = Vop (¢ = e?)ei® = - =

Vip = = = .
r=0 Vor = o (3.7)

which, having in mind the well-known relation (cf Blazewicz and Styczck, 1993)
enables us to determine

r

VR =0 Vi = o—(

T or

dS)—l

% (3.8)

4. Calculations of the blobs circulation

Solution to the equation set given in the previous part (cf Blazewicz and Sty-
czek, 1993 — Eqgs (3.32) and (3.33)) determines the circulation of still appearing
blobs, while the matrix R entries read

J J J

So So So
Rk = /EN(s,k)ds - /T(s, k)ds + /Vlt(s)(ls =ttt

j—1 j—1 =1
50 5o 50

(4.1)
jk=1,2,. N

The components rjl-k, r;‘-’k, r?k have to be calculated.

Functions N(s,k)and T(s,k) represent the normal and tangent components,
respectively, of the velocity induced on the airfoil (at the point P(s)) by the blob
of unit circulation, center of which is located at the point By (over the Py~!P¥
segment). Substituting for I' = 1 and defining the points Bg and P(s;) = P,
coordinates, respectively, we can rewrite the induction formula (cf Blazewicz and
Styczek, 1993 — Eq (3.28)) as follows

Qi?fl_aaﬁk for |P — Bi| < 0%
k

L P =By o0 |p-Bi>0 (*+2)
Q;FT?Z—:jj§ﬁT7 or 1 k| 2 Ok

u(s, k) +iv(s, k) =
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Applying Eq (2.10) one obtains

: . 1
T(s1,k)+1N(s;, k) = [u(sI,k)-}-w(sl,k)]t— (4.3)
{
at each point s; of the airfoil, { =0,1,...,NL.
According to the formulae given in the Part I (Blazewicz and Styczek, 1993 —
Eqs (3.43) and (3.44)) the first component appearing in Eq (4.1) reads

periphery 8(s3)=v(s)

1 sin
1 2
T ] sin (s} 2) (s)

or after evaluating the radial velocity on a circle lying in the auxiliary plane
H(0,k), corresponding to N(s,k) (see Blazewicz and Styczek, 1993 — Eq (3.41))

we arrive at

1(6,k) = ~N(s, k)j—;

(4.4)
2 . 0(3'3)—ap
Th = l/]{(@,k)ln i - de
T 005 )=
0 sin ——05>—

The integrand appearing in Eq (4.4) is a discontinous function at

a) @=6" ¢ =6}
and for
b) =0 for j=N (6} =2r)

c) @ =27 for j=1 (96_1298: )

The cases b) and ¢) are in fact particular situations of a) and therefore all of them
can be considered together.

Let us see how to calculate the integral appearing in Eq (4.4) for 7 # 1 and
Jj # N. For the sake of simplicity let us introduce the following notation

L 8(sh)—e
.\ def sin
R(p,7) = In 9( ,-.21)_
sin %——‘p

After a proper division of the integration range, having the points ¢ = Oé_l,
¢ = 0] together with their close neighborhood drawn out, one can write
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6371 -0

037 +40
1 . 1 .
e = = [ HeRRee+— [ He BB o+
0 9710
Y 62 +A06
1 . 1 .
+ - /H(99,k)R(<P,])d99+; /H(cp,k)li’(@,])d@+
g7 +A0 Y :

2
1 .
05+A0

where Af = 27 /(N L), according to the division (2.2).
Let us denote the components of the sum given above as I, I, I3, Iy, Is,
respectively.

The integrals [y, I3, I5 are to be calculated numerically by means of the
trapezoidal rule, e.g.

AH j—2 L-1
L= — [ 3 He MR -

p=0 ¢=0

1 . 1 i o .
= SH(@S KR8, 5) - FH (P, D R(L 9)

The integrals I, I; are calculated approximately and having in mind that intervals

of integration of the length 2A# may be considered as the short ones and the

function H(¢p, k) is continuous some values may be obtained in an analytical way.
For the values applied to calculations N ~ 100, L ~ 4 it can be written

2
AG~ 2T Abp = LAG ~ =2
400

100

So the integral Iy can be rewritten in the form of sum

93 +00 .
1 -
Li=In+1p = - /H(c,o,k)lnlsin 02 c’pldc,o—
N
64006 :
67" —
_ 1 /II(c,o,k)ln|sin 0—(’9‘(199
T 2

8)—n6
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The integral I4; is a singular one due to vanishing of the logarithm base at
¢ = 6]. Under the assumptions given above we can write

05+406
Iy = %H(ﬁ k) /ln sm

=

and substituting for ¢ — 9{; = 20 we arrive at

Ab AB
2 2
o= 2mek / ln|sma|da———11(0 k) / In |a|da =
g _ae _he
2 2
_A§_9_
4 4 (B0 A8y
= ;H(eo,k)b/ In odax = ;{‘-H(Oo’k)[?(h]? 1)
Af
— i - - J -
lim e(Ine 1)] = H(()O,k)A()(ln . 1)

The integral I,; is calculated by means of the trapezoidal rule at the points
(,01—0] AO <p2—00, 3——0‘7+A0

1 g+ A
Ip = ——H(Oé,k)A()[lnisin i 2°+ 0|+
™

0 —0]

—6 - Ay
2 ” =
~1)A8 LAG 1, (L+ 1)A0]

+ ln‘sin |+—l 'sm

IR

+ In 5 +;2-ln 5

1 .
- J |
7rH(eo,k)Ao[ln

Assuming /L% — 1= [ one obtains

9 LA6
Iy = =2 11(63, k) A0 Tn =2
and
L = —%H(()é,k)AO( 1nA_0 1m0 o

2 . ]
—ZH(65,k)A0(n L + 1) = —4H (8, k)57 (In L + 1)

Il

The integral I, is calculated in a similar way.
Calculations of r}-k at 7 =1or j= N are made in the same way.
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The current element 7% after evaluation of T'(s;,k) at the airfoil points car
be calculated directly applying the trapezoidal rule

So
rf o= - / T(s,k)ds%’—%i[ T(si7 k) + T(s323, )| (571 = si0h) =
it p=1
= —[-;—T(sg_l,k)(s{ — sé 1) + %T(si‘l,k)(si - si 11> + (4.5)
-1

b T (s - )
g=1

It should be noticed that the tangent component Vj! of Velocity induced on an
airfoil by the connected unit vortex appears in the formula for 7‘ . In accordance
with Eq (3.8) we can write

1 sdsy -1
/t - _— (2=
Vils) = 27r(d0>
Then it is obvious that

b3
1
e = /V](s)ds—Q / ds:2—7r/d9=
i 97

1 -1

(4.6)

)

Since the matrix R remains unchanged it can be calculated once and transposed
outside the main calculations course.
Entries of the right-hand side vector B given in the Part I (cf Blazewicz and
Styczek, 1993 — Eq(3.32)) are defined by the following formulae
8.6' J' s)

/( (s) + Va(s)) ds - / LV (s)ds — Ty / Vi(s)ds =

-1 1—1
3o 50 sO

B,

(4.7)

The component Vp’ of the potential velocity appearing in the formulae given above
can be calculated applying Eq (3.5).

The velocity Vj can be represented at the points P of an airfoil by the sum
of velocities induced at these points by the blobs both already existing and still
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arriving in the flow. If we enumerate these blobs with the aid of integers 1,..., M,
denoting the centers by B, the following formula holds

Z [u(sl, +iv(s;, m )] (4.8)

where the components u(s;, m), v(s;, m) appear according to the induction formula
(cf Blazewicz and Styczek, 1993 - Eq (3.28)), which now takes the following form

EI——QQW- for |P— By < ok
11" P —B
?IL_WT for |Pi— Bp| 2> om

u(s;, m) + iv(s;,m) = (4.9)

Having the components V(s), V{j(s) already calculated at the point s of the
airfoil, we can calculate the first term of Eq (4.7) applying the same procedure as
to r#% calculation

= gl ) (47 - o) +
g V) (7 - ) +
L-1

bOX [+ )] (31 - 7))

1

Q
Il

In the same way, having the component VJ'(s;) known, we can calculate the term
b?
1

The last component b2, according to Eq (4.6) reads

LAG

b = —To—-

where I represents the sum of circulations of all the previous generations of
blobs.

To calculate circulations of the new generation blobs the procedure given below
should be followed:

o initial (only once) calculations of the R™! matrix together with the tangential
component V! at the airfoil points,

o calculations of the velocities V{, V', induced on the airfoil, entries of the
vector B and the product R™!B value respectively, at each time step.



906 J.BLAZEWICZ, A.STYCZEK
5. Auxiliary velocity field V,

The velocity V4 written off in the Part I (cf Blazewicz and Styczek, 1993 -
Eq (3.20)) remains however the component of a total velocity field and therefore
has to be determined.

Having in mind the previous part (cf Blazewicz and Styczek, 1993 — Eq (3.20))
we can write

Vi=-Viy, - W (5.1)

where Vi§, VJ* denote the normal components of a velocity field induced on
the airfoil contour by all the blobs remaining in a flow. After solving equations
given in the Part I (cf Blazewicz and Styczek, 1993 — Eq (3.33)) also the youngest
generations of blobs may be drawn out. Thus the term V7 (s;) can be calculated at
each point of the airfoil using the procedure applied above to the first component
of Eq (4.7) calculations (using the induction formula (4.9) and Eq (4.8)).

The tangential component V}(s;) is calculated in terms of the normal compo-
nent V3(s;) as a result of the transformation £ (Blazewicz and Styczek, 1993 —
Eq (3.42)). The circumferetial and radial components, respectively, of the velocity
V4 on the unit circle located in the auxiliary plane can be denoted by Vg and
VA (Blazewicz and Styczek, 1993 — Eqs (3.41) and (3.42)). We can write then

27
1 9
VA9 = §VP/VTA(<,9) cot(§ - g)dcp (5.2)
0

where VA(y) is known.
It is noteworthy that due to the odd and periodic nature of cot a one obtains

2
b
0
We can then write
1 7 9
A _ A _yA o f
VA®) = 5= [V (o) - VAO)] cot(5 - £)dp (5.3)
0

It should be marked out that the integral V! given above has not already been a
singular one since the integrand has at the point ¢ = § a double sided and finite
limit
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. 0 o

A A —
lim [Vi4(i0) = VA(O)] cot (5 - 7) =

0—-06-Ap

T A _yA _
= lim [VA©+ ) = VA®)] cot(———) =

' A _yA A _yA
g WA VA, VA A0 VAO)

Ap—0 tan_aﬂ Ap—0 A(.p
A
_
d(.p o=>0

Let us calculate the values of Vj* at the points 6;, [ =1,2,...,(NL—1).
Approximated vales of the derivative are employed to numerical calculations

VA1) - VAB)
o= - 2A80

dvA
dp

We introduce a new discrete function
Gl i) = cot(§-%) for i=0,1,.,NL i#l
0 for i=1

which enables us to establish the integration formula by means of the trapezoidal
rule

VAo = o= {52 VA - vA@)| ot 0)+
+ Sl vAen ~ AW G N D)+

2 (5.4)
+ A8y i = 1VET [VA(p) - VAB)| G, i) -
—VA(B41) + VAB ) 1=1,2,.,NL-1

The singular case at § = 0 (or 6 = 27) should be pointed out, for which the
integrand is a discontinuous function at ¢ = 0 and ¢ = 27, having, like in the
case given above, finite limits. We can approximate them as follows

Jim, [VA() = VAO)] cot () =

A _yAa A A
o0+ @ dp lot Al

lim [VrA(cp) — V,A(O)] cot (— g) =

-2
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R

AILIEO[VTA(QW - Ap) — V,A(Qﬂ')] COt(—ﬂ' + éf) =

2
o VAT -VAQT-Ap) __dVA VAN
Ap—0 Ay dp l2n- Af
It can be written then
NL-1
VAD) 2 VA™) = 5= [-VAG) + VAGowe) + 80 3 VA@IG(0,0)] (5.5)

=1

Thus the formulae (5.4) and (5.5) determine the values of V() ! =0,1,...,NL,
which enable one, according to the previously given equation {Blazewicz and Sty-
czek, 1993 - Eq (3.41)), to evaluate Vi(s;),!=1,2,...,NL—1 on the airfoil. Due
to the fact that vanishes at 6 = 0 the values of V}(sp) and V}(syL) cannot be
calculated using this procedure, which, fortunately, have occured unnecessary.

Finally, applying Eq (2.10) we arrive at the formula for cartesian components
of the velocity V4 boundary value (evaluated on the airfoil)

(ua — iwa)(P) = [Vi(s1) = iVi(sp)]t™! (5.6)

Since the function Vj4,(2) = (uA - ivA) (2) occurs to be an analytical one in the
airfoil exterior and vanishes at the infinity, it can be represented by the Cauchy
integral. Employing the similar procedure to the one applied in Part I (Blazewicz
and Styczek, 1993) in the formulation of Eq (3.34) we can write

pcnphery . penphery
Van(2) = 1 / A(Q)q:_l_ / A(Q)q
Az S omi J g—=z 2r q—
0

where ¢ stands for the airfoil point and V4, = ugq —ivy.

The aforementioned formula is valid for the coordinates outside the airfoil. Let
us transform the integral given above into the form getting over the problem of
the infinite value of V} appearing on the cusp. According to Eq (5.6) and formula
given in the Part I (Blazewicz and Styczek, 1993 — Eq (3.41)) we can write

ds
Ve = uy — vy = (V{2 +1VA)e“ﬁ( l;)

Having in mind Eq (2.5) one obtains

ds .
@—@w—ﬁww
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therefore
Vazdg = (Vi* +1V,2)do
It can be written

27
T R

LI I B L7,

Vae() 2T / q(0) — = d

0

and finally, according to the trapezoidal rule, we can write

iAf [lVeA(go) + iVTA(go) n lVQA(gNL) + iVTA(BNL)
2m 12 Py—z 2 Py, — 2

IR

I/AZ(Z) +

(5.7)

S V)4 VA6,
P -z

=1

6. Velocity of a blobs convection

The Ito equations describe at each time step the motion of blobs remaining in
a flow.

The absolute velocity of a flow can be written in the following form of sum
(Blazewicz and Styczek, 1993)

V=Vt Vr+Va+Vw+V (6.1)

This velocity should be determined at the center of each blob. It is noteworthy,
that after having solved some equations given in the Part I (Blazewicz and Styczek,
1993 — Eq (3.33)) all the circulations together with the blobs locations in a flow
become known. Let M represent the number of blobs remaining in a flow, B,
denote the center of each blob and I, (m = 1,2,..., M) stand for the circulation,
respectively.

The first two terms appearing in Eq (6.1) i.e. V, and Vr can be determined
by Egs (3.4) and (3.6), respectively. The circulation appearing in Eq (3.6) is in
fact the one, defined in the previous part, where the formula for I'c was given
(Blazewicz and Styczek, 1993).

Let us assume

The form of Eqs (3.4) and (3.6) makes it easier to calculate the velocities V, and
Vi at the point located on the auxiliary plane, rather than on the flow plane,
where the centers of blobs B,, are located. One can calculate the aforementioned
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velocities in a simpler way, employing nodes of the network spread over the flow
area (being in fact the images of the corresponding network nodes located in the
auxiliary plane) and interpolating these values at the points B,, in terms of the
already determined at the network nodes ones, respectively.

The linear interpolation has followed the rules given below:

— for each point B,, the network node closest to it should be found together with
the two adjacent nodes A and B, in a way ensuring the point B,, to be
located within the acute angle ACB area (Fig.5);

the point E, at which the straight line C B,, intersects the triangle ABC basis
AB should be found;

— the linear interpolation rule of velocity should be applied to the segment AB
for the value of it to be calculated at the point FE;

— the linear interpolation rule of velocity should be applied then to the segment
CFE for the value of it to be calculated at the point B,,.

Fig. 5.

The term V), appearing in Eq (6.1) is determined by the formula (5.7) and
can be calculated at an arbitrary point of a flow after evaluation of V,A(6) and
V#(9), respectively, on the unit circle.

Two other terms appearing in Eq (6.1), representing the velocity induced by
the high number blobs remaining in a flow need a special treatment due to the
time-consuming calculations involved. When the ”one-to-one” calculation scheme
(permutation scheme) is employed the number of operations to be performed is
proportional to M?2, which can be reduced by means of the ”indirect” procedure
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application. To this end one should calculate first the induced velocities (by all
the blobs) at the network nodes and then apply the interpolation rule over the
grid for the velocities at the B, point to be found. This procedure is suitable
unless the number of network nodes is greater than the number of blobs.

Unfortunately whenever the sizes of the network mesh are comparable with
the sizes of blobs, the the interpolation affects the interaction betwéen the blobs
close to each other. It was necessary then to take up the procedure, scheme of
which combines both the aforementioned methods i.e. the interpolation over the
network mesh and the direct one-to-one scheme. The heart of this method can be
established as follows:

the velocity Vp + Vi at the point B,, can be represented in the following
form of sum

Vo + VW = VB + VD (6.2)

where Vg and Vp stand for the velocities induced by the blobs ”near” and
?distant” respectively, relative the given point B,,, respectively.

The part of a network is shown in Fig.6, with the following point being marked
out: By, and the node C closest to it, two nodes A and B applied to the velocity
interpolation at B,, together with the node D completing a quadrilateral mesh
(for the sake of simplicity the mesh in Fig.6 is given in the form of squares).

CL
B
\\
B'm
E
A 1
/7 Mq_
Fig. 6.

For interpolation purposes (also for the motion monitoring simplicity) the fol-
lowing information concerning the blob location are to be found for each blob:

— number of the closest network node Cj;

— number of the area within which the blob is located i.e one of the four areas
surrounding the point C (created by segments connecting C with adjacent
nodes).
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The aforementioned information (arranged in a proper way) allows us to draw
out in a plain way these blobs which appear within one of the four areas surro-
unding a given node (e.g. the area hatched in Fig.6, close to the point C') and
makes it possible to point out all the blobs appearing within the areas adjacent to
the chosen one (the area lined in Fig.6).

One can than divide, relative the given point (B, in Fig.6), all the blobs
appearing into two groups "near” — the ones remaining within a lined area and
"distant” — the ones lying outside this area.

Using this division we can calculate the value of Vg as a sum of velocities
induced at the point B,, by the "near” blobs, for which the induction formula
(4.9) is to be applied.

The velocity induced by the “distant” blobs should be calculated by means
of the indirect method given above, i.e. interpolating the velocity induced at the
network nodes in the way given below.

Let us denote the velocity at an arbitrary node as ‘7WD, which can be calcu-
lated as follows

Vwp = Vw — Vws

where
Vi — velocity induced at the given node by all the blobs (calculated
once at a time step);
Vwe — velocity induced at the given node by the blobs "near” relative

the area, over which the interpolation is performed.

It is obvious that the velocity Viyp is induced by the blobsnot being the
“near” ones. It should also be noticed that it occurred unnecessary to calculate
the velocities induced by ”almost all” the blobs — i.e. the ”distant” ones, for each
network mesh, which significantly reduced the calculation costs.

After calculating the term Vp+ Viy at the point B,, according to Eq (6.2) the
conclusion can be made that the velocity of blobs convection has been determined.

7. Numerical results

The simulation procedure described above has been realized in terms of a
computer program. Calculations have been done on the IBM PC/AT unit supplied
with the Definicon accelerator card, having 4 MB operating memory available.
The procedure has been performed for the NACA 0012 (12%) airfoil and the
Zukowski airfoil with a slight camber (10%). The results of calculations made for
the following four cases are to be presented:
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1. flow past the NACA 0012 airfoil at the angle if incidence «a = 6 de-
gree, velocity at the infinity of which corresponds to the Reynolds number
Re = 2-105;

2. flow past the NACA 0012 airfoil at the angle if incidence « = 6 degree,
Re = 10%

3. flow past the NACA 0012 airfoil at the angle if incidence o = 20 degree,
Re = 108, (see: Part 1, Fig. 4 + 6);

4. flow past the Zukowski airfoil at the angle of incidence o = 2 degree,
Re = 2-108.

The results being obtained consist of the pictures determining in an indirect
way the velocity and vorticity fields, respectively. The following results have been
obtained:

e arrangement of the blobs within the flow, with the point denoting only the
appearance of blob, without giving any information of the vorticity;

e segments of the trajectory of markers having been locatedat an instant at
the uniform network spread over the flow nodes and having been observed
for some time; equations of these trajectories read

dr, - o
Ttp- = V(t, Tp) Tp = Tpo (71)

t=1g
and have been integrated by means of the Euler method.

The aforementioned images taken at several equidistant instants appear in the
form of cycles. Displaying these cycles on the screen in terms of the ”picture by
picture” scheme one can achicve the animation effect and arrive at the additio-
nal information concerning the velocity and vorcity fields creation and evolution,
respectively.

Due to the secondary importance and costly calculations the Authors neglected
the problem of instantaneous stream lincs realization. To this end one would
integrate at each instant t = ¢, the set of differential equations of type

dzy dyx
— = u(t 3 — = (i . 7.2
a (b, Thy Yk) i V(tw, Tk, Yk) (7.2)

which seemed to be both a long-lasting and unnecessary process.

The results averaged with regard to the realization have also been written
off due to the low efficiency of the computer unit being employed. Since quasi-
periodicity of structures appears explicitly, the ergodicity assumption has also
been thrown away. For the quasi-periodicity effects to be filtered out the simulation
times long enough are required and thus the calculation time would become longer.
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For the reasons given above the results being shown represent the unique re-
alizations of a flow, while the values being presented (time intervals, distances
between the vorticity structures) have been obtained upon singular observations,
which in a view of stochastic character of the investigated processes, require a
cautious judgment.

For approximation purposes of the vorcity boundary distribution, different den-
sities of the airfoil contour division i.e. different sizes and numbers of blobs appe-
aring at one time step have been employed. The following numbers of blobs have
been applied to particular cases: 80 blobs in the cases 3 and 4 and 250 blobs in
the cases 1 and 2, respectively.

Total numbers of blobs in a flow (being reduced due to the intensity of summing
them up) in the aforementioned cases were close to the following values: 3200, 2400,
4100 and 4200, respectively; thus not significantly differed from each other.

Each simulation process started from the irrotational flow field. In the cases 1,
3 and 4, respectively, the velocity at infinity increased from a certain small value
to the final one in a relatively short time.

All the results being presented were obtained at instants far from the simulation
starting point.

The following effects could be observed in all the cases:

o the area of nonzero vorticity affecting explicitly the velocity field was restric-
ted to the direct vicinity of an airfoil and its wake;

e in the boundary layer (of different thickness on the upper and bottom sides
of an airfoil, respectively) made of the drifting and diffusing blobs the vortex
structures appear, sizes of which are considerably larger then sizes of the
blobs themselves; two different types of these structures can be found looking
at the pictures being obtained:

a) vortices appearing on the airfoil front side (i.e. in the case 3 — close to
the airfoil border of attack, in the cases 1 and 2 — approximately at
the 1/4 chord length, respectively, and in the case 4 at the 1/3 chord
length) and flowing down the airfoil contour towards the trailing edge
- Fig.7, 10, 13, 14 and in the previous part, in Fig.8 and 9 particular
flow structure detailes are enlarged;

b) vortices appearing on the airfoil tail, much bigger than the aforethentio-
ned ones, which arise in terms of the vortices of the first kind due to the
newer ones moving faster and overtaking the vortices, which appeared
before thus being able to capture them; the vortex created in such a
way is moving slowly or remains fixed and after a while suddenly starts
up and flow off the airfoil - Fig.7, 11, 12 and in the previous part;
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Fig. 10. Instantaneous locations of the blobs centers, with the monitoring periods like in
Fig.7
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Fig. 12. Instantaneous locations of the blobs centers, with the monitoring periods like in
Fig.11
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Fig. 14. Instantaneous locations of the blobs centers, with the monitoring periods like in
Fig.13
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o the airfoil wake displays the properties of an alternate vortices path; distances
between the cores reflect the fact that the vortices have been formed due to
a cumulation of several vortices of type a), i.e. three of them in the cases 1,
2 and 4, respectively.

Let us determine the Strouhal number connected with the aforementioned
structure forming on the vortex path. It can be written as

L
St =
vt*
where
L - 7transverse” size of the airfoil, i.e. the height of the airfoil
projection onto a plane perpendicular to the velocity at infinity
direction,
vt* - distance between the wires of the same sign along the vortex
path.

Basing on the results being obtained and keeping in mind al the remarks gi-
ven before and concerning the numerical values of presented quantities, one can

calculate the Strouhal number values as:
in thecases 1 and 2 - St=10.24

in the case 4 - St =0.20.

The values given above are close to the ones presented by Grybos, 1989, for
the vortex path behind a cylinder (St =0.21).

A relatively high thickness of the boundary layer should be noticed, being in-
comparably wider than the one appeéaring in real flows, which may occur due to big
sizes of the blobs employed in simulation. It is known that the sizes of them shall
be several times lower than the sizes of structures to be formed. This conclusion
may be proved comparing the boundary layer thickness on the airfoil bottom side
in the cases 1 and 4, respectively, being in the latter case three times wider than
in the first one. It should be stated that for the sake of proper simulation of the
effects appearing in a boundary layer the blobs of smaller sizes shall be applied.
It is of course possible to increase the number and decrease the sizes of blobs,
respectively, but only applying a computer unit of the higher power. Since the
calculation were time-consuming the results being obtained were rather expensive,
e.g. realization of 400 time steps during calculations of the case 4 (with 80 blobs
appearing at each time step) consumed 70 hours, while in the case 1 — 500 time
steps (with 250 blobs at each step) consumed 200 hours, respectively. It is obvious
that realization of the process with a thousand of blobs at each time step and
a total number of them reaching 10 thousand would consume a ten times longer
calculation time.

The number and sizes of blobs applied here seem to be sufficient for the model-
ling of bigger structures purposes i.e. simulation of the boundary layer separation
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and the vortex path behind the airfoil, especially in the case of wide angle of
attack. So the results given above prove (under the aforementioned limitations)
the advantages of the presented method when applied to the viscous flow simula-
tion. The violent progress in the computer technology creates also the promising
prospects.
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